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Abstract. Inference for structural and treatment parameters while having high-
dimensional covariates in the model is increasingly common. The Neyman-orthog-
onal (NO) estimators in Belloni, Chernozhukov, and Wei (2016, Journal of Business
and Economic Statistics 34: 606—619) produce valid inferences for the parameters
of interest while using generalized linear model lasso methods to select the covari-
ates. Drukker and Liu (2022, Econometric Reviews 41: 1047-1076) extended the
estimators in Belloni, Chernozhukov, and Wei (2016) by using a Bayesian infor-
mation criterion stepwise method and a testing-stepwise method as the covariate
selector. Drukker and Liu (2022) found a family of data-generating processes for
which the NO estimator based on Bayesian information criterion stepwise produces
much more reliable inferences than the lasso-based NO estimator. In this article,
we describe the implementation of posw, a command for the stepwise-based NO
estimator for the high-dimensional linear, logit, and Poisson models.

Keywords: st0713, posw, high-dimensional model, covariate selection, partialing
out, stepwise, Neyman-orthogonal, generalized linear model, postselection infer-
ence

1 Introduction

Many researchers face a situation in which they want to make inferences about a few
coeflicients on variables of interest while having more control variables than they could
include in the model for the sample size at hand. This situation is a high-dimensional
model (HDM), and the sparse modeling approach is frequently applied. This approach
has three key features. First, it assumes that the model is “sparse”. The model is sparse
when the number of potential controls that must be included in the model is small rela-
tive to the sample size. Second, the approach uses a covariate-selection method to choose
which of the many potential controls must be included. Third, the approach uses an
estimator for the parameters of interest that is robust to the inevitable mistakes made
in the covariate-selection step. As discussed in Chernozhukov, Hansen, and Spindler
(2015), these robust estimators are known as Neyman-orthogonal (NO) estimators be-
cause they extend a technique derived in Neyman (1959, 1979) and they are robust to
the covariate-selection mistakes made by high-quality covariate-selection techniques.’

1. A high-quality covariate-selection technique selects the required covariates at a fast enough rate;
see Chernozhukov, Hansen, and Spindler (2015).
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Why covariate-selection methods inevitably make mistakes deserves an explanation.
Covariate selection has a long and somewhat controversial history in statistics and
econometrics. When all the nonzero coeflicients are large enough in magnitude and the
model is sparse, some covariate-selection methods will include the required covariates
with probability approaching one as the sample size increases, under some regularity
conditions. These conditions require a minimum ability of the statistical model to
approximate the true model and place limits on the possible joint distribution of the
covariates. The assumption that the nonzero coefficients are large enough in magnitude
is known as a “beta-min” assumption, and it is the crucial assumption. It is now
commonly accepted that the beta-min assumption is way too strong to be a part of a
realistic approach to estimation and inference.

While Leeb and Pétscher (2006, 2008) and Potscher and Leeb (2009) contain formal
results and intuition based on uniform versus pointwise results, there is a simple thought
experiment that captures why the beta-min assumption is too strong. It is frequently
the case in applied studies that several coefficients have p-values that are just a little too
large to reject the null hypothesis that their true values are zero. These covariates are
on the border of being included or not included in the model. The beta-min assumption
would require that the true values of the coefficients on these not-included covariates be
either zero or very close to zero, where the definition of “very close” is a function of the
sample size. Dropping the beta-min assumption allows for a more realistic scenario in
which these coefficients have nonzero values that are just a little too small in magnitude
to warrant including the covariates in the model, according to the covariate-selection
method.

Dropping the beta-min assumption implies that even the best possible covariate-
selection methods will omit some covariates whose coefficients are small in magnitude.
When we accept that covariate-selection methods make mistakes, we must use an estima-
tion technique that is robust to these mistakes in covariate selection. Naive estimators
that simply include the selected covariates in a model are not robust and do not provide
reliable inferences. In repeated samples, the random inclusion or exclusion of covariates
with small coefficients causes the distribution of the naive estimators to be multimodal.
Using a normal distribution to approximate this multimodal distribution produces un-
reliable results in theory and practice. Again, see Leeb and Potscher (2006, 2008) and
Potscher and Leeb (2009) for details.

Belloni et al. (2012), Belloni, Chernozhukov, and Hansen (2014), Chernozhukov,
Hansen, and Spindler (2015), and Belloni, Chernozhukov, and Wei (2016) pioneered NO
estimators that are robust to the mistakes in covariate selection made by high-quality
covariate-selection methods. These theoretical studies formally demonstrated that NO
estimators based on lasso methods with a feasible version of the optimal lasso tuning
parameters produce valid inferences for the coefficients of interest. The feasible version
of the optimal lasso tuning parameters is known as the plugin method. Drukker and
Liu (2022, Forthcoming) extended the feasible version to the generalized linear model
(GLM) case.
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Drukker and Liu (2022) studied the finite-sample performance of the Lasso-based NO
estimator for the high-dimensional GLM using different methods to select the lasso tuning
parameters. The simulation results in Drukker and Liu (2022) suggest both advantages
and disadvantages of using the lasso as a covariate-selection method in a NO estimator.
The main advantage of the lasso-based NO estimator is speed. If the tuning parameters
are appropriately chosen, the lasso-based NO estimator can relatively quickly provide
valid inferences in the presence of small coefficients and many potential covariates. The
main disadvantage of the lasso-based NO estimator is that the simulations in Drukker
and Liu (2022) reveal a problematic family of data-generating processes (DGPs) for which
the lasso-based NO estimator fails, regardless of the choice of the tuning parameter. The
problematic family of DGPs has coefficients that alternate in sign. These coeflicients are
commonly observed in models that use powers and interaction terms among covariates
to approximate nonlinear functional forms.

To accommodate this family of DGPs, Drukker and Liu (2022) extended the lasso-
based NO estimator in Belloni, Chernozhukov, and Wei (2016) to the Bayesian informa-
tion criterion (BIC)-stepwise-based NO estimator for the high-dimensional GLM model.
The simulation results in Drukker and Liu (2022) show that the BIC-stepwise-based NO
estimator performs well on the designs for which the lasso-based NO estimator failed.

The price of the increased performance was computation time. The BIC-stepwise-
based NO estimator is much slower than the lasso-based NO estimators.2 In practical
terms, the BIC-stepwise-based NO estimators become computationally infeasible for huge
numbers of potential covariates, which the lasso-based NO estimators can handle.

The good performance of the BIC-stepwise-based NO estimator is not without some
theoretical support. Kozbur (2020) presents conditions in which a testing-stepwise-
based NO estimator will produce valid inference. Ironically, the testing-stepwise-based
NO estimator did not perform well in the problematic DGP in Drukker and Liu (2022).
One possible reason is that the significance level is essentially an unoptimized tuning
parameter in the covariate selection method. We recommend using the BIC-stepwise-
based estimator instead of the testing stepwise-based estimator, but both are available
in posw.

We organize this article as follows. Section 2 describes the high-dimensional GLM
model, the BIC-stepwise-based NO estimators, and the testing-stepwise-based NO esti-
mators. Section 6 documents the syntax and options for the command posw. Section 4
shows a numerical example of using posw. Section 5 presents the simulation results.
Finally, section 6 concludes.

2. For example, in a dataset with 1,000 observations and 100 controls, the BIC-based popoisson
command takes 0.5 seconds, while posw takes 24 seconds.
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2 Stepwise-based NO estimator for parameters in HDMs
2.1 HDMs

A cross-sectional high-dimensional GLM can be written as
E (yildi,x;) = G (diog + xi/3)

where y is the outcome, d; are the covariates of interest, x; are the control covariates
that potentially need to be included in the model, c are the coefficients on d;, and 3
are the coefficients on x;. G(-) maps the linear index d;af, + x;3( to the conditional
mean. Although there are many other possibilities, three common models are when G(+)
is the identity function for linear models, when G(-) is the standard logistic function
for logit models, or when G(-) is the exponential function for a (quasi) Poisson or an
exponential conditional mean model.

The number of potential covariates in x; (px) can be larger than the sample size n.
We are interested in the case in which px is too large for a GLM regression of y on d
and x to produce reliable results for «, but the number of covariates in x that belong
in the model (sx) is not too large. Belloni et al. (2012) and Belloni, Chernozhukov, and
Wei (2016) derive rates that must bind sy as a function of n and px. The assumption
that sx is not too large is the sparsity assumption mentioned in the introduction.

The goal is to obtain reliable estimation and inference for ag. The covariates in d;
must be specified a priori, and their number is assumed to be small relative to n. Any
or all of the coeflicients in a can be zero. Specifying a covariate to be of interest does
not imply that it has a nonzero effect.

The key features of an HDM are that we are interested only in estimating oy, that
there are too many covariates in x to reliably estimate o using a quasi—-maximum-
likelihood (QML) estimator of y on d and x, and that the sparsity assumption holds.

The sparsity assumption makes the problem feasible and implies that we have a
covariate selection problem. Let X,, be the subset of x that we need to include for a QML
estimator of y on d and X,, to produce a root-n consistent and asymptotically normal
estimator for ay. Belloni et al. (2012), Chernozhukov, Hansen, and Spindler (2015),
and Belloni, Chernozhukov, and Wei (2016) provide formal statements and analyses of
how to allow for and how to bind the approximation error.

Algorithm 1 gives the naive estimator for the o estimator discussed in the Intro-
duction. Leeb and Potscher (2006, 2008) and Potscher and Leeb (2009) show that naive
estimators like the one in algorithm 1 do not have an asymptotic normal distribution
and that they can perform poorly in finite samples when some of the coefficients are
small in magnitude. In repeated samples, which of the covariates with small coefficients
are included is random. This random inclusion causes small amounts of omitted-variable
bias to be randomly added to the estimator. This random omitted-variable bias makes
the distribution of the naive estimator have a nonnormal asymptotic distribution. Using
a normal distribution to approximate this nonnormal distribution can produce unac-
ceptably poor results in finite samples.
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Algorithm 1 Naive estimator for aq

1. Use a feasible covariate-selection technique to select the subset of x that should
be included in the model. Call these selected covariates X.

2. Use a QML Poisson estimator of y on d and X to estimate a.

Instead of a naive estimator, posw implements NO estimators that were explicitly
designed to provide valid inference for a when some of the model’s coefficients are small
in magnitude. See Belloni et al. (2012), Chernozhukov, Hansen, and Spindler (2015),
and Belloni, Chernozhukov, and Wei (2016) for formal results. Instead of naively using
the covariates selected in a model of y on d and x, NO estimators use moment conditions
that are robust to the inevitable mistakes that covariate-selection methods make. The
NO estimators use multiple covariate-selection steps to form a moment condition for
a that is orthogonal to the first-stage selection. This process is an extension of the
technique discussed in Neyman (1959, 1979), hence the NO moniker.

The NO estimators can be implemented using different covariate-selection techniques.
One popular choice is to use the lasso. Belloni, Chernozhukov, and Wei (2016) derive the
Lasso-based NO estimator for the high-dimensional GLM. It uses a particular version of
the lasso that selects the tuning parameters using a plugin method. In practice, the NO
estimator’s performance critically depends on the choice of tuning parameter selection
method.

Drukker and Liu (2022) studied the finite sample behavior of the lasso-based NO
estimator for the HDM using different tuning parameter selection methods. The BIC-
stepwise-based NO estimators are shown in their simulations to provide reliable infer-
ential results for the family of DGPs where the lasso-based NO estimators provide poor
inferential results.

Kozbur (2020) presents formal results for testing stepwise selection for linear models.
These results show that testing-stepwise-based NO estimators will perform well in the
large sample under the conditions described in the article. Given these formal results, it
is a little surprising that these estimators did not perform well for the problematic DGP
in Drukker and Liu (2022). We conjecture that the poor performance of the estimators
on the problematic DGP was due to the choice of the significance level. In practice, we
recommend the BIC-stepwise selection because it avoids choosing the significance level
and because of how well it has performed in our simulations.

As discussed by Belloni and Chernozhukov (2011), the lasso can be viewed as a
convex approximation to the computationally infeasible problem of finding the subset
of covariates that best approximates a conditional expectation function. The family of
stepwise methods is another approach to solving this best-subset regression problem.
Stepwise methods are computationally feasible for many HDMs, but they take much
longer than lasso methods and become infeasible for very high-dimensional problems.
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2.2 Algorithms

The BIC-stepwise algorithm used by posw is algorithm 3 in Drukker and Liu (2022).
The testing-stepwise-based algorithm used by posw is algorithm 4 in Drukker and Liu
(2022).

Belloni, Chernozhukov, and Wei (2016) derived lasso-based NO estimators for the
GLM model. We implement versions of NO estimators that use BIC stepwise or testing
stepwise for covariate selection. Algorithm 2 provides the details about these versions
of the Belloni, Chernozhukov, and Wei (2016) NO estimator. Algorithm 2 generalizes
algorithm 6 in Drukker and Liu (2022) from the Poisson regression case to the GLM
regression case.
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Algorithm 2 Stepwise-based NO GLM estimation

1. In a GLM model of y on d and x, use covariate selection to find the subset of the
x covariates that have nonzero coefficients. Denote this subset by X.

e For the BIC-stepwise NO estimator, we find the subset of the x that BIC
stepwise includes.

o For the testing-stepwise NO estimator, we find the subset of the x that testing
stepwise includes.

2. Use the unpenalized QML GLM regression estimator to estimate the coefficients o
and 3 in a GLM model of y on d and x.

3. Let 5; = iiﬁ’ be the ith observation of the predicted value of the linear index x3’.

4. Let w; = G'(d;&’' 4+ 3;) be the ith observation of the predicted value of the deriva-
tive of G(-). Let 02 = Var(y;|d;, x;). Let f; = w;/o;.

5. For each j € {1,...,J}, use a linear stepwise of the jth variable in d on x using
observation-level weights f;, and let X; be the selected covariates.

e The BIC-stepwise NO estimator uses a weighted BIC-stepwise for covariate
selection.

e The testing-stepwise NO estimator uses a weighted testing-stepwise for co-
variate selection.

6. For each j € {1,...,J}, run a linear, ordinary least-squares regression of the jth
variable in d on X; with observation-level weights f;. Let d; be the unweighted
residuals from this regression, and let d;; be the ith observation on d;.

7. Create the vector of instrumental variables z = (671, . 7(?]), and let z; be the ith
observation on this vector. Note that z; = (21,4,...,27:) = (d1,i,...,dJs)-

8. Compute & by solving the J sample-moment equations
1 n
n Y {yi—G(dia’ +5)}z =0
i=1

We use the standard robust estimator for the asymptotic variance of a method-
of-moments estimator.




D. Drukker and D. Liu 409

3 Syntax of posw

posw has the following syntax.

posw depvar varsofinterest [zf] [zn], controls (varlist)

model (linear | logit|poisson) [method(bic|test) alpha(#) ]

varsofinterest are variables for which coefficients and their standard errors are estimated.

3.1 Options

controls (varlist) specifies the set of control variables, which control for omitted vari-
ables. Control variables are also known as confounding variables. posw uses the
forward stepwise to select the control variables for each of depvar and varsofinterest.
controls() is required.

model (linear | logit |poisson) specifies the model for the outcome variable depuvar.
It can be one of linear, logit, or poisson. model () is required.

method(bic | test) specifies the method used in stepwise covariate selection. It can be
one of bic or test. Specifying bic implies using the BIC-based stepwise. Specifying
test implies using the testing-based stepwise. The default is method (bic).

alpha(#) specifies the level of significance for the testing-based stepwise. The default
is alpha(0.05).

3.2 Stored results

posw stores the following results in e():

Scalars
e(N) number of observations
e(k_controls) number of controls
e(k_controls_sel) number of selected controls
e(k_varsofinterest) number of variables of interest
Macros
e(cmd) posw
e(depvar) dependent variable
e(title) title in estimation output
e(vce) robust
e(vcetype) Robust
e(properties) bV
e(varsofinterest) variables of interest
e(controls_sel) selected control variables
e(controls) control variables
e(model) type of model
Matrices
e(b) coefficient vector
e (V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample
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4 A numerical example

We now illustrate the use of posw through an empirical example. We have an extract
of data from Sunyer et al. (2017) to measure the effect of air pollution level on the
student’s response time. The model is

react; = no2_class;a +x;8' + ¢

where react; is the response time of child ¢ on a test, no2_class; is the pollution level
in the school attended by child ¢, x; is a high-dimensional control to be included in the
model, and ¢; is the disturbance term.

To start, we bring breathe.dta into memory.

. use https://www.stata-press.com/data/r17/breathe
(Nitrogen dioxide and attention)

Next, we need to define the control variables x. It would be tedious to separate the
factor variables from the continuous variables manually. Instead, we can use Stata’s
variable management tools v1. Here we directly call a do-file from the Stata website to
save some typing.

. quietly do https://www.stata-press.com/data/r17/no2

The purpose of this do-file is to define a global macro $£fc for the factor control variables
and a global macro $cc for the continuous control variables. We can display their
content.

. display "$cc"
no2_home age age0 sev_home green_home noise_school sev_school precip
> siblings_old siblings_young

. display "$fc"
sex grade overweight lbweight breastfeed msmoke meducation feducation

Now, we can define the control variables as raw variables and the full second-order
interaction among them. The control variables are stored in global macro $controls
for later use.

. global controls (c.($cc) i.($fc))##(c.($cc) i.($fc))



D. Drukker and D. Liu 411

Finally, we can fit our model using posw. We specify option controls() for the
control variables and the option model () for the linear model.

. posw react no2_class, controls($controls) model(linear)

select controls for react using stepwise bic
select controls for no2_class using stepwise bic

Partialing-out stepwise bic Number of obs = 1,036

Number of controls = 516

Number of selected controls = 16

Wald chi2(1) = 20.97

Model: linear Prob > chi2 = 0.0000
Robust

react Coefficient std. err. z P>zl [95% conf. intervall

no2_class 2.493274 .54448 4.58 0.000 1.426113 3.560435

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

The results imply that another microgram of NO2 per cubic meter increases the
mean reaction time by 2.5 milliseconds. Only the coefficient on the covariate of interest
is estimated. The coefficients on the control covariates are not estimated. The cost of
using covariate selection methods is that these estimators do not produce estimates for
the coefficients on the control covariates. Remarkably, there are 516 control variables,
and only 16 of them are selected.

5 Simulations

This section describes some Monte Carlo simulations that illustrate the good perfor-
mance of the posw command in linear, logit, and Poisson and exponential conditional
mean models. We note that the naive estimators perform poorly on these designs.?

5.1 Designs

The design for the simulations reflects the structure of the high-dimensional GLM model.
In each design, there are a few covariates whose coeflicients have values that are large in
magnitude, a few covariates whose coefficients have values that are small in magnitude,
and many covariates whose coefficients are zero. Following Drukker and Liu (2022),
we specify the value of each small coefficient to be about two times its standard error
in the true model for the sample size used in the simulations. We specify the value
of each large coefficient to be about four times its standard error in the true model
for the sample size used in the simulations. These values encode a representation of
DGPs for which there is no beta-min condition. The small coefficients are close to being
statistically significant, while the large coefficients should be statistically significant in
the vast majority of the repeated samples.

3. For a more detailed simulation study on the comparison of posw and popoisson, see Drukker and
Liu (2022).
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The DGPs for the three designs are given in (1)—(3).

Linear Yi = w; + € (1)
Logit Yy =w; +€ >0 (2)
Poisson y; = exp(w;)€; (3)

For each design

/ /
w; = abigdbig,i + asmalldsmall,i + azerodzero,i + Xbig,iﬂbig + Xsmall,iﬁsmall
where

o dpig is the covariate of interest whose coefficient, aug, is large;

e dgmall is the covariate of interest whose coefficient, agman, is small;

e dyero is the covariate of interest whose coefficient, ayero, is zero;

* Xpig is the vector of control covariates whose coefficients, By, are large;

e Xgmall iS the vector of control covariates whose coefficients, Bsman, are small;

A type of Toeplitz structure is frequently used to generate the covariates in HDMs;
see Belloni et al. (2012) for an example. In these Toeplitz structures, each covariate has
an index j € {1,...,p}, where p is the total number of covariates in the model. (This
includes the covariates of interest and the control covariates.) Covariates with nearby

indices are significantly correlated, but the amount of correlation decays as the distance
between the indices increases. Each covariate was generated as

I’j = 0.31']‘_1 —+ 0.235‘j_4 + 0.21']‘_8 —+ 77

where n = (rchi2(25) — 25)/sqrt(50)) and rchi2(a) is the Stata function that gener-
ates draws from a y? distribution with a degrees of freedom. The distribution for 7 has
mean zero and variance one, and its higher moments are distinctly different from those
in a normal distribution.

For each design, we generated p = 100 covariates. For each draw, we drew 120
covariates and discarded the first 20 to burn in the Toeplitz structure.

o Covariate 1 is dpig, the covariate of interest whose coefficient is large.

o Covariates 2-5 are Xy;g, the control covariates whose coeflicients are large.

e Covariate 6 is dsmall, the covariate of interest whose coefficient is small.

e Covariates 7-10 are Xq¢man, the control covariates whose coefficients are small.

e Covariate 11 is d,e;0, the covariate of interest whose coefficient is zero.

e Covariates 12-100 are X,q;0, the control covariates whose coefficients are zero.
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Here are true values for the coefficients.

Table 1. True coefficient values

Model Coefficient  Value

Linear Qipig 0.12
Linear Qismall 0.06
Linear  Bpig 0.12
Linear  Bsman 0.06
Logit Qibig 0.32
Logit Qismall 0.16
LOgit ﬁbig 0.32
Logit Bsmall 0.16
Poisson  apig 0.08
Poisson  agman 0.04
Poisson  Big 0.08
Poisson  Bsmal 0.04

Here is how the error term was generated for each design. For the linear design,
€; = (rchi2(25) — 25)/sqrt(50)), where rchi2(a) is the Stata function that generates
draws from a x? distribution with a degrees of freedom. This distribution has mean
zero and variance one, and its higher moments are distinctly different from those in a
normal distribution.

For the logit design, ¢; = rlogistic(), where rlogistic() generates draws from a
standard logistic distribution.

For the Poisson design, ¢; = rweibull(2, b), where rweibull(c,b) generates draws
from a Weibull distribution with shape parameter ¢ and scale parameter b. We set
b = 1/exp(lngamma(1 + 1/2)) so that the mean of € is 1. Note that we are drawing
from a conditional exponential mean model, not from a Poisson model.

We ran 2,400 repetitions for each design. There are 2,400 repetitions because we
used Stata’s stream random numbers to parallelize the simulations over 40 cores, with
60 repetitions on each core. (See help rngstream for an introduction to stream random
numbers.)

5.2 Results

Tables 2, 3, and 4 summarize the simulation results. In short, we see that the NO
estimators in the BIC step and test step perform well and that the naive estimators in
the BIC naive and test naive do not perform well.
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Here is how each table is structured.

e Model specifies the DGP design.
o Estimator specifies the estimator used for that row’s results.

e Mean specifies the sample mean of the estimates of that coefficient over the repe-
titions. The sample mean should be close to the true value given in table 1.

e SD specifies the sample standard deviation of the estimates of that coefficient over
the repetitions.

e SE specifies the sample mean of the standard errors of that coefficient over the
repetitions. The sample mean of the standard errors should be close to the sample
standard deviation of the estimates.

e RR specifies the rejection rate of a test against the true null hypothesis. The
significance level of each test was 0.05, so the RR should be close to 0.05.

Table 2. Result for large coefficient apig

Model Estimator Mean SD SE RR

Linear  BIC step 0.1172 0.0343 0.0336 0.060
Linear  Test step  0.1157 0.0343 0.0337 0.059
Linear BIC naive  0.1381 0.0387 0.0316 0.146
Linear Test naive 0.1546 0.0420 0.0311 0.280
Linear  True 0.1198 0.0338 0.0332 0.055
Logit BIC step 0.3260 0.0854 0.0824 0.054
Logit Test step  0.3214 0.0863 0.0797 0.072
Logit BIC naive  0.3649 0.0921 0.0791 0.128
Logit Test naive 0.3980 0.0979 0.0769 0.240
Logit True 0.3255 0.0824 0.0820 0.045
Poisson  BIC step 0.0787 0.0192 0.0198 0.047
Poisson  Test step 0.0796 0.0194 0.0192 0.052
Poisson  BIC naive  0.1088 0.0246 0.0298 0.137
Poisson  Test naive 0.0963 0.0224 0.0176 0.218
Poisson  True 0.0799 0.0185 0.0185 0.051
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Table 3. Result for small coefficient agman

Model Estimator Mean SD SE RR
Linear  BIC step 0.0586 0.0339 0.0341 0.053
Linear  Test step  0.0583 0.0338 0.0341 0.052
Linear BIC naive  0.0760 0.0360 0.0317 0.111
Linear Test naive 0.0868 0.0373 0.0314 0.188
Linear  True 0.0602 0.0327 0.0331 0.050
Logit BIC step 0.1640 0.0851 0.0837 0.055
Logit Test step  0.1632 0.0844 0.0813 0.061
Logit BIC naive  0.2005 0.0876 0.0780 0.112
Logit Test naive 0.2232 0.0868 0.0761 0.165
Logit True 0.1643 0.0797 0.0809 0.052
Poisson  BIC step 0.0381 0.0196 0.0200 0.048
Poisson  Test step 0.0387 0.0193 0.0196 0.052
Poisson  BIC naive  0.0612 0.0211 0.0308 0.032
Poisson  Test naive 0.0530 0.0208 0.0176 0.168
Poisson  True 0.0391 0.0186 0.0185 0.055
Table 4. Result for zero coefficient o ere
Model Estimator Mean SD SE RR
Linear  BIC step 0.0003 0.0341 0.0341 0.053
Linear  Test step 0.0015 0.0343 0.0341 0.055
Linear  BIC naive 0.0072 0.0338 0.0314 0.078
Linear Test naive 0.0147 0.0353 0.0312 0.114
Linear  True 0.0005 0.0320 0.0317 0.056
Logit BIC step 0.0020 0.0841 0.0837 0.050
Logit Test step 0.0051 0.0826 0.0815 0.054
Logit BIC naive 0.0136 0.0802 0.0765 0.064
Logit Test naive 0.0316 0.0813 0.0749 0.092
Logit True —0.0002 0.0762 0.0773 0.040
Poisson  BIC step 0.0014 0.0197 0.0200 0.051
Poisson  Test step 0.0018 0.0197 0.0196 0.055
Poisson  BIC naive 0.0131 0.0204 0.0310 0.013
Poisson  Test naive 0.0070 0.0194 0.0175 0.100
Poisson  True 0.0003 0.0177 0.0177 0.050

415
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6 Conclusion

We showed the motivation behind and described posw, a command for the stepwise-
based NO estimator in the linear, logit, and Poisson models. This command can be
viewed as an alternative to the lasso-based NO estimators, which are implemented in
official Stata commands poregress, pologit, and popoisson. Simulations in Drukker
and Liu (2022) show that the implemented BIC-stepwise-based NO can perform better
than the lasso-based NO estimators for a family of DGPs.

The main cost of using a stepwise-based NO estimator instead of a lasso-based NO
estimator is an increase in computation time. Future development could speed up posw
by using cluster-parallel computation or the sure-independence-screening version of the
stepwise partialing-out estimator outlined in Drukker and Liu (2022).
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2
. net install st0713 (to install program files, if available)
. nmet get st0713 (to install ancillary files, if available)
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