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ON THE POSSIBILITY OF PRIVATE CROP INSURANCE MARKET: A

SPATIAL STATISTICS APPROACH

Abstract

Risk theory tells us if an insurer can effectively pool a large number of individuals to reduce

the total risk, he then can provide the insurance by charging a premium close to the actu-

arially fair rate. There is, however, a common belief that the risk can be effectively pooled

only when the random loss is independent, so that crop insurance markets cannot survive

without government subsidy because crop yields are not independent among growers. In this

paper, we take a a spatial statistics approach to examine the effectiveness of risk pooling for

crop insurance under correlation. We develop a method for evaluating the effectiveness of

risk pooling under correlation and apply the method to three major crops in the US: wheat,

soybeans and corn. The empirical study shows that yields for the three crops present zero

or negative correlation when two counties are far apart, which complies with a weaker con-

dition than independence, finite-range positive dependency. The results show that effective

risk pooling is possible and reveal a high possibility of a private crop insurance market in

the US.

Crop insurance has been an important instrument for protecting farmers’ income against

low yield resulting from adverse weather and other natural disasters. Except for a few perils

such as hail and fire, the multiple peril crop insurance (MPCI) has only been offered by the

US government with a huge subsidy. MPCI was first introduced in 1938 on a trial basis,

and extended in 1980 to most crops in the US. MPCI pays an indemnity to a farmer based

on the difference between a pre-selected coverage yield level and the farmer’s realized yield
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level. For years, billions of dollars of financial deficits have been accumulated by the gov-

ernment to provide MPCI, and farmers’ participation rate is still low. These problems have

been attributed to moral hazard, adverse selection, and high administrative costs (Knight

and Coble,1997; Skees, Black and Barnett,1997; Goodwin and Smith,1995). To deal with

these problems, a Group Risk Plan (GRP) was introduced in 1994, which pays a farmer

an indemnity only when the realized average yield of his county falls below the pre-selected

coverage level. Evaluation of county yields instead of individual farm yields for indemnifi-

cation greatly reduces the insurer’s administrative costs. The disadvantage of GRP is that

it does not protect farmers as effectively as MPCI when the farm yield and county yield

are not highly correlated. In the late 1990s, revenue insurance programs were piloted that

could protect farmers from both price and yield risks including those that were based on

farm yields such as Income Protection, Crop Revenue Coverage and Revenue Assurance and

those based on county average yields such as Group Revenue Insurance Programs.

To cope with the actuarial problems with federal crop insurance programs, three lines

of study in the area of agricultural risk protection are currently advanced by economists.

The first line is to investigate the theory of area-based insurance and the risk protection

effectiveness of GRP (Miranda, 1991; Wang et al, 1998). The second line is to study revenue

insurance which takes the advantage of usually negatively correlated price and yield risks

and focuses on stabilizing the overall income (Hennessy, 1997; Skees et al, 1998). The third

line is to study market instruments that are based on natural conditions, such as weather

derivatives, which also deal with the moral hazard problem (Turvey,1999). The first two

lines are focused on the current government programs, and the last line also fails to address

the question of whether it is feasible for private insurers to provide agricultural insurance.

Although positive correlation among farm yields is the basis for GRP and weather deriva-

tives, it is perhaps the major factor that has discouraged the consideration of private crop

insurance. It is a common belief that effective risk pooling is built upon the independence

2



between risk exposure units, and that a private market for crop insurance is doomed to fail

because of the systemic risk existing in crop yield (Miranda and Glauber, 1997). However,

this belief has not been thoroughly studied. Therefore, it is important to investigate carefully

whether private agricultural insurance and reinsurance markets can exist without or with a

minimum government subsidy, what conditions are required, and whether these conditions

are present in the current situation. The objectives of this research are (1) to explore neces-

sary statistical conditions for effective risk pooling; (2) to investigate the pattern of US crop

yields’ correlation; and (3) to develop a method to evaluate the effectiveness of risk pooling

under correlation and apply it to the US crops. Each of the objectives is pursued in one of

the following three sections, and the last section consists of a summary and discussion.

Statistical Foundations of Insurance

The primary function of insurance is risk pooling. Mehr, Cammack and Rose (1985) offer

the following definition, “Insurance may be defined as a device for reducing risk by combining

a sufficient number of exposure units to make their individual losses collectively predictable.”

In the insurance literature, the occurrence of an aggregate loss that is so large as to deplete

the insurance fund is captured by the concept of ruin. It has been suggested that a possible

objective criterion for the management of an insurance pool is to minimize the probability of

ruin in a given time period or perhaps maximize returns subject to maintaining a specified

probability of ruin (Bühlmann, 1970). These are the Safety-First criteria developed by Roy

(1952) and Telser (1956). The aggregated premium surplus above the expected value of the

aggregate loss required to maintain a particular probability of ruin is referred to as the buffer

fund. In what follows, we will consider the statistical foundations of insurance based upon

the framework provided by Cummins (1991), while incorporating the spatial characteristics

of crop insurance.

Review of some basic concepts in premium rates is now in order. Premium rate setting

generally begins with the concept of pure or net premiums (Hogg and Klugman, 1984; Borch,

3



1974; Goodwin and Smith,1995). The net premium is simply the expected indemnity per

exposure unit. The gross premium, the amount paid by the insured per exposure unit in

order to be eligible for coverage, is larger than the net premium by an amount referred to

as the premium loading factor. We can examine the components of the gross premium by

decomposing the gross premium into three parts, P = PN + A + L, where P is the gross

premium, PN is the net premium, A is the administrative cost load, L is the buffer load, and

A + L is the premium loading factor.

Let Y (s, t) be the yield at the t-th year of the exposure unit with a two-dimensional spatial

index s representing its location, and c(s, t) be the pre-specified coverage level. The exposure

unit will experience a production loss in the amount of X(s, t) = max{0, c(s, t) − Y (s, t)},

and this amount is also the indemnity payment for this unit at year t if we assume that price

is normalized to be unitary. Once a model on the yield Y (s, t) is built, the distribution of

Y (s, t) is then specified, from which we can obtain the distribution of X(s, t) and hence the

mean loss E(X(s, t)) for any given prespecified value c(s, t). The total loss of N exposure

units at year t is therefore

SN(t) =
N

∑

i=1
X(si, t), (1)

where i denotes the i-th exposure unit, and si is the spatial location of the ith unit. In the

model given by equation (1), each individual loss is conceptualized as a random variable and

the total loss experienced by the pool is random as well. The expected total loss of the pool

at year t is: E(SN(t)) =
∑N

i=1 E(X(si, t)). We need to obtain the variance of the total loss

in order to know how much the actual total loss, SN(t), can differ from the expected total

loss. The variance of the total loss at year t is:

V ar(SN(t)) =
N

∑

i=1
V ar(X(si, t)) + 2

N
∑

i=1

N
∑

j=i+1
Cov(X(si, t), X(sj, t)). (2)

Under some regularity conditions, the following central limit theorem holds for a spatial
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process
SN(t)− E(SN(t))

√

V ar(SN(t))
∼ N(0, 1). (3)

See, for example, Bolthausen (1982) for stationary random fields and Guyon (1995, Theorem

3.3.1, page 112) for non-stationary random fields. Therefore,

P
(

|SN(t)− E(SN(t))| < 1.96
√

V ar(SN(t))
)

≈ 0.95. (4)

In this case the buffer fund needs to be E(SN(t)) + 2
√

V ar(SN(t)) in order to maintain a

0.025 probability of ruin for year t.

As mentioned previously, E(SN(t)) can be computed once the yield Y (s, t) is modeled and

all prespecified levels are known. E(SN(t)) can also be calculated if the prespecified levels are

unknown but have some known probability distribution. Calculation of V ar(SN(t)) is more

cumbersome unless individual losses are independent. In addition, the losses are truncated

and spatially dependent random variables. Even though some methods in spatial statistics

may seem appropriate and applicable here, it is difficult to directly apply the methods

because the losses are generally non-stationary unless we put some unrealistic assumptions

of the prespecified levels c(s, t). In this paper, we will propose an approach to overcome the

difficulty.

In order to gain some insight to the risk pooling theory, let us first consider the simplest

case when the losses are independently and identically distributed.

An Example—The i.i.d. Case

Even though the assumption of i.i.d. losses is unnecessarily strong and generally not

realistic (Bühlmann, 1970), results are much simplified under these assumptions and can

help us see some key issues in risk pooling. When the losses are i.i.d,

E(SN(t)) = Nµ, V ar(SN(t)) = Nσ2, (5)

where µ and σ2 are the mean and variance of loss from each exposure unit, respectively.

The central limit theorem implies that, when N is large, SN(t) is approximately normally
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distributed and thus, for any 0 < α < 1,

P (|SN(t)−Nµ| < zα/2

√
Nσ) ≈ 1− α,

where zα/2 is the positive value which the standard normal random variable exceeds with a

probability α/2. For α = 0.05, the corresponding value of zα/2 is 1.96. Hence, to maintain

a probability of ruin no more than 0.025, the liquid buffer fund needs to be approximately

1.96σ
√

N for N individuals. The buffer load L for each individual unit is 1.96σ/
√

N , which

decreases as the number of exposure units N increases.

If we assume economies of scale in the administration function, then the administrative

cost per exposure unit, A, will decline as the size of the insurance pool grows. Thus, for a

sufficiently large insurance pool, the premium loading A + L will not be large, i.e., the risk

premium a risk averse insured must pay to obtain coverage will be small.

From this example we see that a critical ingredient for risk pooling is that the standard

deviation of the average loss, i.e., σ/
√

N in the i.i.d. case, diminishes as the size of the

insurance pool increases. Under this condition, the buffer load also declines as the pool

grows larger, thus ensuring (assuming economies of scale in administration) that the premium

loading is relatively small. As we will see in the sequel, these properties may be retained

when losses are not independent.

Finite-Range Positive Dependency of Spatial Variables

In what follows we will explicitly relax the assumption of independence. Many statistical

results that hold under the i.i.d assumption can be generalized into the dependence case.

For example, under some mixing and regularity conditions, the central limit theorem (3)

holds for the spatial process X(s, t) (See, e.g., Theorem 3.3.1, page 112 of Guyon, 1995):

where the mixing conditions ensure that the dependency dies off sufficiently quickly as the

lag distance increases for spatial process X(s, t).

In the context of crop insurance, although an established insurance company can use

reserve funds from the earlier years’ premium surplus to pay for a particular year’s indemnity,
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the discussion of effective risk pooling is still focused on the loss in any particular year.

Therefore, it is particularly useful to investigate how yields or yield losses are spatially

correlated for a given year. For example, how likely is it that the majority of the insured

experience a loss in a particular year, in which case the insurer might be jeopardized? It seems

that the spatial statistics approach has not been employed in the study of crop insurance,

although spatial statistics has been successfully used in agriculture for other purposes (e.g.,

see Mercer and Hall 1911; Besag and Higdon, 1999, both for uniformity trials; Roberts,

English, and Mahajanashetti, 2000 for precision agriculture; Zhang, 2001 for an application

in plant pathology.)

Let us first review some terminologies and theories in spatial statistics. We refer readers

to Cressie (1993, Chapter 2) for more details on spatial statistics. A spatial process, X(s),

is said to be second-order stationary if the mean is a constant and for any vectors s,h,

Cov(X(s), X(s + h)) = C(h),

where C(·) is called the covariogram; and h is called the lag. Therefore, the covariogram

measures the correlation structure of the spatial process. Here X(s) refers to a general

spatial process and should not be confused with X(s, t) , the yield loss. Using data X(si), i =

1, · · · , N , the covariogram can be estimated by:

Ĉ(h) = (1/|N(h)|)
∑

(i,j)∈N(h)

(X(si)− µ̂i)(X(sj)− µ̂j) (6)

where N(h) is a set containing all pairs (i, j) such that h = sj − si for a particular level of

h; |N(h)| is the number of pairs in the set N(h); and µ̂i and µ̂j are the estimated means of

X(si) and X(sj) respectively.

X(s) is said to be isotropic if its covariogram C(h) depends on distance ||h|| only but

not on the direction, i.e., the covariogram is non-directional. The covariogram is then a

function of distance h and, following a conventional notation, we use C(h), h > 0 to denote
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the isotropic covariogram. Then C(h) can be estimated by

Ĉ(h) = (1/|N(h)|)
∑

(i,j)∈N(h)

(X(si)− µ̂i)(X(sj)− µ̂j) (7)

where N(h) is the set of all pairs (si, sj) such that the distance ||si − sj|| is h, |N(h)| is

the number of elements in N(h). In reality, it is possible that X(si)s have different means

but still possess a stationary covariogram. In this case, we will first remove the mean and

then estimate the covariogram. Note that in practice, only a few pairs are exactly the same

distance apart, N(h) is therefore a set that contains all pairs (si, sj) so that the distance

||si − sj|| is approximately h. We refer to Journel and Huijbregts (1978, p.194) and Cressie

(1993, p. 70) for recommendation of the “tolerance” region.

Another measure of correlation for a spatial process is the correlogram that is defined as

the covariogram divided by the variance:

ρ(h) =
C(h)
σ2 , (8)

where σ2 is the common variance of each X(si). In almost all interesting situations, the

correlation between any two points becomes weaker when the lag distance increases. A

process is said to be finite-range dependent, or m-dependent (Davis and Borgman, 1982) if

any two points, X(si) and X(sj) are independent when the lag distance ||si − sj|| > m for

some real positive number m. The finite-range dependence implies the mixing conditions

that ensure the central limit theorem in (3).

Here, we define a spatial process, X(s), to be finite-range positive dependent (f.r.p.d.) if

the correlation between any two points, X(si) and X(sj) is positive when the lag distance

||si−sj|| < d for some d, and zero or negative otherwise. This f.r.p.d. assumption seems quite

sensible in light of the fact that the correlation between the yield losses of two fields caused

by adverse weather will eventually vanish when the two fields are very far away from each

other. We can give sufficient conditions under which the central limit theorem (3) holds for

f.r.p.d. processes. These conditions must ensure that dependency quickly dies off (so does
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the correlation) when the lag distance increases. Discussion of these conditions is beyond

the scope of this paper. Note in the definition of f.r.p.d, the spatial process needs not to be

stationary.

For any location si, denote by Oi the set of all locations whose distances from si are at

most d, i.e., Oi = {sj : 0 ≤ ||sj − si|| ≤ d}. If the process X(s) is f.r.p.d. and the variance of

X(s) is bounded by some constant σ2
m, we can place the following bound on the variance

V ar(X̄N) = (1/N2)





N
∑

i=1
V ar(X(si) +

N
∑

i=1

N
∑

j=1,j 6=i

C(sj − si)



 (9)

≤ (1/N2)



Nσ2
m + σ2

m

N
∑

i=1

N
∑

j=1,j 6=i

ρ(X(si), X(sj))





≤ σ2
m/N + (σ2

m/N2)
N

∑

i=1
|Oi| (10)

≤ (σ2
m/N)

(

1 + max
i

(|Oi|)
)

, (11)

where |Oi| denotes the number of elements in Oi. Inequality (10) holds because each cor-

relation coefficient is no greater than one, the sum over j is no larger than the number of

elements in set Oi under f.r.p.d., and the inequality (11) holds because each set cardinality

|Oi| is no larger than the largest set size.

If the spatial process X(s) is f.r.p.d. with a finite-range d, then for any site si the

corresponding set Oi has at most a finite number of elements. Indeed, if the exposure units

(counties, farms or plots) have a minimum area, a, then maxi(|Oi|) ≤ πd2/a, i.e., bounded by

a constant that depends on d but not on N or i. We then have, in view of (10), V ar(X̄N) → 0,

as N goes to infinity, i.e., the variance of X̄N diminishes as N gets larger. If X(s) represents

the yield loss, this diminishment would mean that the buffer load per unit is very small for

large N . Therefore, if a reasonably large number of units from a geographically large area

participate in the insurance program, the premium charged to each participant can be very

close to the actuarially fair level. As long as the farmer is risk averse, s/he should be willing

to pay for such insurance.
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We have just shown that V ar(X̄N) vanishes as N → ∞ for a f.r.p.d. process. This is

an asymptotic result that assures us that V ar(X̄N) can be arbitrarily small if the sample

size is sufficiently large. In reality, only limited number of sample data are available. For a

particular sample size, we may be able to evaluate V ar(X̄N) by directly applying (9) to get

a better bound than (11).

If X(s) represents the yield loss, the effectiveness of risk pooling depends much on how fast

the variance of average loss diminishes. Several factors may affect this speed of diminishment:

how fast the correlation of yields dies off when the lag distance increases, the specified

coverage levels and range of dependence. Using some spatial statistics technique, we will

show next how to calculate the variance of the average loss, as illustrated by the US crop

yield data.

The Pattern of US Crop Yield Dependence

Because crop yields are correlated due to weather patterns, it is believed that private

insurance companies can not effectively pool the risks without significant subsidies from the

government. We intend to show here that such belief is not well grounded. We will explore

the spatial dependence pattern of US crop yields for a given year to find out if the correlation

between exposure units quickly dies off as two units become far apart, leaving enough room

for risk pooling.

Data and detrending

County level crop yields from 1972 to 1997 provided by National Agricultural Statistics

Service, United States Department of Agriculture, are used in this analysis. This is because

farm level yield data are not available. Three major crops, corn, soybeans, and wheat are

studied. There are 2,591 counties for corn, 2,000 counties for soybeans, and 2,641 counties

for wheat in the data set (counties with less than five years of observations are dropped).

The centroid latitude and longitude of each county are obtained from Bureau of the Census,

United States Department of Commerce. These spherical references are then transformed
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into plane coordinates using ArcInfo, so that they can be applied in the statistical software

S-Plus (Mathsoft, Inc., Seattle) which has a spatial module. The temporal trend is removed

first by location. For each location, yields are detrended by a log quadratic trend. Log

quadratic trends are generally used for crop yields (Miranda and Glauber, 1997; Wang et

al., 1998). Let ξ(s, t) be the detrended yield, where s is the county centroid and t is the

year. That is, ξ(s, t) is the deviation of the yield from its mean yield at year t. The yield is

modeled as,

Y (s, t) = exp{α(s) + β(s)t + γ(s)t2}+ ξ(s, t),

where α, β and γ are location-specific parameters; and the mean of yield is m(s, t) =

E(Y (s, t)) = exp(α(s) + β(s)t + γ(s)t2), which is a log quadratic trend in the sense that

ln(m(s, t)) is quadratic in time. The trend model is fitted for each location. It is very

important for crop insurance to see how these ξ(s, t)’s are correlated for a given year. We

assume that the ξ(s, t) is second order stationary at each year with a variance, σ2
t , across

space.

Correlograms

Based on the detrended yields, ξ(s, t), we calculated the covariogram and correlogram for

each crop at each year from 1972 to 1997 using equations (6) and (8). Different directions

are calculated and the results suggest it is reasonable to assume isotropy. Hence, reported

in this paper are the isotropic correlogram, which is a function of the distance, calculated as

follows:

ρ̂t(h) =
1

|N(h)|σ̂2
t

∑

(i,j)∈N(h)

(ξ(si, t)− ξ̄t)(ξ(sj, t)− ξ̄t), h > 0,

where N(h) is the set of all pairs (si, sj) such that the distance ||si − sj|| is h, |N(h)| is

the number of elements in N(h), ξ̄t is the sample mean of ξ(si, t) for year t, and σ̂2
t is the

estimated variance of ξ(s, t) for year t.

There are altogether 78 correlograms for the three crops and 26 years. For each crop,

the correlograms of the 26 years show a consistent pattern. From these correlograms we
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see that the positive dependency quickly dies off when the distance increases, i.e., the crop

yields show a clear pattern of f.r.p.d. The distance for the positive dependency is at most

3× 106 feet, or 570 miles, and in many instances, the range is much smaller than 570 miles.

We only present the correlograms for year 1981, year 1991, and the average of 26 years for

each of the three crops in Figure 1. Do the correlations die off sufficiently quickly to allow

for effective risking pooling? We will propose a measure of effectiveness of risk pooling next.

The Effectiveness of Risk Pooling

In this section, we introduce a measure of effectiveness for risk pooling, and then calculate

the premium loading factor for each of the three US crops: wheat, soybeans and corn.

A measure of risk pooling effectiveness

As we pointed out before, a critical ingredient for risk pooling is that the sample variance

decreases as N increases. One way to measure the effectiveness of risk pooling is to see how

small the variance of X̄t is compared with the the average variance of each individual X(s, t),

i.e., V ar(X̄t)/(
∑N

i=1 V ar(X(si, t))/N). The ratio, denoted by φt for year t, will be called the

coefficient of effectiveness and can be expressed in terms of the covariances or correlations:

φt =
V ar(X̄t)

∑N
i=1 V ar(X(si, t))/N

=
1

N
∑N

i=1 V ar(X(si, t))





N
∑

i=1
V ar(X(si, t)) +

N
∑

i=1

N
∑

j 6=i

Cov(X(si, t), X(sj, t))



 .

Clearly, if the losses are independent, then φt = 1/N . When the losses are positively cor-

related, φt will be bigger than 1/N . In addition, if the X(si, t)’s have the same variance,

then

φt =
1

N2



N +
N

∑

i=1

N
∑

j 6=i

Corr(X(si, t), X(sj, t))



 . (12)

The correlation coefficient Corr(X(si, t), X(sj, t)) obviously depends on the prespecified

levels as well as the joint distribution of yields Y (si, t) and Y (sj, t). So far we have made

no distributional assumptions on yields Y (s, t) other than stationarity. To get a feeling of

how the losses X(s, t) = max(0, c(s, t) − Y (s, t)) are correlated, let us now assume yields
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Y (s, t) are normal and that each of the prespecified levels c(s, t) is one standard deviation

below the the mean of Y (s, t), i.e., c(s, t) = µ(s, t)− σ(s, t). Then

X(s, t) = c(s, t)− µ(s, t)− σ(s, t) min
(

c(s, t)− µ(s, t)
σ(s, t)

,
Y (s, t)− µ(s, t)

σ(s, t)

)

= c(s, t)− µ(s, t)− σ(s, t) min (−1, Z(s, t))

where Z(s, t) = (Y (s, t) − µ(s, t))/σ(s, t) is a standard normal random variable. Hence,

the correlation between the truncated losses can be expressed as the correlation between trun-

cated standard normal random variables, i.e., Corr(X(si, t), X(sj, t)) = Corr(min(−1, Z(si, t)),

min(−1, Z(sj, t)). This correlation is clearly a function of

Corr(Z(si, t), Z(sj, t)) = Corr(Y (si, t), Y (sj, t)) = ρt(||si − sj||).

Let us write g(c1, c2, ρ) = Corr(min(c1, Z1), min(c2, Z2)) for two standard normal vari-

ables Z1 and Z2 that are also bivariate-normal with a correlation coefficient ρ. Then

g(c1, c2, ρ) = Corr(min(c1, Z1)− c1, min(c2, Z2)− c2)

=
1

2π(1− ρ2)1/2

∫ c1

−∞

∫ c2

−∞
(x1 − c1)(x2 − c2) exp(−x2

1 − 2ρx1x2 + x2
2

2(1− ρ2)
) dx1dx2

− 1
2π

∫ c1

−∞
(x1 − c1) exp(−x2

1/2)dx1

∫ c2

−∞
(x2 − c2) exp(−x2

2/2)dx2. (13)

The integrals cannot be evaluated in closed form, but can be approximated by the Monte

Carlo methods. We provide in Table 1 the correlation coefficients between the truncated

normals corresponding to different ρs where the standard normal variables are truncated at

-0.75, -1 and -1.5. Our results were based on 500,000 simulations. We see that the truncated

variables are significantly less correlated.

Intuitively, the truncated variables should be less correlated. Above the truncating values,

the two truncated variables are constants and hence uncorrelated. Indeed, if the truncated

values are far below the mean, the two truncated variables are constants with a probability

close to one and hence are nearly uncorrelated. Note Table 1 was obtained for two standard
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normals. If the two variables are not normal, we might expect the truncated variables are still

less correlated. But the exact correlation coefficient of the truncated variables will depend

the joint distribution of the two untruncated variables.

Recently, the Risk Management Agency of USDA allows farmers in the MPCI program

to specify a coverage level c(s, t) up to 75% of the mean yield µ(s, t), which is more than one

standard deviation below the mean because the coefficient of variation for crops is usually less

than 1/4. Although farmers can select their own coverage levels, let us assume nonetheless

that all farmers select their coverage levels to be one standard deviation below the expected

yields, i.e., c(s, t) = µ(s, t)− σ(s, t), and see how effective the risk pooling is. In this case,

the losses have the same variance and (12) is applicable. If some farmers select coverage

levels that are more than one standard deviations below the means, the losses only become

less correlated according to what we found out from Table 1. We will continue to assume

yields are normal. Since

Corr(X(si, t), X(sj, t))

= Corr(min c(−1, Z(si, t)), min(−1, Z(sj, t)))

= g(−1,−1, ρt(||si − sj||)),

then by (12)

φt =
1

N2



N +
N

∑

i=1

N
∑

j 6=i

g(−1, −1, ρt(||si − sj||))



 (14)

where ρt(·) is the covariogram of Y (s, t) and can be estimated from the data. Replacing

ρ(||si − sj||) by the estimated covariogram ρ̂(||si − sj||), we get an estimate for φt.

Using the average correlogram of 26 years, we calculated the coefficient of effectiveness

φ for US wheat, soybeans and corn by applying (14) with ρt being replaced by the average

correlogram. The coefficients of effectiveness are 0.00188, 0.00479 and 0.00320 for US wheat,

soybeans and corn respectively. For each crop, we used all of the counties in our database.

Hence N = 2, 641, 2, 000 and 2,591 for wheat, soybeans and corn. These coefficients mean, if
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an insurer can pool all the growing areas in the US and each unit specifies the coverage level

to be one standard deviation below its mean yield, over the 26 years the variance of average

loss is only 0.188%, 0.479% and 0.32% of the variance of each individual loss. Or equivalently,

to make the risk pooling for the correlated losses to be as effective as independent losses, the

number of correlated units should be approximately 4.97 times, 9.58 times and 8.3 times as

large as the number of uncorrelated units for wheat, soybeans and corn respectively, when

all units select coverage levels to be one standard deviation below the mean yields. Choosing

the coverage level to be one standard deviation below the mean would mean to insur against

adverse events that occur about 15.9% of the time. If the units select lower coverage level,

the losses will be less correlated and these factors will become smaller. These results show

that, if a large number of counties buy the insurance, effective risk pooling is highly possible

at least in the case that yields are normal. Moderate departure from normal distributions

should not change the coefficients of effectiveness very much.

Premium loading

Due to the weak correlation between the losses, the central limit theorem can be applied.

Therefore, if the insurer’s probability of ruin is set at α, the premium loading for each

insured at year t is Lt = zα(V ar(X̄N))1/2 = zα
√

φt (
∑N

i=1 V ar(X(si, t))/N)1/2, assuming the

administrative cost load is zero. The variance of a loss is bounded by the variance of yield

regardless of the distribution of yield, as shown in the Appendix. Hence Lt ≤ zασt
√

φt.

The 26-year average variance, σ̂2, is estimated from the previous section as 52, 20, and

160 for wheat, soybeans and corn, respectively. Using z0.025 = 1.96 and the φs calculated in

the previous subsection, we obtain the premium loading factor to be at most 0.6128, 0.6066

and 1.4024 bushels per acre for the three crops, respectively. In terms of dollars, if the prices

are $3.5, $4.5 and $3 per bushel for wheat, soybeans and corn respectively, the corresponding

premium loadings are $2.14, $2.72 and $4.20 per acre, which are quite moderate.

Summary and Discussion
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In this paper, we have reviewed the statistical foundations for crop insurance under

dependence, and have taken a close look at the correlation structure between crop yields

at the county level in the U.S. Using some techniques in spatial statistics, we have shown

that the positive correlation between any two counties dies off quickly when the lag distance

increases, a phenomenon of finite-range positive dependence. The yield losses, as truncated

variables, are also f.r.p.d. and the correlation of losses dies off much faster. We provided

a general method for investigating the effectiveness of risk pooling under dependence. Our

method employs spatial statistics and is appropriate for crop insurance. The results indicate

that risk pooling can be effective for the three crops (wheat, corn and soybeans) if the

coverage levels are at least one standard deviation below the mean yields, hence suggest a

high possibility of a viable private agricultural insurance market, if the insurance/reinsurance

markets can cover most growing area in the US. These results may help alleviate the pressure

on government to assume total responsibility of providing crop insurance.

Although in this work we have applied this method to county level yields, it is also

applicable to individual farms if the farms’ geographical locations and yields are known. With

the availability of Global Position System, farm locations can be obtained easily. Insurance

agencies should also have historical farm level yield records cumulated from farmers’ years

of enrollment in MPCI, and these farm yield data can be analyzed in the same way as the

county yields. With the absence of individual farm data, it is impossible to examine the

effectiveness of crop insurance at the individual farm level. However, we can show that if

growers are scattered nearly uniformly in all the counties, the correlogram of individual farm

yields is less than the correlogram of county average yields and hence dies off faster. How

are the two coefficients of effectiveness, one based on individual farm data and the other

on county data, compared with each other can only be examined under more assumptions,

which is beyond the scope of this paper.

There are several open problems along this line for future research, one of which is the
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temporal effect on risk pooling. The weather pattern is generally assumed to be independent

and so are the yields of a farm over time. Pooling risks over time may further reduce the

premium loading.

Note the buffer fund given as E(SN(t)) + 2(V ar(SN(t))1/2 is the upper bound. When

the yield loss is finite-range dependent (or finite-range positive dependent with additional

conditions to ensure mixing conditions), the actual total loss SN(t) is asymptotically normal.

This implies that when N is sufficiently large, SN(t) will be symmetric. Hence SN(t) has

approximately a 50% chance to be below its mean E(SN(t)). In the case that the actual

total loss is below its mean, there will be a surplus in the buffer fund. Accumulation of

such surpluses will reduce the risk of pooling, and its effect on risk pooling warrants further

studies. There are other avenues that private insurers can do to reduce the pooled risk. For

example, trading in international reinsurance market and diversification over crops may help

risk pooling.

Due to the spatial dependence, more exposure units/farms are needed to equate pooling

of dependent risks to independent risks. There might be a deterrent effect of the larger pool

size on a private crop insurer seeking to enter the private crop insurance market. A study

on the profitability of a private crop insurance will help find out how strong the deterrent

effect may be.
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Figure 1: Correlograms of yields of wheat (top row), soybeans (middle row) and corn (bottom
row); for 1981 (left), 1991 (middle) and the average of 26 years from 1972 to 1997.

ρ -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c1 = c2 = −0.75 -0.077 -0.04 0.053 0.11 0.18 0.26 0.34 0.45 0.56 0.68 0.83
c1 = c2 = −1 -0.059 -0.032 0.04 0.091 0.15 0.22 0.31 0.4 0.52 0.66 0.81
c1 = c2 = −1.5 -0.027 -0.017 0.022 0.058 0.1 0.17 0.23 0.33 0.44 0.58 0.77

Table 1: The correlation coefficient of truncated standard normal random variables:
g(c1, c2, ρ) defined by (13)
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Appendix

Here we show the following theorem that implies that variance of loss is bounded by the

variance of the yield.

Theorem 1 Let Y be any random variable with mean µ and variance σ2, and X = max(0, c−

Y ) for some constant c < µ. Then V ar(X) ≤ σ2.

Proof. First note that

X = c− µ− σ min
(c− µ

σ
,

Y − µ
σ

)

.

Then

V ar(X) = σ2V ar
(

min
(c− µ

σ
,

Y − µ
σ

))

= σ2V ar(min(d, Z))

where d = (c − µ)/σ < 0 and Z = (Y − µ)/σ. Then V ar(Z) = 1, and if fZ(z) denotes the

density function of Z,

V ar(min(d, Z)) = V ar(min(d, Z)− d)

≤ E[(min(d, Z)− d)2] =
∫ d

−∞
(z − d)2fZ(z) dz.

Since z < d < 0, then z < z − d < 0 and z2 > (z − d)2. The integral is bounded by

∫ d

−∞
z2fZ(z) dz ≤

∫ ∞

−∞
z2fZ(z) dz = V ar(Z) = 1.

The proof is finished.
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