Files

Action Filename Size Access Description License
Show more files...

Abstract

Genetic engineering (GE) in agriculture is a controversial topic in science and society at large. While some oppose genetically modified crops as proxy of an agricultural system they consider unsustainable and inequitable, the question remains whether GE can benefit the poor within the existing system and what needs to be done to deliver these benefits? Golden Rice has been genetically engineered to produce provitamin A. The technology is still in the testing phase, but, once released, it is expected to address one consequence of poverty " vitamin A deficiency (VAD) " and its health implications. Current interventions to combat VAD rely mainly on pharmaceutical supplementation, which is costly in the long run and only partially successful. We develop a methodology for ex-ante evaluation, taking into account the whole sequence of effects between the cultivation of the crop and its ultimate health impacts. In doing so we build on a comprehensive, nationally representative data set of household food consumption in India. Using a refined disability-adjusted life year (DALY) framework and detailed health data, this study shows for India that under optimistic assumptions this country's annual burden of VAD of 2.3 million DALYs lost can be reduced by 59.4% hence 1.4 million healthy life years could be saved each year if Golden Rice would be consumed widely. In a low impact scenario, where Golden Rice is consumed less frequently and produces less provitamin A, the burden of VAD could be reduced by 8.8%. However, in both scenarios the cost per DALY saved through Golden Rice (US$3.06-19.40) is lower than the cost of current supplementation efforts, and it outperforms international cost-effectiveness thresholds. Golden Rice should therefore be considered seriously as a complementary intervention to fight VAD in rice-eating populations in the medium term.

Details

Downloads Statistics

from
to
Download Full History