Files

Abstract

A major challenge in the analysis of micro level spatial interaction is to distinguish actual interactions from the effects of spatially correlated omitted variables. We approach this problem by considering a spatially lagged explanatory model (SLX) employing two spatial weighting matrices differentiating between local and regional neighbourhoods. We empirically analyse spatial interaction between individual farms in Norway and additionally perform Monte Carlo simulations exploring the model’s performance under different data settings. Results show that including two spatial weighting matrices can indeed reduce the bias resulting from omitted variables. In the empirical application, it allows identifying different significant interaction effects.

Details

Downloads Statistics

from
to
Download Full History