Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Files

Abstract

This paper presents a precision crop farming framework developed for small-scale rainfed agriculture using unmanned aerial vehicle (UAV) red, green, and blue (RGB) high-resolution imagery. The aim is to enhance farm management by providing precise spatial and temporal information in heterogeneous farming systems in Botswana's semi-arid regions. The precision crop farming framework integrates UAVs and Global Navigation Satellite System (GNSS) data, introducing new vegetation indices and employing machine learning algorithms for high-accuracy crop and land use analysis. The framework comprises four components: data collection, applications, data processing, and users. Methods included UAV data acquisition, global navigation satellite system geo-referencing, and machine learning classification. Results demonstrated high spatial resolution and classification accuracy, providing actionable insights into crop conditions, planting patterns, and farm variability. The precision crop farming framework is a tool for improving agricultural productivity and sustainability, providing a foundation for efficient, data-driven farm management practices.

Details

PDF

Statistics

from
to
Export
Download Full History