Risk theory tells us if an insurer can effectively pool a large number of individuals to reduce the total risk, he then can provide the insurance by charging a premium close to the actuarially fair rate. There is, however, a common belief that the risk can be effectively pooled only when the random loss is independent, so that crop insurance markets cannot survive without government subsidy because crop yields are not independent among growers. In this paper, we take a a spatial statistics approach to examine the effectiveness of risk pooling for crop insurance under correlation. We develop a method for evaluating the effectiveness of risk pooling under correlation and apply the method to three major crops in the US: wheat, soybeans and corn. The empirical study shows that yields for the three crops present zero or negative correlation when two counties are far apart, which complies with a weaker condition than independence, finite-range positive dependency. The results show that effective risk pooling is possible and reveal a high possibility of a private crop insurance market in the US.


Downloads Statistics

Download Full History