Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Inference for structural and treatment parameters while having high dimensional covariates in the model is increasingly common. The Neyman-orthogonal (NO) estimators in Belloni, Chernozhukov, and Wei (2016, Journal of Business and Economic Statistics 34: 606–619) produce valid inferences for the parameters of interest while using generalized linear model lasso methods to select the covariates. Drukker and Liu (2022, Econometric Reviews 41: 1047–1076) extended the estimators in Belloni, Chernozhukov, and Wei (2016) by using a Bayesian information criterion stepwise method and a testing-stepwise method as the covariate selector. Drukker and Liu (2022) found a family of data-generating processes for which the NO estimator based on Bayesian information criterion stepwise produces much more reliable inferences than the lasso-based NO estimator. In this article, we describe the implementation of posw, a command for the stepwise-based NO estimator for the high-dimensional linear, logit, and Poisson models.

Details

PDF

Statistics

from
to
Export
Download Full History