
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


QED
Queen’s Economics Department Working Paper No. 1222

Optimal Clearing Arrangements for Financial Trades

Thorsten Koeppl
Queen’s University

Cyril Monnet
Federal Reserve Bank of Philadelphia

Ted Temzelides
Rice University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

11-2009



Optimal Clearing Arrangements for Financial
Trades∗

Thorsten Koeppl
Queen’s University

Kingston, Ontario

thor@econ.queensu.ca

Cyril Monnet
Federal Reserve Bank of Philadelphia

Philadelphia, PA

Cyril.Monnet@phil.frb.org

Ted Temzelides
Rice University

Houston, TX 77251

tedt@rice.edu

November 23, 2009

∗We are grateful for suggestions by the editor and three anonymous referees. We also thank audiences
at the Bank of Canada, CEMFI, the Central Bank of Portugal, Cornell, the European Central Bank, the
Federal Reserve Banks of Cleveland and New York, the North American Summer Meetings of the Econometric
Society, Penn, Rice, Ryerson, the Vienna Workshop in Macroeconomics, the Wharton School, as well as Aleks
Berentsen and Borghan Nezami Narajabad for comments and suggestions. The views expressed in the paper
are not necessarily those of the Federal Reserve Bank of Philadelphia or the Federal Reserve System. The first
and third author gratefully acknowledge support from SSHRC and the NSF through grants 410-2006-0481
and SES 0517862, respectively.

1



Abstract

Clearinghouses support financial trades by keeping records of transactions and by providing

liquidity through short-term credit that is periodically cleared by participants. We study

efficient clearing arrangements for formal exchanges, where traders must clear with a clear-

inghouse, and for over-the-counter (OTC) markets, where trades can be cleared bilaterally.

When clearing is costly, we show that it can be efficient to subsidize the clearing process for

OTC transactions by charging a higher price for the clearing of transactions in exchanges.

This necessitates a clearinghouse that operates across both markets. As a clearinghouse

offers credit, intertemporal incentives are needed in order to ensure settlement. An increase

in the costs of liquidity provision worsens the incentives to settle. Hence, when liquidity

costs increase, concerns about default must lead to a tightening of liquidity provision.

Keywords: Clearing, OTC vs. Exchanges, Private Information, Liquidity Costs, Default

JEL Classification: G14, G23, E42
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1 Introduction

Exchanges formalize and standardize trading. They also offer another crucial service: the

clearing of financial transactions. Clearing is usually performed within a single clearinghouse

associated with the exchange. The clearinghouse is the neuralgic centre of the exchange. It

gathers information on trades, which it then uses to calculate the resulting net positions of

participants. It adjusts the exposure of participants by granting short-term credit. Finally, it

ensures that the resulting positions are properly settled. Given the information on hand, the

clearinghouse can regulate and influence trading activities in order to limit the probability

of participants defaulting. This can be accomplished in a variety of ways. For example, the

clearinghouse can adjust the frequency of settlement, impose certain trading limits, or vary

collateral requirements. As pointed out by Bernanke (1990), given the immense volume of

transactions involved, designing the rules of operation for clearinghouses is important for

efficient trading.

Somewhat surprisingly, centralized clearinghouses (CH) are not in operation in some

important markets, such as over-the-counter (OTC) markets. Instead, trades in these mar-

kets are usually cleared bilaterally and on an ad-hoc basis. More recently, however, many

have called for the creation of a CH on the grounds that it will achieve more transparency

and improve the efficiency of trading by reducing operational and settlement risk.1 As a

response, some exchange clearinghouses plan to engage in the clearing of transactions in

certain segments of OTC markets in the near future.2

The operation of a CH will necessarily differ across these markets. A CH operating

in a centralized exchange inevitably becomes aware of all realized trades since they are

automatically processed and cleared within the system. In this sense, trades in exchanges

can be monitored by the CH. On the other hand, trades conducted OTC can be cleared

1There is an on-going discussion on how to ensure proper risk management practices in derivatives markets
through formal clearing arrangements (see, e.g., Geithner, 2006 or Counter-Party Risk Management Policy
Group, 2005).

2See, for example, The Clearing Corporation (2008) for a short discussion of the clearinghouse introduction
in the OTC market for credit default swaps. NYMEX is in the process of offering clearing services for some
OTC derivatives markets.
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and settled bilaterally. Therefore, trades in OTC markets are non-monitored : as traders can

always choose to trade and settle bilaterally, they can misrepresent their true exposures by

settling only a share of the trades through the CH. In other words, in an OTC market the

CH will have to provide incentives for traders to clear their trade through the CH.

A CH aggregates transactions and, thus, transforms bilateral exposures into multilateral

ones. This allows the CH to defer settlement and, hence, to economize on settlement costs.

In this sense, a CH is subject to economies of scale in settling transactions. How much it

can defer settlement depends, of course, on the participants’ incentives to default on their

outstanding positions. Thus, a key trade-off for designing an optimal clearing arrangement

is between providing liquidity to participants in the form of credit at low cost, while at the

same time ensuring proper incentives for carrying out and settling transactions. In contrast,

when OTC trades clear bilaterally, costs are incurred per trade and immediately.

This raises the question of how a CH can support efficient trade in financial markets by

economizing on settlement costs while, at the same time, providing incentives to settle the

obligations arising from transactions. Can a CH operate in OTC markets and, if so, is it

beneficial if it also operates in an exchange? Furthermore, how do the costs associated with

clearing and settlement influence the amount of liquidity that is optimally granted by the

CH?3

As traders have no choice but to settle through the CH if they trade in the exchange,

we find that a CH operating in an exchange can use its monitoring power to extract surplus

from transactions. For a CH to clear OTC transactions, however, it needs to offer a cost

advantage that will be passed on to traders in the OTC market, as such traders have the

option to bypass the CH and clear bilaterally.

If the cost advantage per OTC transaction is too small, a CH that only operates on the

OTC market is not attainable. A joint CH for both markets, however, can extract surplus

from its exchange clearing and use it to subsidize clearing costs for OTC transactions. By

3The optimal design of a CH will also depend on a number of other factors such as the exact nature of
the financial transactions cleared, heterogeneity among traders, or concerns about contagion if collateral is
fungible across markets. We will abstract from these issues in what follows.

4



inducing OTC trades to clear within the CH, the CH increases cost-savings for each OTC

transaction. Due to increasing returns, a CH also saves on overall settlement costs and,

hence, increases overall welfare. In a broader context, our findings suggest that it is optimal

to set interdependent clearing rules across markets whenever information on trades differs

across these markets.

Conditions in the OTC market will determine whether it is feasible for a CH to operate

across markets. We demonstrate that the larger the value of OTC transactions, the less

viable a CH is in the OTC market. This result depends not only on the surplus generated by

OTC trades, but also on the market power of sellers in the OTC markets. When sellers have

more market power, buyers have to pay more for a given transaction. Thus, the CH faces

a tighter default constraint when settlement is deferred and sellers’ market power increases.

If one thinks of dealers as OTC sellers with a relatively large market power, this implies

that clearing OTC trades through a CH will be more difficult when dealers represent a large

share of OTC trades.

How do settlement costs influence these results?4 The risk of a settlement default in-

creases with the cost of settling obligations. It is, thus, optimal for the CH to tighten credit

in order to neutralize the increase in default risk – or, in other words, to tighten liquidity

provision when the costs of providing such liquidity increase.5 Hence, an increase in settle-

ment costs results in a lower volume of transactions. More interestingly, it is optimal for the

CH to decrease the size of transactions and, at the same time, to increase the frequency of

settlement. Thus, while liquidity decreases, the overall costs of liquidity in the CH increase.

The reason is intuitive. An increase in the fixed costs associated with settlement also in-

creases the incentives to default. To balance this risk, the CH must ensure that participants

have the incentive to settle. This is achieved by lowering the total credit available in the sys-

4For evidence on strategic settlement failures related to the actual settlement costs, see, for example,
Garbade and Fleming (2002).

5There is some recent literature studying liquidity (credit) provision in payment systems. Examples
include Martin (2004), who studies the optimal pricing of intra-day credit in the presence of moral hazard,
and Martin and McAndrews (2007), who analyze the use of a queueing mechanism for economizing in
liquidity costs. Rather than restricting attention to a particular form of credit provision, we analyze the
general interaction between credit and liquidity provision in a payment or settlement system.

5



tem.6 To our knowledge, this result is not present in the existing literature, which does not

consider endogenous incentive effects and simply trades off exogenous default costs against

the opportunity costs of funding liquidity.7

To obtain these results, we build on the framework of a payment system developed by

Koeppl, Monnet and Temzelides (2007). Traders are randomly matched, and a transaction

can occur if one trader has a preference for holding an asset (say, a contract), while the other

trader is willing to sell (write) a contract. For concreteness, we call the two traders buyer

and seller, respectively. Furthermore, we assume that there is an optimal transaction size

and that there are immediate benefits and costs of a transaction for the buyer and the seller,

respectively.

We model the CH as an authority that records transactions and provides credit. Writing

a contract requires a payment from the buyer to the seller, and the CH assigns individual

balances and specifies how these balances are updated given the participants’ trading his-

tories. Sellers are rewarded for writing a contract through balance increases, while buyers

incur costs through balance decreases. These rewards and costs materialize when the result-

ing balances, which summarize the traders’ credit positions, are settled with the CH.8 Since

settlement is costly, participants need an incentive to settle their outstanding balances. As

a result, the CH might have to limit the overall volume of transactions or, equivalently, the

total available supply of liquidity.

We further assume that a fraction of trades are monitored by the CH, while others are

6This is reminiscent of results in the literature on real time gross versus net settlement systems. In a real
time gross settlement system (RTGS), trades are settled at the time of the transaction. This imposes large
liquidity requirements on banks. As shown by Kahn, McAndrews and Roberds (2003), such requirements
can potentially create gridlocks in the system. Central banks remedy this problem by providing (costly)
intra-day credit. Kahn and Roberds (2001) argue that the main costs of RTGS systems are associated with
the cost of obtaining credit from the central bank. Net settlement, whereby obligations are netted and then
settled, offers banks short-run credit automatically and, hence, introduces the potential for default. Kahn
and Roberds (1998) show that this incentive should be seriously taken into account when considering the
optimal payment system. Such a system must balance saving on liquidity costs against risking default when
extending credit.

7See, for example, Berger et al. (1996). Fujiki et al. (1999) provide an early study of default in payment
systems from an incentive perspective.

8One can think, for example, of a large-value system where all intra-day positions are settled in the
overnight market using funds obtained through interbank lending.
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not.9 We identify the first with trades in an exchange and the second with OTC trades.

Upon default, traders are excluded from clearing through the CH. Hence, they can no longer

carry out trades in the exchange. However, they can still participate in OTC transactions

which are then cleared bilaterally. Finally, we assume that there are differences in clearing

costs. A CH incurs an aggregate fixed cost whenever it requires its participants to settle,

whereas each OTC trade is settled at an individual cost.

Subsidizing OTC trades is necessary since individual traders in these markets do not take

into account the positive externality from clearing through the CH. Indeed, we demonstrate

that, under certain conditions, it is optimal for the CH to operate across both OTC markets

and exchanges. This is because a CH can extract surplus from clearing in the exchange in

order to cross-subsidize the clearing of OTC transactions.

The paper proceeds as follows. Section 2 introduces our model and discusses trading

and settlement in OTC transactions and in exchange trades. In Section 3 we analyze how

information is used within a clearinghouse and demonstrate that it can be optimal for a clear-

inghouse to operate across OTC markets and the exchange. Section 4 studies how liquidity

costs affect the optimal transaction volume. In Section 5 we further discuss clearinghouses

and their costs, and we discuss some of the limitations of our analysis. The Appendix con-

tains our proofs and introduces a continuous-time extension of the model used in Section

4.

2 Financial Trades and Settlement

2.1 The Environment

There is a continuum of infinitely lived traders. Time is denoted by t = 0, 1, 2, . . . . Traders

discount the future according to a common discount factor β ∈ (0, 1). We assume a periodic

pattern of length n. Each transaction stage, consisting of a sequence of n bilateral trans-

9For some early work on issues of private information and payments, see Aiyagari and Williamson (2000)
and Temzelides and Williamson (2001).
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actions, is followed by a settlement stage.10 Discounting applies after each period, except

between the last transaction stage and the settlement stage. We describe the transaction

stage and the settlement stage in turns.

Traders are randomly and bilaterally matched in each round of the transaction stage.

A trader can either sell or buy contracts to/from the trader he is matched with, each with

probability γ. Thus, during each transaction stage, a trader is in a trade meeting with

probability 2γ, either as a seller or as a buyer. We assume that the possibility of trading is

private information for the traders.

There are two types of trade meetings in each transaction stage. Trades can either take

place in an exchange, with probability α, or “over-the-counter” (OTC), with probability

1 − α. All contracts that are traded in the transaction stage are perfectly divisible and in

zero net supply between the two counter-parties.

If a trader writes or sells q ≥ 0 contracts traded in the exchange, he incurs a one-time

cost c(q) for holding this position. If a trader buys q ≥ 0 contracts in the exchange, he

enjoys a one-time benefit equal to u(q). Similarly, in OTC transactions, we assume a cost

σc (q) for the seller and a respective benefit σu (q) for the buyer, where σ ≥ 1. We assume

that u(q) is increasing and concave, while c(q) is increasing and convex. Furthermore, we

restrict attention to trades that are stationary and symmetric, and assume that there is a

unique optimal transaction size that we denote by q∗ > 0, reflecting the maximum surplus

from trading. Since we concentrate on this quantity for most of the paper, we will simplify

notation by letting u denote u(q∗) and c denote c(q∗).

We will use this setup to study financial transactions. A buyer would like to take a

long position in a contract, since he derives some benefits from it. For example, the buyer

might need to purchase the contract in order to hedge, or he might wish to take a position

in a customized derivative or futures contract. By writing the contract, the seller is willing

to take the opposite short position. Creating this position, however, is costly. Writing an

10Lagos and Wright (2005) introduced similar periodic trading patterns in monetary models. The con-
tinuum assumption precludes aggregate risk. Issues related to optimal market design in the presence of
aggregate risk are of great interest, but beyond the scope of this paper.
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option or futures contract implies no cap on the losses the issuer can incur. Hence, traders

are unlikely to take any arbitrary high position in such contracts. Thus, there is an optimal

size for the trade, with quantity q∗ maximizing the joint surplus, irrespective of the type of

trade. The assumption that σ ≥ 1 simply scales up the surplus from OTC trades. Still,

while traders prefer OTC contracts, they are also more expensive to write.11

To analyze different clearing arrangements, we assume that information for the CH varies

across transactions. First, recall that the possibility to trade is always private information for

traders. When a trade takes place in the exchange (probability α), the CH can monitor the

trade; i.e., it observes the traders’ identity and their position with the CH, if any. Trades that

take place in an exchange are always cleared through the CH.12 In an exchange, clearing is not

a choice for the trading parties, but part of the transaction according to the clearinghouse

rules. When a trade is OTC (probability 1 − α), the trade cannot be monitored by the

CH. Such a transaction is only observable to the CH if the traders submit it for clearing.

Hence, OTC traders have a choice over the clearing arrangement – clearing bilaterally or via

a clearinghouse. We study these differences in more detail next.13

2.2 Clearinghouses

We begin this section by introducing the idea of a clearinghouse (CH). A CH records past

transactions by assigning balances to traders. In addition, it specifies rules for how these

balances are updated according to reported or observed transactions. We will refer to this

set of rules as the Payment System associated with the CH.

The settlement of obligations (i.e., the actual payment) arising from financial transactions

usually occurs at a later time than the transaction itself. In our model, settlement occurs

periodically through trading a general asset during the settlement stage. Delivering ` units

11Here we take the stance that an OTC contract is better suited to the buyer’s needs than a centralized
contract. The analysis would go through if we were to assume σ < 1 instead.

12This is reminiscent of anonymous computerized trading where settlement is automatically enacted after
a trade.

13There are other differences between trading in OTC markets and trading in centralized markets (for
example, in the way prices are determined, and in how trades are intermediated and executed). We abstract
from these aspects in order to focus on the effects of differences in the information structure.
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of a general asset implies a cost of −`, while obtaining ` units gives a benefit `. Thus, trading

this general financial asset is zero-sum and does not directly increase welfare. Nonetheless,

actual settlement usually involves opportunity or funding costs that go beyond the direct

cost of payments. In order to capture these costs in our model, we introduce an aggregate

(average) resource cost δ > 0 whenever settlement occurs. This cost has to be paid in units

of the general asset.

The settlement stage is not subject to informational frictions and is centralized; i.e., we

model it as a direct transaction between traders and the CH. Balances are denominated in

terms of the general asset, with d units of balances indicating a claim to receive d units of the

general asset. Traders with low balances can increase their balances by delivering the asset,

while those with high balances can reduce them by obtaining the general asset. Finally, we

assume that the CH can permanently prevent traders who do not settle their balances from

using its facility for settling trades in the future. This automatically excludes traders from

all trades in the exchange.14

Formally, consider the problem of a trader during settlement at time t. Let Vt(dt) denote

his value function if he exits the last period in the transactions stage with a balance dt ∈ R.

The problem of the trader is given by

Vt(dt) = max
`t,bdt

−` + βEtvt+1(d̂t) (1)

subject to

d̂t = dt + `t (2)

d̂t ≥ min{0, dt}, (3)

where Etvt+1(d̂t) denotes the expected future value of a trader who exits the settlement stage

with balance d̂t. The inequality constraint (3) rules out borrowing from the CH in order

14This punishment might seem unrealistically harsh. Alternatively, we could assume that traders that
default are allowed to participate only in certain trades, or that they are allowed to re-enter the system after
a few periods of exclusion. In general, increasing the value of the outside option will increase the probability
of default. Nonetheless, our results will remain qualitatively unchanged under any such specification of the
outside option.
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to consume the general asset. Notice that Vt is linear in dt, which greatly simplifies our

analysis.

During the transaction stage, traders are matched bilaterally in each period. Traders

in the exchange who choose to trade are instructed to exchange a quantity qt(dt, d
′
t) of the

asset. Similarly, OTC traders can choose to identify themselves to the CH as being in a

potential trade meeting. The potential seller is then instructed to sell q̄t(dt, d
′
t) of the asset

to the potential buyer. Note that these quantities can depend on both traders’ balances.15

Upon receiving the reports on OTC trades and the asset trading in the exchange, the

CH makes an adjustment, Xt(dt, d
′
t) ∈ R to each trader’s balance. Recall that, in any given

period, a trader can be a buyer, a seller, or he might not trade at all. In addition, each

transaction is either monitored by the exchange, or is an OTC transaction submitted for

central clearing. This results in six possible adjustments; i.e., Xt ∈ {Lt, Kt, Bt, L̄t, K̄t, B̄t}.
More precisely, Lt(Kt) is the adjustment for a buyer (seller) in the exchange, with the

variables L̄t, K̄t defined for OTC transactions. The remaining adjustments refer to the case

of a trader who reports not having any trade opportunity. We can then formally define the

CH’s rules.16

Definition 1. A Payment System is an array

St(dt, d
′
t) = {Lt, Kt, Bt, qt, L̄t, K̄t, B̄t, q̄t}, for all t.

We restrict attention to payment systems (PS) that are incentive feasible. We term a PS

incentive feasible if (i) all traders have an incentive to participate in each transaction and do

not default in the settlement stage, (ii) all OTC and exchange traders truthfully reveal their

type, and (iii) the CH breaks even. The last requirement implies that, in each settlement

15Throughout the paper, we apply a “mechanism design” approach to payments. Thus, when a buyer and
a seller transact, it is as if the CH proposes both the quantity traded and the implicit price. Of course, we
ensure that the prescribed trades are incentive compatible for the participating traders. In fact, we require
that the realized trades are efficient. Our analysis, thus, abstracts from the implementation issue of how
such trades would materialize in an actual market. We justify restricting attention to efficient trading by
simply postulating that traders will find a way to explore all possible gains from their transactions.

16In principle, the payment system could also be a function of the distribution of balances (see Koeppl,
Monnet and Temzelides (2008)). This, however, is not important in our context.
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stage, ∫

d

(d̂t − dt)dΨt + δ = 0, (4)

where Ψt is the distribution of balances across traders at t.17

To formulate incentive feasibility, we first describe the traders’ value functions during

the transaction stage. Recall that there are n bilateral rounds (one in each period) between

settlement stages. To ease notation, we denote the current-period immediate return in period

t by f(Xt), where Xt ∈ {Lt, Kt, Bt, L̄t, K̄t, B̄t}. Thus, f
(
L̄t

)
= σu (q̄t), f

(
K̄t

)
= −σc (q̄t)

and f
(
B̄t

)
= 0. Similarly, for monitored trades, f(Lt) = u(qt), f(Kt) = −c(qt) and f (Bt) =

0.

If the last settlement stage occurred in period t, the value function during each round s,

s = 1, . . . , n− 1, of the current transaction stage is given by

Et+s−1[vt+s(dt+s−1)] =

∫

d′t+s

E [f(Xt+s) + βEt+s[vt+s+1(dt+s−1 + Xt+s)]] dΨt+s−1, (5)

where E denotes the expectation over the meeting the trader will be in during the current

period. For the last period of the transaction stage, t + n, we have

Et+n−1[vt+n(dt+n−1)] =

∫

d′t+n

E [f(Xt+n) + V (dt+n−1 + Xt+n)] dΨt+n−1. (6)

Traders may decide to leave the CH at any point. They can choose to default and take

the outside option of trading only OTC in the future. The value of this outside option, V0,

is endogenous and will be derived later. For the settlement stage, we have the following no

default constraint:

V (dt+n−1 + Xt+n) ≥ βV0. (7)

Of course, traders also need an incentive to participate in clearing through the CH during

17This immediately implies that in each settlement stage the net production of the general asset covers
the settlement costs; i.e.,

∫
dt

`tdΨt = −δ.
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the transaction stages. Thus, if the last settlement stage occurred at t, we require that

f(Xt+s) + βEt+s[vt+s+1(dt+s−1 + Xt+s)] ≥ g (Xt+s) + βV0, (8)

for all Xt+s, and all s = 1, . . . , n− 1. Finally, for s = n we require that

f(Xt+n) + V (dt+n−1 + Xt+n) ≥ g (Xt+n) + βV0 (9)

for all Xt+n. Note that g(X) is the current period return of the outside option and depends

on the type of meeting a trader is in. For OTC transactions we have g(X̄) ≥ 0, reflecting the

fact that traders can still trade OTC with bilateral clearing. Here, the CH takes the terms

of such trades as given, which pins down the current period return of the outside option. On

the other hand, traders in the exchange need to clear through the CH. If they choose not to

trade, we simply have g(X) = 0.

Traders can also mis-report their transactions. Assuming that the last settlement stage

occurred at time t, a PS is incentive compatible during each round s, s = 1, . . . , n − 1, of

the current transactions stage if

f (Xt+s) + βEt+s[vt+s+1(dt+s−1 + Xt+s)] ≥ f(Bt+s) + g (Xt+s) + βEt+s[vt+s+1(dt+s−1 + Bt+s)].

(10)

For s = n, incentive compatibility requires that, for all Xt+n,

f(Xt+n) + V (dt+n−1 + Xt+n) ≥ f(Bt+n) + g (Xt+n) + V (dt+n−1 + Bt+n). (11)

In words, these constraints require that reporting the true state and clearing through the

CH gives at least as high an expected utility as trading OTC or not trading in the exchange.

Notice that a trader can misrepresent a potential transaction by indicating to the CH that he

did not have an opportunity to trade. The value of lying depends again on whether a trader

faces a potential OTC transaction with bilateral clearing or not (g(X̄) ≥ 0 vs. g(X) = 0).
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To conclude this section, it is useful to specify a particular type of PS that we will use

extensively in what follows. A PS is simple if balance adjustments do not depend on the

traders’ current balances. Hence, a simple PS does not condition on a trader’s history. A

PS is simple and repeated (SRPS) if, in addition, it satisfies that

Xt+s =
Xt+n

βn−s
(12)

Xt+kn = X, (13)

where X ∈ {L,K, B, L̄, K̄, B̄}, s = 1, . . . , n, and k ∈ N. In the above expressions, t

represents the date of settlement. In words, adjusting for discounting, a repeated PS imposes

the same balance adjustments in each period of the transactions cycle. In what follows, we

shall concentrate on SRPS and will simply refer to them as PS.

2.3 OTC Trades and Bilateral Settlement

We now determine the outside option when trading OTC. If presented with an opportunity

to trade OTC, traders can choose to remain anonymous to the CH. Then the buyer and seller

engage in Nash bargaining to determine a spot price and the size of the transaction. This

trade is then immediately settled by producing the general asset on the spot.18 Immediate

settlement, however, imposes a fixed cost, τ – without loss of generality imposed on buyers

– where τ ≤ σ (u− c).

Denoting the relative bargaining power of buyers by η ∈ [0, 1], the traders agree on the

quantity q and the price p so as to solve19

max
p,q

(σu(q)− p− τ)η (p− σc(q))1−η . (14)

18Due to the random matching friction, traders cannot commit to an action toward each other in the
future. Hence, if the OTC contract is delivered today, settlement must take place on the spot.

19The generalized bargaining problem includes a continuation value for both parties and the outside option
of not trading at all today as a threat point. These are both given by f(B̄t+s)+βEt+s[vt+s+1(dt+s−1+B̄t+s)]
and therefore cancel out.
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Notice that linearity in the general good causes the surplus to be independent of the bargain-

ing power; i.e., utility is transferable between the buyer and the seller. Hence, as long as the

efficient quantity q∗ is produced, the total surplus is shared proportionally to the bargaining

power, η. The first order conditions reflect this and are given by

q = q∗ (15)

p = (1− η)σu + ησc− (1− η)τ . (16)

This leads to the current period pay-offs from OTC trades. These are given by g(L̄t+s) =

η [σ(u− c)− τ ] for buyers and by g(K̄t+s) = (1−η) [σ(u− c)− τ ] for sellers, with g(B̄t+s) =

0. Finally, the payoff in autarky, V0, is defined as the expected payoff from trading only

OTC forever,

(1− β)V0 = (1− α)γ [σ (u− c)− τ ] , (17)

and is independent of the bargaining power.20

3 Efficient Use of Information

In the previous section we described the trading environment and possible clearing arrange-

ments. We will now study three different scenarios and characterize conditions under which

a payment system can implement the first-best allocation, in which the efficient contract q∗

is exchanged in all transactions. Formally, we concentrate on the following.

Definition 2. A PS is optimal if it is incentive feasible, and if it leads to the efficient level

of asset trading, q∗, in all transactions.

We will first study exchange trades (α = 1) and characterize under what specifications of

20It is useful to differentiate our setup from the one used by Duffie, Garleanu and Pedersen (2005 and
2007) to study OTC markets. Apart from minor modelling differences, we add settlement as a feature
associated with every transaction, and we concentrate on efficient trading outcomes. Rather than focusing
on a particular trading protocol, we use mechanism design in order to specify a PS that induces traders to
carry out transactions efficiently. Thus, we abstract from frictions related to pricing and bargaining, which
are the focus of Duffie, et al. (2005 and 2007).
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preferences and costs an optimal payment system exists. We then study the same question

for OTC trades (α = 0). Finally, we investigate the situation where a CH operates across

both markets (α ∈ (0, 1)). In the Appendix we offer a brief discussion of the nature of the

constraints a CH faces under a SRPS.

3.1 Simple Repeated Payment Systems

We denote the minimum balance adjustment in any given period by Xmin
t = min{Lt, Kt, Bt, L̄t, K̄t, B̄t}.

We also normalize the required starting balance after the settlement stage in period t to

d̂t = 0. This simply implies that we start off the economy with a zero net position between

the CH and all traders. The CH excludes from future clearing traders who do not reset their

balances to zero in the settlement stage. This implies that the distribution of balances, Ψt,

at the end of each settlement stage is degenerate.

Under a SRPS, the break-even condition for the CH (4) becomes

n∑
s=1

[
α [γ (Kt+s + Lt+s) + (1− 2γ)Bt+s] + (1− α)

[
γ

(
K̄t+s + L̄t+s

)
+ (1− 2γ)B̄t+s

]]
+δ = 0,

or

α [γ (K + L) + (1− 2γ) B] + (1− α)
[
γ

(
K̄ + L̄

)
+ (1− 2γ)B̄

]
= −δ(n), (18)

where

δ(n) = δ
βn (1− β)

β (1− βn)
. (19)

Such payment systems are convenient since the linearity of V implies that the incentive

constraints for all s, s = 1, . . . , n − 1 are fulfilled whenever those for s = n hold. Similarly,

all participation constraints are fulfilled as long as traders have no incentive to default in the

settlement stage. One only needs to look at the worst adjustment among all traders, which

is given by
∑n

s=1 Xmin
t+s . This is summarized in the following Lemma. We relegate the proofs

to the Appendix.
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Lemma 3. All incentive constraints are fulfilled as long as

f(Kt+n) + Kt+n ≥ f(Bt+n) + Bt+n

f(Lt+n) + Lt+n ≥ f(Bt+n) + Bt+n

f(K̄t+n)− g(K̄t+n) + K̄t+n ≥ f(B̄t+n) + B̄t+n

f(L̄t+n)− g(L̄t+n) + L̄t+n ≥ f(B̄t+n) + B̄t+n.

Furthermore, all participation constraints hold as long as traders with the worst possible

balance adjustment have no incentive to default in the settlement stage and carry out the

transaction in the last stage

V (
n∑

s=1

Xmin
t+s ) ≥ βV0

f(Xt+n) + V (
n−1∑
s=1

Xmin
t+s + Xt+n) ≥ g(Xt+n) + βV0,

for all Xt+n.

3.2 A Clearinghouse for the Exchange

We now consider the case where a CH only clears trades that take place in an exchange. This

is equivalent to setting α = 1. The CH needs to ensure that traders in the exchange report

their trading opportunities truthfully. In other words, it needs to adjust settlement balances

in order to elicit truthful revelation. The following result gives necessary and sufficient

conditions for this to occur.

Proposition 4. Suppose α = 1. There exists an optimal PS if and only if

βnu− c ≥ δ(n)

γ
. (20)
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The corresponding balance adjustments are given by

Bt+n = Lt+n = −δ(n)− γc

Kt+n = c + Lt+n.

Notice that if n = 0, the condition reads u ≥ c, while if n →∞ the condition is violated.

Therefore; given u > c, there exists n̄ ≥ 1 such that the condition holds for all n < n̄ and

fails otherwise. In other words, if the settlement frequency is sufficiently high, there is an

optimal PS.

It is instructive to rewrite our condition (20) in Proposition 4 as

β

1− β
γ(u− c)− 1

1− βn
δ − γc

β(1− βn)

βn(1− β)
≥ 0. (21)

The first two terms in this expression give the total discounted net present value of the

surplus from staying with the clearinghouse. This consists of the value of being able to

transact in the future, net of the future settlement costs associated with trading. The last

term gives the total outstanding balances for a trader that has consumed in every single

transaction stage throughout the cycle. Hence, the difference between these terms is the net

benefit from not defaulting for the trader that has the strongest incentive to default. If this

net benefit is positive, all traders will transfer enough of the general asset to the CH to settle

their trades.21

Finally, a comment is in order regarding the optimal payment system. One might have

expected that the balance adjustment if no transaction takes place should be zero (Bt+n = 0).

This would imply that Kt+n = c and Lt+n = −(δ(n)/γ)− c. While there are parameters for

which such a payment system is incentive feasible, our findings assert that it is not the one

that can implement the efficient transaction size q∗ for the largest set of parameters. Having

21Our approach does not offer a theory of which party in a transaction should cover the settlement costs.
As long as an optimal PS exists, what matters for incentives are the overall balance adjustments (including
costs). Hence, the PS can levy the costs arbitrarily on buyers, sellers, or non-trading members.
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Bt+n < 0 can be interpreted as a fixed membership fee for participating in the CH.22 Our

model can be thought of as providing a possible justification for such fees.

3.3 A Clearinghouse for the OTC Market

We now turn to the case where there are only OTC trades (α = 0). The CH faces a

more difficult problem in this case. The reason is that now traders have the option to

clear bilaterally and on the spot at an immediate cost, τ . Thus, since the outside option

for traders has improved relative to exchange trades, the PS must ensure that traders are

willing to clear through the CH rather than bilaterally. We again provide a characterization

of when an optimal payment system through a CH exists.

Proposition 5. Suppose that α = 0. There exists an optimal PS if and only if

1

1− βn

[
βnτ − δ(n)

γ

]
≥ p, (22)

where p = (1 − η)(σu − τ) + ησc is the price of OTC transactions. The optimal balance

adjustments are given by

B̄t+n = L̄t+n = −δ(n)− γp,

K̄t+n = L̄t+n + p.

For a CH to be able to operate, it must be the case that immediate bilateral settlement

is sufficiently costly relative to deferred settlement. A necessary condition for this is given

by
β

1− β
γτ > δ

1

1− βn
. (23)

This condition compares the costs from the two ways of settling transactions. The left-hand

side expresses the expected net present value of settlement costs when all transactions are

settled OTC. The right-hand is the equivalent expression for settling through the CH. Notice

22See also Monnet and Roberds (2008).
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that for OTC trades, the cost is incurred after every trade, while if clearing occurs through

the CH, the cost is incurred independent of the number of trades. In a stark way, this

captures economies of scale for the CH relative to bilateral clearing. For a CH to be able to

clear OTC trades, it must offer a large enough cost advantage to traders.

3.4 A Joint Clearinghouse: Cross-Subsidizing Transactions

We now investigate the possibility of a clearinghouse that operates across both markets. To

do so, we assume that α ∈ (0, 1), so that some transactions take place in an exchange, while

others are OTC. When a CH operates across both markets, it can modify its clearing rules

to affect the incentives to default, depending on where a transaction takes place. This opens

up the possibility of cross-subsidizing different transactions in order to induce traders to

clear trades within the CH. In particular, we demonstrate that, under certain conditions, a

CH would not be viable if restricted to OTC trades but would become feasible if allowed to

operate in both markets.

Proposition 6. Suppose α ∈ (0, 1). There exists an optimal PS if and only if

αγ

[
βn

1− βn
(u− c)− c

]
+ (1− α)γ

[
βn

1− βn
τ − p

]
≥ 1

1− βn
δ(n), (24)

where p = (1− η)[σu− τ ] + ησc is the price for OTC transactions. The balance adjustments

are given by

Lt+n = L̄t+n = Bt+n = B̄t+n = −δ(n) + αγc + (1− α)γp,

Kt+n = Lt+n + c,

K̄t+n = Lt+n + p.

It is instructive to discuss condition (24) further. The left-hand side is a weighted average

of the surplus that the CH can extract from traders in order to cover its settlement costs

without inducing default. The weights reflect the relative size of exchange versus OTC
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trades. Note that, in an exchange transaction, the CH can directly extract surplus from

traders. For OTC transactions, however, the CH can only extract the cost-saving offered by

deferred settlement through the CH (condition (22)).

This is important to understand when a joint CH is optimal. Suppose, for example, that

the cost advantage offered by a CH is not high enough to make clearing of OTC trades

feasible. A CH that clears trades in an exchange can then extract surplus to cross-subsidize

the clearing of OTC transactions. This is ex-ante efficient (i.e., before traders learn where

they have to transact), as it saves on overall clearing costs. Interestingly, subsidizing OTC

trades is necessary since individual traders in these markets do not take into account the

positive externality from clearing through the CH. This can be summarized as follows.23

Proposition 7. An optimal PS needs to subsidize the clearing of OTC trades whenever

1

1− βn

[
βnτ − δ(n)

γ

]
< p.

Finally, certain features of the OTC market predict whether it is possible for a CH

to cross-subsidize transactions across markets. Prices in OTC transactions vary with the

relative benefits generated by such transactions. However, prices also depend on whether

certain traders have a large bargaining power. OTC transactions are often highly specialized

and, hence, create a large surplus for some traders. In addition, dealers in such markets might

have considerable market power when writing contracts. In our model, as OTC transactions

become more valuable, the price in OTC transactions increases. Similarly, our model predicts

that the larger the bargaining power of sellers, the larger the negotiated price as they can

extract more of the surplus from the transaction. Under these circumstances, clearing OTC

transactions becomes more difficult for the CH. Formally, it is straightforward to show the

following.

23Using the 2009 annual report by Goldman Sachs (GS), back-of-the-envelope calculations imply that
settlement costs represent a non-negligible 8.5 percent of GS’s profit margin in 2008. GS’s profit margin in
2008 was 10 times larger than the minimum level necessary to avoid default. Of course, GS was probably
one of the better performing member of the DTCC. Still, the fact that GS’s profit margin is relatively large
compared with the default profit margin leads us to conclude that there is potential for cross-subsidization.
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Corollary 8. Suppose βnu− c ≥ δ(n)
γ

. Given clearing costs (τ, δ), an optimal PS with cross-

subsidization exists if and only if α ≥ α(σ, η). Furthermore, the critical value α increases

with the surplus created in OTC transactions, σ, and with the bargaining power of sellers,

(1− η).

4 Liquidity and Incentives

Our model naturally captures the fact that infrequent settlement through a CH increases

the potential for default. Of course, less frequent settlement economizes on settlement costs.

Indeed, as pointed out earlier, this feature links the frequency of settlement to higher levels

of liquidity. We now turn to the question of how to optimally balance such costs against the

higher default exposure associated with less frequent settlement. To simplify the analysis,

we now set α = 0.

Conditional on achieving an efficient transaction size (q∗), an optimal payment system

should minimize the incurred costs from settlement. The CH must then choose the maximum

length of the transaction stage that is compatible with optimality, given the costs, δ, as

expressed by condition (20). Such an n exists as long as δ ≤ γ(βu − c). Note also that, if

n is large enough, we have that βnu < c. Thus, if settlement is sufficiently infrequent, the

participation constraint of a trader that bought n times in a row will be violated. In other

words, there exists a maximum n such that condition (20) is satisfied.

However, our analysis so far has not studied the issue how the length of the settlement

cycle interacts with the optimal transaction size. We turn to this question next.

4.1 Settlement Frequency and Transaction Size

It is widely recognized that actual payment systems involve liquidity costs for participants

who hold reserves in the system. Hence, clearinghouses often make provisions, such as

offering short-term credit facilities, in order to economize on such costs. Offering credit,

however, is not without its own costs since it might increase default risk in the system. In
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this section, we use our model to study the trade-off between liquidity creation and default.

So far in our analysis, we termed a PS optimal if it decentralizes the efficient amount

of asset exchange, q∗, in all transactions. In the presence of settlement costs, however, an

optimal PS might need to explore the trade-off between reducing the size of transactions

versus lengthening the transaction stage. We now turn to the more general problem of

determining jointly the efficient settlement frequency and the efficient transaction size.

We assume that δ ≤ γ(βu − c), and that settlement costs are small enough, so that it

is optimal for settlement to occur eventually. Based on our earlier findings, since α = 0, we

assume that the cost δ is shared equally across all participants, and that it is covered by

production in the settlement stage. In the Appendix we use a continuous-time formulation

of our model to set up the problem of jointly choosing settlement frequency and transaction

size. In order for the constraint set to be convex, it is sufficient that the cost function c(q)

is log-convex. Under this assumption, we derive the following.

Proposition 9. Assume that c(q) is log-convex. Any optimal PS implies that qt = q̂ < q∗,

for all t. Furthermore, as δ increases, the optimal transaction size, q̂, as well as the optimal

length of the settlement cycle, T̂ , decreases.

The first part of the Proposition confirms our intuition. Given that q∗ can be decen-

tralized, we already established in the previous section that we must optimally reduce the

extensive margin – i.e., the settlement frequency – as much as possible in order to econo-

mize on settlement costs. But it is also optimal to economize further on settlement costs by

reducing the intensive margin – i.e., the transaction size – below its first-best level. This is

equivalent to reducing market participants’ exposures prior to the settlement stage by impos-

ing a tighter cap on the total number of contracts that can be exchanged. Notwithstanding,

it is still optimal to have a fixed transaction size across trades and across time.

The second part of the Proposition is somewhat surprising. It asserts that as a response

to an increase in settlement costs, an optimal PS must adjust both q̂ and T̂ in the same

direction. In other words, it must reduce the volume of balance adjustments that need to be

settled in two complementary ways: shorten the length of the transaction stage and reduce
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the transaction size. The explanation for this is as follows. The binding constraint is the

participation constraint of a trader that has made the most purchases during the transaction

stage and, as a result, has to settle a large negative balance. An increase in δ makes it

more likely that this constraint will be violated. Hence, in order to avoid default, we must

decrease the potential exposure of this trader by reducing his negative balance adjustments.

This involves reducing both the quantity produced as well as the time between settlement

periods.

5 Discussion

There is an on-going policy discussion on whether the introduction of clearing arrangements

in OTC markets will lead to superior outcomes. In this paper we used mechanism design to

analyze the optimal organization of clearing across markets. This approach abstracts from

certain characteristics of the CH, such as its ownership and its governance structure. In

reality CHs are often operated in conjunction with a particular market or trading engine,

thus reflecting a basic natural monopoly arising from increasing returns within the market

or trading environment. If a CH operates as a monopoly, it is commonly either user-owned –

i.e., it maximizes the benefits of its users –, or it is regulated to recover costs. In some cases,

there is limited competition between CHs where one provider is public while other providers

might be private.24 In such cases, the public system is usually required to recover its costs

in order to ensure “fair” competition.25 We believe that this evidence supports our basic

modelling approach of studying a planner’s problem, where all efficiency gains are passed on

to traders, but additional subsidization from outside the trading environment is not feasible.

At the very least, our model can be considered as normative, in other words, as identifying

the rules under which optimal payment systems should operate.

Settlement costs are often neglected when looking at financial trades. One can argue that

24An example is the European clearing landscape where the ECB is currently developing an alterna-
tive clearing and settlement engine, Target2S, for cross-border trading. This system is expected to be in
competition with existing private providers.

25For example, the (publicly operated) Fedwire is required to break even.
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these include not only operational costs related to clearing and settling a transaction, but

also, and perhaps more importantly, the opportunity costs of holding liquidity in order to

settle. One should interpret our settlement costs in this broad sense. We do not take a stance

in this paper on the relative size of costs between the two different modes of settlement (τ

vs. δ). Nonetheless, we capture their essential differences. One refers to a per transaction

cost, while the other is a total (average) cost. This distinction offers a straightforward way

of incorporating increasing returns in clearing through a CH.

On the surface, direct operational costs seem quantitatively small, being in the order of

a few cents per transaction. However, these add up over a typical transaction cycle taking

place over a few days, as the volume of transactions can be very large.26 More importantly,

there are considerable fixed costs and costs for auxiliary services (such as custody fees) that

are associated with being a member of a clearinghouse.27

Moreover, as pointed out earlier, one should also consider costs that are related to the in-

house costs of settlement – related to the operation of a back-office and, more significantly,

to the necessity to either hold liquid reserves for settlement, or to obtain such liquidity

through costly short-term borrowing (e.g., in overnight markets). All these considerations

make settlement costs a non-negligible issue for the organization of clearing across markets.

Finally, in order to concentrate on the role of differential information on clearing trades,

we have abstracted from some interesting features of payments. Using SRPS is an obvious

limitation, but it greatly sharpens the analysis. Similarly, a CH can rely on other risk

management techniques (such as collateral requirements) in order to control their default

exposure. Another short-coming of our analysis is that traders are assumed to have deep

pockets that allow them to settle their obligations. Instead, we could introduce a trade-off

by letting traders with extreme positions default, while lengthening the settlement cycle and,

hence, saving on settlement costs. Incorporating positive levels of equilibrium default is a

difficult, but interesting, extension which we leave for future research.

26Indirect evidence on their importance is the heated discussion in Europe over the last few years concerning
the reduction of cross-border settlement costs.

27For an example of such fees see the DTCC fee guide (DTCC (2009)).
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6 Appendix

6.1 Proof of Lemma 3

We first show that all other participation constraints hold, if the one for the worst possible

adjustment up to transaction stage n holds. To facilitate the exposition, we concentrate on

the case where α = 1. The arguments for the case where α < 1 are analogous.

Having normalized d̂t = 0 for all t, the participation constraint for an optimal payment

system at t + n− 1 gives

f(Xt+n−1) + βEt+n−1[vt+n(dt+n−2 + Xt+n−1)]

≥ f(Xt+n−1) + βEt+n−1[vt+n(
n−2∑
s=1

Xmin
t+s + Xt+n−1)]

= f(Xt+n−1) + β

[
γ(u− c) + Et+n−1[V (

n−2∑
s=1

Xmin
t+s + Xt+n−1 + Xt+n)]

]

= f(Xt+n−1) + β

[
1

1− β
γ(u− c)− δ

βn

1− βn
+

(
n−2∑
s=1

Xmin
t+s + Xt+n−1

)
+ E[Xt+n]

]

= f(Xt+n−1) + βXt+n−1 +
β

1− β
γ(u− c)− βδ

βn

1− βn
+ β

(
n−2∑
s=1

Xmin
t+s

)
+ βE[Xt+n]

= f(Xt+n) + Xt+n +
β

1− β
γ(u− c)− βδ

βn

1− βn
+

(
n−1∑
s=2

Xmin
t+s

)
− βδ(n)

≥ f(Xt+n) + Xt+n +
β

1− β
γ(u− c) +

(
n−1∑
s=1

Xmin
t+s

)
− βδ

βn

1− βn
− βδ

(1− β)βn

β(1− βn)

= f(Xt+n) + V (
n−1∑
s=1

Xmin
t+s + Xt+n),

which is the participation constraint associated with adjustment X in the last transactions

round. The last inequality follows since Xmin ≤ 0, and since we require that the CH must

break even; i.e., E[Xt+n] = −δ(n). Hence, the participation constraints at t + n − 1 hold,

provided that they hold for t + n. By induction, it follows that they also hold for any t + s,

s = 1, . . . , n− 2.
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Next, for the incentive constraints, we have that

f(Xt+s) + βEt+s[vt+s+1(dt+s−1 + Xt+s)] ≥ f(Bt+s) + g(Xt+s) + βEt+s[vt+s+1(dt+s−1 + Bt+s)].

(25)

Solving for the function vt+s+1 and using the linearity of V , we obtain

f(Xt+s) + βn−sXt+s ≥ f(Bt+s) + g(Xt+s) + βn−sBt+s. (26)

Finally, using the fact that g and f do not depend on time, we obtain

f(Xt+n) + Xt+n ≥ f(Bt+n) + g(Xt+n) + Bt+n. (27)

The result then follows if we set g(X) = 0 for transactions in the exchange.

6.2 Proof of Proposition 4

Using the fact that f(B) = 0 and V0 = 0 (since here there is no OTC market), we obtain

the following constraints for an optimal payment system

−c + Kt+n ≥ Bt+n, (28)

u + Lt+n ≥ Bt+n, (29)

and

V (
n∑

s=1

Xmin
t+s ) ≥ 0, (30)

f(Xt+n) + V (
n−1∑
s=1

Xmin
t+s + Xt+n) ≥ 0, (31)
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for all Xt+n ∈ {Lt+n, Kt+n, Bt+n}. In addition, we have the following break-even condition

for the CH:

γ (Kt+n + Lt+n) + (1− 2γ) Bt+n = −δ(n). (32)

We need to solve for the PS that fulfils these equations for the largest set of parameters. This

is a well-defined linear program under inequality constraints. Notice that the first incentive

constraint must be binding at the solution. If not, the second binds and we would have

Lt+n < Bt+n < Kt+n. But, we can then increase Lt+n and reduce the other adjustments so

as to still satisfy all constraints. Hence, the first incentive constraint must bind and we have

that Kt+n = Bt+n + c. This implies immediately that Bt+n = Lt+n.

Using these facts and the break even condition for the CH, we obtain

γc + Lt+n = −δ(n). (33)

We can now use the default constraint in the settlement stage and the participation con-

straints to characterize the set of parameters for which an optimal payment system exists.

Again, by the linearity of V and the fact that Kt+n = Lt+n + c, all constraints hold if and

only if the trader with the worst possible adjustment does not have an incentive to default

in the settlement stage, or, if

V (
n∑

s=1

Xmin
t+s ) =

n∑
s=1

Lt+s +
β

1− β
γ(u− c)− δ

βn

1− βn
≥ 0. (34)

Using condition (33), we obtain

V (
n∑

s=1

Xmin
t+s ) = Lt+n

β (1− βn)

βn (1− β)
+

β

1− β
γ (u− c)− δ

βn

1− βn
(35)

= −γc
1− βn

βn
+ γ(u− c)− δ

1− β

β

1

1− βn
. (36)

This completes the proof.
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6.3 Proof of Proposition 5

Since α = 0, the value of trading outside the CH is now given by only trading OTC, or,

(1− β)V0 = γ (σ(u− c)− τ). Using the linearity of V (X), the fact that f(B̄) = 0, and the

expressions for g, we obtain the following incentive constraints

−σc− (1− η)[σ(u− c)− τ ] + K̄t+n ≥ B̄t+n, (37)

σu− η[σ(u− c)− τ ] + L̄t+n ≥ B̄t+n. (38)

For the default and participation constraints we have

V (
n∑

s=1

Xmin
t+s ) ≥ βV0, (39)

and

f(Xt+n) + V (
n−1∑
s=1

Xmin
t+s + Xt+n) ≥ g (Xt+n) + βV0, (40)

for all X. In addition, we again have the following break-even condition for the CH:

γ
(
K̄t+n + L̄t+n

)
+ (1− 2γ) B̄t+n = −δ(n). (41)

We again want to solve for the payment system that fulfils these equations for the largest set

of parameters. By a similar argument as in the previous Proposition, only the first incentive

constraint binds. Hence, B̄t+n = L̄t+n, and

K̄t+n = B̄t+n + (1− η)[σu− τ ] + ησc. (42)

Using these results in the break-even condition for the CH, we obtain:

L̄t+n + γ [(1− η)[σu− τ ] + ησc] = −δ(n). (43)
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Again, it is straightforward to verify that the payment system is incentive feasible if and

only if the trader with the worst possible balance adjustment has no incentive to default in

the settlement stage. Rewriting condition (39) we obtain:

V (
n∑

s=1

Xmin
t+s ) =

n∑
s=1

L̄t+s +
β

1− β
γσ(u− c)− δ

βn

1− βn
≥ β

1− β
γ [σ(u− c)− τ ] . (44)

Using the expression for L̄t+n and the fact that we are studying a SRPS, this expression can

be simplified to obtain:

L̄t+n
β(1− βn)

βn(1− β)
+

β

1− β
γσ(u− c)− δ

βn

1− βn
≥ β

1− β
γ [σ(u− c)− τ ] (45)

(
− [(1− η)(σu− τ) + ησc]− δ(n)

γ

)
1− βn

βn
− δ(n)

γ
≥ −τ, (46)

which completes the proof.

6.4 Proof of Proposition 6

With α ∈ (0, 1), we now have two sets of incentive, participation and default constraints.

Furthermore, the value of default changes to

(1− β) V0 = γ(1− α) [σ(u− c)− τ ] ,

reflecting the total size of the OTC market. It is also straightforward to verify from the

incentive constraints that B̄t+n = Bt+n. Using this fact and that f(Bt+n) = 0, we have the

following incentive constraints:

−σc− (1− η)[σ(u− c)− τ ] + K̄t+n ≥ Bt+n, (47)

σu− η[σ(u− c)− τ ] + L̄t+n ≥ Bt+n, (48)

−c + Kt+n ≥ Bt+n, (49)

u + Lt+n ≥ Bt+n. (50)
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Finally, the break even condition for the CH is now given by

γ
[
α (Kt+n + Lt+n) + (1− α)

(
K̄t+n + L̄t+n

)]
+ (1− 2γ)Bt+n = −δ(n). (51)

Again, for the largest set of parameters for which an optimal PS exists, it must be the

case that L̄t+n = Lt+n = Bt+n < Kt+n, Bt+n < K̄t+n and

K̄t+n = Lt+n + (1− η)[σu− τ ] + ησc (52)

Kt+n = Lt+n + c. (53)

These balance adjustments imply that we only have to consider the no-default constraint in

the settlement stage for the worst possible adjustment, which is given by

V

(
n∑

s=1

Xmin
t+s

)
=

n∑
s=1

Lt+s +
β

1− β
γ (α + (1− α)σ) (u− c)− δ

βn

1− βn

≥ β

1− β
γ(1− α) [σ(u− c)− τ ] .

(54)

¿From the break-even condition, we obtain

Lt+n = −δ(n) + αγc + (1− α)γ [ησc + (1− η)(σu− τ)] . (55)

Hence, our characterization becomes:

Lt+n
β(1− βn)

βn(1− β)
+

β

1− β
αγ(u− c)− δ

βn

1− βn
+

β

1− β
γ(1− α)τ ≥ 0 (56)

Lt+n +
βn

1− βn
αγ(u− c)− δ(n)

βn

1− βn
+

βn

1− βn
γ(1− α)τ ≥ 0 (57)

αγ

[
βn

1− βn
(u− c)− c

]

+(1− α)γ

[
βn

1− βn
τ − [ησc + (1− η)(σu− τ)]

]
≥ 1

1− βn
δ(n), (58)

which completes the proof.
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6.5 Proof of Proposition 9

In order to demonstrate Proposition 9, we find it convenient to use differential calculus. To

this end, here we develop a continuous-time version of the model in the text. We assume

that buying and selling opportunities follow a Poisson process with arrival rate γ. The (con-

tinuous) rate of time preference is now denoted by ρ. The fixed cost, δ, is incurred whenever

the transaction process stops and settlement occurs. This occurs after a deterministic inter-

val of length T . As before, we denote balance adjustments by (K(t), L(t), B(t)). All other

assumptions remain the same as in the text.

We let the random time before the next arrival of a trading opportunity be denoted by

τ . In that case, τ has a distribution function given by

F (t) = Pr(τ ≤ t) = 1− Pr(τ > t) = 1− e−γt. (59)

Hence, the time until the next arrival of a trading opportunity is an exponentially distributed

random variable with distribution function F (t) = 1− e−γt.

Denote by V0 the expected future payoff for a trader at the end of the settlement stage.

It is straightforward to show that an optimal PS involves a constant level of transactions.

First, assume that there are no settlement costs. Since both consumption and production

opportunities are independent, they arrive at rate γ, and they have the same continuation

value, we have

V0 =

∫ ∞

0

e−ρt(u(q)− c(q) + V0)d(1− e−γt)

=
γ

γ + ρ
(u(q)− c(q) + V0), (60)

which yields

V0 =
γ

ρ
(u(q)− c(q)). (61)

This is analogous to the lifetime utility under a system that employs a threat of exclusion

in the discrete-time version of the model presented in the text. In the absence of settlement
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costs, equation (61) also gives the life-time expected payoff in a system that decentralizes

transactions of size q.

When costly settlement occurs after each time length, T , it involves an aggregate (aver-

age) fixed cost δ. Hence, the net present value of the settlement costs is given by

∞∑
n=1

e−nρT δ = δ
e−ρT

1− e−ρT
. (62)

Thus, the continuous-time version of the value function, V0, is given by

V0 =
γ

ρ
(u(q)− c(q))− δ

e−ρT

1− e−ρT
. (63)

As before, we define the adjustments conditional on the traders’ reports by

pKt − c(q) = pLt = pBt, (64)

for all t. Also, since the PS is repeated, we have that adjustments, X, satisfy

XnT+t = Xeρ(T−t), (65)

for all t ∈ [nT ; (n+1)T ], where n is an integer. As in the discrete-time case, the above implies

that all incentive constraints are fulfilled. In addition, it satisfies all PCs for the largest set

of parameter values. Next, we derive the market clearing condition for the settlement stage.

This is accomplished by approximating total balance adjustments in an interval of length T .

First, note that the probability of having exactly n arrivals of trading opportunities in the

interval [0, t] is given by

P [Nt = n] = e−γt (γt)n

n!
. (66)

For small ∆, we then have that

P [N∆ = 1] ≈ γ∆, (67)
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where P [N∆ > 1] = o(∆). Next, define ∆ = T
m

, where m ∈ [0, T ] is an integer. The total

adjustment for sellers over an interval of length T is then approximately given by

γ∆K∆ + · · ·+ γ∆K(m−1)∆ + γ∆Km∆

= γ∆K
[
eρ(T−∆) + · · ·+ eρ(T−(m−1)∆) + eρ(T−m∆)

]

= γ∆KeρT

[
1− (

e−ρ∆
)m

1− e−ρ∆
− 1

]

= γK

[
∆eρ(T−∆) −∆

1− e−ρ∆

]
. (68)

As ∆ → 0, a trader will almost surely receive either none or one opportunity to trade during

a time length ∆. In that case, using L’Hôpital’s rule,28 the expected total adjustments for

sellers are given by γ
ρ
K

(
eρT − 1

)
. The expected total balance adjustments for buyers are

similarly determined and given by γ
ρ
L

(
eρT − 1

)
. Finally, expected balance adjustments for

traders who have received no trading opportunities over this time interval can be determined

as follows. For each interval of length ∆, a measure 2γ∆ of traders are engaged in transactions

(γ∆ of them as buyers and γ∆ as sellers). Therefore, the measure of traders who are not

involved in any transactions over an interval of length ∆ is (1− 2γ) ∆. As a result, the

aggregate balance adjustments for non-trading activities over the interval of length T are

given by

(1− 2γ) ∆B∆ + · · ·+ (1− 2γ) ∆B(m−1)∆ + (1− 2γ) ∆Bm∆

=
(1− 2γ)

ρ
B

(
eρT − 1

)
. (69)

Market clearing during the settlement stage is then given by the following equation:

1

ρ

(
eρT − 1

)
[γpK + γpL + (1− 2γ)pB] = −δ. (70)

28Both the numerator and the denominator in this expression go to zero as ∆ → 0. In addition, we have
lim∆→0

f ′(x)
g′(x) = lim∆→0

−∆ρeρ(T−∆)+eρ(T−∆)−1
ρeρ∆ = lim∆→0−∆eρT + eρT

ρ − 1
ρe−ρ∆ = 1

ρ (eρT − 1).
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Using the above balance adjustments, one obtains

pB = −δρ
1

eρT − 1
− γc(q). (71)

The worst possible balance adjustment is assigned to traders that either never traded or never

sold any contracts in the interval [0, T ]. Following the above discussion, this adjustment is

given by 1
ρ

(
1− e−ρT

)
pB. This implies that the only PC that is potentially binding is given

by
1

ρ

(
eρT − 1

)
pB +

γ

ρ
(u(q)− c(q))− δ

e−ρT

1− e−ρT
≥ 0. (72)

This constraint is identical to the one in the discrete-time version, simply adjusting for the

continuous time discount factor. Given these adjustments, an optimal PS chooses q and T

in order to solve the following maximization problem:

max
q,T

γ

ρ
(u(q)− c(q))− δ

e−ρT

1− e−ρT
(73)

subject to

1

ρ

(
eρT − 1

)
pB +

γ

ρ
(u(q)− c(q))− δ

e−ρT

1− e−ρT
≥ 0,

pB = −δρ
1

eρT − 1
− γc(q).

The objective function expresses the discounted lifetime utility of a representative partici-

pant. The second constraint summarizes the PC that is potentially binding, while the third

constraint summarizes the IC and the market clearing conditions that must be satisfied in

any incentive feasible outcome. The equality in the last equation follows from the fact that

the PS works for the largest set of parameters if it makes all incentive constraints exactly

bind. The constraint set can be rewritten as

γ

ρ

[
u(q)− eρT c(q)

] ≥ δ
1

1− e−ρT
, (74)
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or
(
1− e−ρT

)
u(q)− (

eρT − 1
)
c(q) ≥ ρ

γ
δ. (75)

The objective function is strictly concave in (q, T ). In order to guarantee that the constraint

set is convex, we need an additional assumption. Given any T (q), the function on the

left-hand side of the above inequality is concave in q (T ). However, the left-hand side is not

necessarily jointly concave in (q, T ) due to the second term, which is a product of two convex

functions. A function is log-convex if its natural logarithm is convex. We have the following

sufficient condition for the constraint set to be convex.29

Lemma 10. Suppose that c(q) is log-convex. Then eρT c(q) is a strictly convex function in

(q, T ), and the constraint set is convex.

Proof. Since c(q) is log-convex, we have that

∂2 ln c(q)

∂q2
=

c(q)c′′(q)− (c′(q))2

(c(q))2
> 0. (76)

The first term of the left-hand side in equation (74) is strictly concave in q, while the right-

hand side is strictly convex in T . The remaining term has a Hessian given by

H(q, T ) =


 ρ2eρT c(q) ρeρT c′(q)

ρeρT c′(q) eρT c′′(q)


 . (77)

The first principal minor is positive, while the second principal minor is positive if and only

if

c(q)c′′(q)− (c′(q))2 > 0. (78)

Hence, as c(q) is log-convex, eρT c(q) is convex. The result follows since the sum of two

concave functions is concave.

Taking first-order conditions with respect to q and T , we obtain the following character-

29A weaker condition is given by − 1
eρT u′′(q)c(q) ≥ c′2 − c′′(q)c(q).
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ization of the solution:

u′(q)− c′(q)
c′(q)

=
λ

1 + λ

(
eρT − 1

)
(79)

δ

c(q)

ρ

γ

(
1

eρT − 1

)
=

λ

1 + λ

(
eρT − 1

)
, (80)

where λ is the multiplier on the single constraint. This leads us to the following.

Lemma 11. Let c(q) be log-convex. For any optimal PS with settlement, we have q̂ < q∗.

Proof. Since δ, γ, and ρ are positive, and the optimal settlement length is finite (T̂ ∈ (0,∞)),

we must have that λ > 0. Hence, equation (79) implies that u′(q̂) − c′(q̂) > 0. Since c is

increasing and strictly convex, and u is increasing and strictly concave, this implies that

q̂ < q∗.

Eliminating λ from the first-order conditions (79) and (80), we obtain a single first-order

condition
γ

ρ

u′(q)− c′(q)
c′(q)

(
eρT − 1

)
=

δ

c(q)
. (81)

This condition, together with the constraint (74), characterizes the solution (q̂, T̂ ). Solving

these equations yields the optimal length of the transactions stage, T̂ , as a function of ρ and

q̂; i.e.,
u(q)

u′(q)
c′(q)
c(q)

= eρT . (82)

The optimal transaction size, q̂, is given by

u(q)

(
1− c′(q)

u′(q)

)
+ c(q)

(
1− u′(q)

c′(q)

)
= δ

ρ

γ
. (83)

A solution to the last equation exists by the Intermediate-Value-Theorem. Furthermore, any

solution must lay in an interval [q, q∗], where q > 0. The problem is that the left-hand side of

equation (83) is non-monotonic. Hence, there will, in general, be more than one solution to

this equation. The optimal solution, however, corresponds to the one closest to (and below)
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q∗. The next Proposition relies solely on the fact that at this solution, q̂, the left-hand side

of equation (83) is locally strictly decreasing.

Lemma 12. Assume that c(q) is log-convex. As the settlement cost, δ, increases, the optimal

transaction size, q̂, as well as the optimal length of the transactions stage, T̂ , decrease.

Proof. We establish first that q̂ and T̂ move in the same direction; i.e., that dT̂
dq̂

> 0. Differ-

entiating the left-hand side of equation (82) with respect to q, we obtain

1

(u′(q)c(q))2

[
u(q)u′(q)

(
c(q)c′′(q)− (c′(q))2

)
+ c(q)c′(q)

(
(u′(q))2 − u(q)u′′(q)

)]
, (84)

which is strictly positive, as u is strictly increasing and strictly concave, while c is log-convex.

Next, we show that q̂ is decreasing in δ. Denote the left-hand side of equation (83) by

Γ(q). Differentiating Γ(q) with respect to q and collecting terms we obtain

∂Γ

∂q
= c′′(q)

[
c(q)

c′(q)
u′(q)
c′(q)

− u(q)

u′(q)

]
+ u′′(q)

[
c′(q)
u′(q)

u(q)

u′(q)
− c(q)

c′(q)

]
. (85)

We can rewrite equation (83) as

γ

ρ

u′(q)− c′(q)
c′(q)

(
u(q)

u′(q)
c′(q)
c(q)

− 1

)
=

δ

c(q)
. (86)

Since u′(q) > c′(q), for q < q∗, we obtain that u(q)
u′(q) > c(q)

c′(q) . Letting q → q∗, this implies that

c(q)

c′(q)
u′(q)
c′(q)

− u(q)

u′(q)
< 0, (87)

and
c′(q)
u′(q)

u(q)

u′(q)
− c(q)

c′(q)
> 0. (88)

Hence, ∂Γ
∂q

< 0, or, equivalently, the left-hand side of equation (83) is strictly decreasing for

q sufficiently close to q∗. Furthermore, Γ(q) converges to 0 as q → q∗. Hence, Γ(q) > 0 for q

sufficiently close to q∗ and, by the continuity of Γ(q), there must exist a solution to equation
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(83) for small enough δ > 0. Finally, since Γ(q) ↓ 0 as q → q∗, we must have that Γ′(q̂) ≤ 0

(with Γ having possibly a local maximum at q̂). This completes the proof.
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