Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Files

Abstract

Model selection is often conducted by ranking models by their out-of-sample forecast error. Such criteria only incorporate information about the expected value, whereas models usually describe the entire probability distribution. Hence, researchers may desire a criteria evaluating the performance of the entire probability distribution. Such a method is proposed and is found to increase the likelihood of selecting the true model relative to conventional model ranking techniques.

Details

PDF

Statistics

from
to
Export
Download Full History