Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
Agricultural nitrogen is a major contributor to Gulf of Mexico hypoxia, and research has shown that agricultural subsurface tile drainage is a major carrier of nitrogen from croplands to streams and rivers. This study compares the results of abating nitrogen under a retired-land minimization policy with those of a new revenue-maximizing policy, paying particular attention to the role of tile-drained land. Findings reveal the retirement-minimizing policy resulted in more tile-drained land being retired and less being fertilizer-managed than was optimal under the net-return maximizing policy. Also, it led to a greater economic burden being shouldered by tile-drained land. Under both cases, tile drainage dominated the abatement process.