Go to main content
Did you know? By making a gift to AgEcon Search, you are helping ensure that our small non-profit continues to provide free full-text access to 15,000 visitors a day from 170+ countries
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Globally about 800 million people live without electricity at home, over two thirds of which are in sub-Saharan Africa. Ending energy poverty is a key development priority because energy plays an enabling role for human wellbeing and economic activities. Planning electricity access infrastructure and allocating resources efficiently requires a careful assessment of the diverse energy needs across space, time, and sectors. However, because of data scarcity, most country or regional-scale electrification planning studies have been based on top-down electricity demand targets. Yet, poorly representing the heterogeneity in the electricity demand can lead to inappropriate energy planning, inaccurate energy system sizing, and misleading cost assessments. Here we introduce M-LED, Multi-sectoral Latent Electricity Demand, a geospatial data processing platform to estimate electricity demand in communities that live in energy poverty. The key novelties of the platform are the multi-sectoral, bottom-up, time-explicit demand evaluation and the assessment of water-energy-agriculture-development interlinkages. We apply the methodology to the country-study of Kenya. Our findings suggest that a bottom-up approach to evaluating energy needs across space, time, and sectors is likely to improve the reliability and accuracy of supply-side electrification modelling and therefore of electrification planning and policy.

Details

PDF

Statistics

from
to
Export
Download Full History