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Distinguishing Different Industry Technologies 

and Localized Technical Change 

Sauer J. and Morrison-Paul C.* 
 

Abstract 
When different technologies are present in an industry, assuming a homogeneous technology 
will lead to misleading implications about technical change and inefficient policy 
recommendations. In this paper a latent class modelling approach and flexible estimation of the 
production structure is used to distinguish different technologies for a representative sample of 
E.U. dairy producers, as an industry exhibiting significant structural changes and differences in 
production systems in the past decades. The model uses a transformation function to recognize 
multiple outputs; separate technological classes based on multiple characteristics, a flexible 
generalized linear functional form, a variety of inputs, and random effects to capture firm 
heterogeneity; and measures of first- and second-order elasticities to represent technical 
change and biases. We find that if multiple production frontiers are embodied in the data, 
different firms exhibit different output or input intensities and changes associated with different 
production systems that are veiled by overall (average) measures.  In particular, we find that 
farms that are larger and more capital intensive experience greater productivity, technical 
progress and labor savings, and enjoy scale economies that have increased over time.  
 
Keywords: Heterogenous Technologies, Transformation Function, Localized Technical Change 
 
JEL codes: Q12, O33, C35 
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1. INTRODUCTION 

In most industries different firms operate with different technologies or production 

systems. Recognizing these differences is key to understanding structural change, which is 

likely to involve varying technical change patterns for different systems or movements toward 

different systems.  That is, as an industry evolves, technical change does not just increase the 

amount of output possible from a given amount of inputs (productivity growth) and induce 

substitution among inputs (technical change biases), as is traditionally recognized in 

productivity analysis.  It also involves new production systems with different characteristics in 

terms of output and input mix, which may be in the form of a continuum with discrete changes 

or may involve entirely different production frontiers. The presence of different technologies in 

an industry means that empirical analysis of technical change, and its drivers and effects, is 

more complex than is typically modeled by shifts and twists in a common production frontier or 
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function.  In fact, it will be misleading to assume that technology is the same for different firms, 

as estimated coefficients of a common technology will be biased (Griliches, 1957). This has 

been recognized in the literature on localized technical change, which posits differential 

“drivers” of economic performance depending on the kind of technology used by a firm 

(Atkinson and Stigliz, 1969).  Modeling and measuring localized technical change in this 

context involves first characterizing the different technologies, and then distinguishing the 

production patterns associated with these technologies and how they change over time.1 

In particular, the technological specification used for empirical analysis of production 

technologies and technical change should accommodate both different points on a production 

frontier and separate frontiers for different firms.  Recognizing the presence of different output 

and input mixes and especially technologies may reduce apparent substitution elasticities, as 

substitution possibilities for a specific technology are likely more limited than implied by a 

single common production frontier that combines movements within and between production 

systems.   It is also important to distinguish different technical patterns in terms of movements 

around versus between production frontiers, or changes in production systems, versus 

movements in the function itself, or technical change. That is, once different production systems 

or technological frontiers are recognized in the model, technical change involves an outward 

move at one point of the production function rather than a general shift of the function, or a shift 

in the technology-specific rather than common production frontier.  Empirically analyzing 

productivity growth thus requires distinguishing different technical change patterns for the 

different production systems, including the rate of and input biases associated with technical 

change – differences in overall productivity growth and resulting input intensity. 

One industry that has exhibited significant structural changes and production system 

differences in the past few decades, in both the U.S. and E.U. countries, is the dairy industry.  

To distinguish farms by their different technologies, researchers have sometimes categorized 

producers into, for example, organic versus conventional operations (e.g., Kumbhakar et al., 

2009).  However, such a grouping may be both arbitrary and incomplete.   In this paper we 

instead use a latent class model (LCM) to group dairy producers into “classes” based on their 

probability of having a variety of characteristics that proxy different technologies or production 

systems, called separating variables or q-variables. For example, for dairy operations, one might 

use characteristics such as cows/hectare or fodder/cow to proxy the use of pasture or purchased 

feed (extensive vs. intensive production) and labor/cow or capital/cow to proxy input intensity 

(associated with different milking practices). The latent class model allows us to represent a 

variety of classes (with the number of classes determined empirically), based on a combination 

of differences in such variables as well as netput (output and input) variables.  The technological 

differences are then summarized in terms of the estimated parameters of the underlying 

multinomial logit (MNL) model for each class, the summary statistics by class, and the 

                                                      
 
 

1 It also involves productive response to specific factors such as learning by doing and knowledge spillovers that may be technology-specific, 
which are beyond the scope of this study but will be addressed in subsequent work. 
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estimates of the technology by class.  Further, the posterior probabilities show the extent to 

which the important technological differences are distinguished by the model. 

Because the LCM model distinguishes the classes while simultaneously estimating their 

technological structures as different production frontiers, the classification of producers by 

technology depends on both the parameters of the MNL on which the probabilities are based 

and the parameters of the technological specification.  We model the production structure for 

each class by a flexible transformation function model with multiple outputs and inputs to 

recognize farms’ different netput intensities. 

In summary, our model distinguishes the technological structure from the probability of 

being in a class, defined by a MNL model with multiple separating variables.  The posterior 

probabilities distinguishing the classes and technology depending on the parameters of both the 

technology (transformation function) and the probability (MNL) model.  Our technical change 

measures for the different technologies can thus be compared to consider the most productive 

technologies, changes in specific technologies, and movements between technologies. We find 

that overall (average) measures do not well reflect individual firms’ production patterns if the 

technology of an industry is heterogeneous. That is, if there is more than one type of production 

frontier embodied in the data, it should be recognized that different firms may exhibit very 

different output or input intensities and changes associated with different production systems. In 

particular, in the context of localized technical change, firms with different technologies can be 

expected to show different technical change patterns, both in terms of overall magnitudes and 

associated relative output and input mix changes. 

2. THE TECHNOLOGICAL MODEL  

For our purposes, a transformation function is desirable for modeling technological 

processes because multiple outputs are produced by Danish dairy farms (milk, livestock and 

crops), precluding estimation of the production technology by a production function, yet we 

wish to avoid the disadvantages of normalizing by one input output as is required for a distance 

function. That is, imposing linear homogeneity on an input (output) distance function requires 

normalizing the inputs (outputs) by the input (output) appearing on the left hand side of the 

estimating equation.  This raises issues not only about what variable should be chosen as the 

numeraire, but also about econometric endogeneity because the right hand side variables are 

expressed as ratios with respect to the left hand side variable.  Although a common approach in 

input distance function-based agricultural studies is to normalize by land (e.g., Paul and 

Nehring, 2005), to express the function in input-per-acre terms, this is questionable when a key 

issue to be addressed is whether different kinds of farms with potentially different productivity 

use land more or less intensively. 
We thus rely on a transformation function model representing the most output producible 

from a given input base and existing conditions, which also represents the feasible production 

set. This function in general form can be written as 0=F(Y,X,T), where Y is a vector of outputs, 

X is a vector of inputs, and T is a vector of (external) shift variables, which reflects the 
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maximum amount of outputs producible from a given input vector and external conditions.  By 

the implicit function theorem, if F(Y,X,T) is continuously differentiable and has non-zero first 

derivatives with respect to one of its arguments, it may be specified (in explicit form) with that 

argument on the left hand side of the equation.  Accordingly, we estimate  the transformation 

function Y1= G(Y-1,X,T), where, Y1 is the primary output of dairy farms (milk) and Y-1 the 

vector of other outputs, to represent the technological relationships for the dairy farms in our 

data sample.  Note that this specification does not reflect any endogeneity of output and input 

choices, but simply represents the technologically most Y1 that can be produced given the levels 

of the other arguments of the F(•) function. We approximate the transformation function by a 

flexible functional form (second order approximation to the general function), to accommodate 

various interactions among the arguments of the function including non-constant returns to scale 

and technical change biases.  A flexible functional form can be expressed in terms of logarithms 

(translog), levels (quadratic), or square roots (generalized linear, sometimes erroneously called 

generalized Leontief for a primal function). We use the generalized linear functional form 

suggested by Diewert (1973)  to avoid any mathematical transformations of the original data 

(e.g. taking logs of variables which would lead to modelling problems based on zero values). 

 
(1) YM,it = F(YNMQ,it,Xit,T)  
      = a0 + 2a0NMQYNMQ

0.5 + ∑2a0kXk
0.5 + aNMQNMQYNMQ + akkXk + ∑aklXk

0.5X l
0.5  

+ ∑akNMQXk
0.5YNMQ

0.5 + bTT + bTTTT + ∑bkTXk
0.5T + bNMQTYNMQ

0.5T, 
 

for farm i in time period t, where Y1=YM=total quantity of milk, Y2= YNMQ=non-milk 

outputs is the only component of Y-1, X is a vector of Xk inputs XLD=land, XLAB=labor, 

XKAP=capital, XCOW=cows, XFOD= fodder, XEN= energy, XCHM=chemicals, and 

XVET=veterinarian services, and a time trend T is the only component of the T vector.  

When estimating the technology for a group of observations, if the firms (farms) in the 

sample are using different technologies estimating a “common” technological frontier is 

misleading.  With a flexible functional form, even when assuming a common technology, 

differences among observations are at least partly accommodated because a different netput mix 

is allowed for in the production structure estimates that depend on all the other arguments of the 

function.  For example, estimated output elasticities with respect to a particular input will 

depend on the levels of that input, all other inputs and current technical conditions, and so will 

differ by observation. Unobserved technological heterogeneity is also partially accommodated 

by a standard error term for econometric estimation, but then the factors underlying the 

heterogeneity cannot be directly represented and will bias parameter estimates if they are 

correlated with the explanatory variables (Griliches, 1957).  To more fully recognize and 

evaluate heterogeneity among production systems, we thus explicitly distinguish technologies 

by estimating the technology separately for different groups or “classes” of farms.  This is 

particularly important in order to explore technical change specific to a particular technology 

type. To group firms or farms with different technologies, researchers sometimes group their 

observations by exogenous classifications, such as farms that define themselves as “organic,” or 
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by a particular input threshold such as hectares per animal (to define a pasture-based or 

extensive operation).  However, such divisions are at least somewhat arbitrary, and also usually 

rely on only one distinguishing factor. It seems preferable to group observations by their 

probability of exhibiting certain characteristics that differ among technologies, especially if 

multiple characteristics may distinguish production systems, as well as to estimate the groups 

and the technology in a one-step framework to allow for differences also in netput levels and 

mix.  To accomplish this, we combine the estimation of our transformation function with a 

latent class structure (Greene, 2002, 2005), as explained further in the next section.   

3. THE LATENT CLASS MODEL 

Various methods to explicitly allow for heterogeneity in a production model have been 

used in the production literature.  Some researchers have chosen their data sample based on 

some criterion of homogeneous production, such as Tauer and Belbase (1987) who delete farms 

in their sample with technologies too different from the norm2 and Felthoven et al. (2009) who 

focus on a portion of a fishing fleet with specific characteristics (catcher-processors).   Some 

have chosen particular characteristic to divide the sample and estimate different frontiers, such 

as Hoch (1962) who separates Minnesota dairy farms by location, Bravo-Ureta (1986) who 

separates new England dairy farms based on breed, Newman and Matthews (2006) and Tauer 

(1998) who separate Irish and New York dairy farms by production process (stanchion versus 

parlor milking and specialist and non-specialist farms, respectively), and Kumbhakar et al. 

(2009) and Gillespie et al. (2009) who separate Finnish and U.S. dairy farms, respectively, into 

conventional and organic farms. Researchers such as Maudos et al. (2002) and Alvarez et al. 

(2008) instead accommodate multiple criteria for separating farms using cluster analysis based 

on output and input ratios, which divides the sample according to similarities in specific 

characteristics by maximizing the variance between groups and minimizing the variance within 

groups.  Further, studies such as Kalirajan and Obwona (1994),  Huang (2004), and Greene 

(2005) rely on random coefficient models that essentially model each farm as a separate 

technology in the form of continuous parameter variation. 
It has increasingly been recognized, however, particularly in the stochastic frontier 

(technical inefficiency) context that is the focus of most of these studies, that latent class models 

are desirable for representing heterogeneity (Greene, 2002, 2005, Orea and Kumbhakar, 2004).   

This approach separates the data into multiple technological “classes” according to estimated 

probabilities of class membership based on multiple specified characteristics.  Each firm/farm 

can then be assigned to a specific class based on the probabilities.  This method distinguishes 

the classes based on homogeneity among firms/farms in terms of both the estimated 

technological and probability (multinominal logit, MNL) relationships, rather than looking for 

                                                      
 
 
2 Tauer and Belbase (1987) deleted dairy farms from their data sample that participated in a particular (dairy diversion) program, 
that purchased most of their feed or replacement livestock, or that had a large proportion of non-milk sales. 
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similarity in specific variables. The LCM model estimates a MNL model in one stage with the 

estimation of the overall technological structure (although the number of parameters that may be 

estimated simultaneously by LIMDEP is limited by degrees of freedom for multiple 

output/input specifications). Statistical tests can be done to choose the number of classes or 

technologies that should be distinguished.  A random effects model assuming firm-specific 

random terms along with the technological groupings can be incorporated to further capture 

firm heterogeneity, as developed by Greene (2005) and Cameron and Trivedi (2005) and 

applied by Abdulai and Tietje (2007) for stochastic frontier analysis of German dairy farms and 

Alvarez and del Corral (2009) for Spanish dairy farms.  For our analysis we focus on the 

technological structure and technical change rather than on unobserved “inefficiency,” so we do 

not include a one-sided error as in a stochastic frontier model.  Our specification of multiple 

technologies based on multiple characteristics, outputs and inputs, along with random effects 

and a flexible functional form, however, accommodate heterogeneity in our sample of Danish 

dairy farms. 

More specifically, we can write our latent class model in general form as equation (1) for 

class j: 

 
 (2) YM,it = F(YNMQ,it,Xit,T) |j  
 

where j denotes the class or group containing farm i and the vertical bar means a different 

function for each class j.  As we are assuming that the error term for this function is normally 

distributed, the likelihood function for farm i at time t for group j, LFijt, has the standard OLS 

form.  In addition, as in Greene (2005), the unconditional likelihood function for farm i in group 

j, LFij, is the product of the likelihood functions in each period t, and the likelihood function for 

each farm, LFi, is the weighted sum of the likelihood functions for each group j (with the prior 

probabilities of class j membership as the weights): LFi = Σj Pij LFij The prior probabilities Pij 

must, by definition, fall between zero and one and sum to one for each farm.  They are therefore 

typically parameterized as a multinomial logit (MNL) model, based on the farm-specific 

characteristics used to distinguish the technologies or determine the probabilities of class 

membership, called separating- or q-variables (qi), and the parameters of the MNL to be 

estimated for each class (relative to one group chosen as numeraire), δj.  That is,  

 
(3) Pij = exp(δjqi)/[Σj exp(δjqi)], or,  
 
(4) Pij=exp(δ0j + Σn δnj qnit)/[Σj exp (δ0j + Σn δnj qnit)], 
 

where the qnit are the N q-variables for farm i in time period t.  For our application we 

include four types of features that are key to distinguishing technologies and may be represented 
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by alternative ratios.3  One important feature of dairy farms is the intensive or extensive nature 

of production, which may be reflected by pasture versus purchased feed; two variables that 

could capture this are thus qCOW,HA=cows/hectare and qFOD,COW=fodder/cow.  The extent of 

organic production may be captured by qCHM,HA=chemicals/hectare or qORG,TOT= organic milk 

revenue/total revenue.4 The input intensity of production may be represented by 

qLABCOW=labor/cow or qKAP,COW=capital/cow.5 Finally, production diversity or specialization is 

reflected in the ratio of outputs, qM,TOT=milk/total output.  These separating variables are 

specific technological indicators distinguishing farms with different technologies.  We chose our 

preferred q-variables by trying different combinations of the four types of indicators and 

evaluating the latent class model (LCM) q-variable coefficient’s estimates’ significance and the 

resulting posterior probabilities for the individual classes.  The number of classes is determined 

by AIC/SBIC tests suggested by Greene (2002, 2005) that “test down” to show whether fewer 

classes are statistically supported.  Further, the base model incorporates a panel data  

specification where each farm is recognized as a separate entity that is assigned to a particular 

class. 

 
(5) yM,it |j = a0 + 2a0NMQ,j yNMQ,it

0.5 + ∑2a0k,j xk,it
0.5 + aNMQNMQ,j yNMQ,it  

+ akk,j xk,it + ∑akl,jxk,it
0.5xl.it

0.5 + ∑akNMQ,j xk,it
0.5 yNMQ,it

0.5 + bT,j tit + bTT,j tittit  

+ ∑bkT,j xk,it
0.5 tit + bNMQT,j yNMQ,it

0.5 tit + eit |j, 
 

for farm i in time period t and class j, with e denoting an iid standard error term and the 

indezes as explained above. However, as an alternative specification we allow each observation 

to be a separate entity, allowing farms to switch between classes to identify changes in 

production systems over time (i.e. a cross-sectional specification): 

 
(6) yM,i |j = a0 + 2a0NMQ,j yNMQ,i

0.5 + ∑2a0k,j xk,i
0.5 + aNMQNMQ,j yNMQ,i + akk,j xk,i  

+ ∑akl,jxk,i
0.5xl.i

0.5 + ∑akNMQ,j xk,i
0.5 yNMQ,i

0.5 + bT,j ti + bTT,j titi + ∑bkT,j xk,i
0.5 ti  

+ bNMQT,j yNMQ,i
0.5 ti + ei |j, 

 
for observation i and class j, with e and the indezes as explained above. 

The probabilities Pij are therefore functions of the parameters of the MNL model, and the 

likelihoods LFij are functions of the parameters of the technology for class j farms, so the 

likelihood function for firm i is a function of both these sets of parameters.  The overall log-

likelihood function for our model, defined as the sum of the individual log-likelihood functions 
                                                      
 
 
3 Variables in levels such as the numbers of cows or hectares could also be included.  However, as they are essentially “size” 
variables that  are already included as production structure arguments, and thus are also taken into account in the LCM model, we 
only included the ratio measures.  In preliminary investigation when we did try including such variables, however, their estimated 
coefficients tended to be quite significant. 
4We initially used a organic subsidies/total subsidies variable but it had many missing values as there is only limited information for 
these categories of farms before 1990, and is also quite highly correlated with the chemicals ratios. 
5 A measure of labor per total output rather than labor per cow was also tried in preliminary estimations. 
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LFi, can be maximized using standard econometric methods.  Further, the posterior probabilities 

of class members can be computed from the resulting parameter estimates using Bayes 

Theorem: 

 
(7) P(j/i) = PijLFij/Σj PijLFij  

 
The posterior probabilities thus also depend on both the parameters of the technology 

(arguments of Lij), and the parameters of the MNL model (arguments of Pij).  As noted by Orea 

and Kumbhakar (2004), this means that the LCM model can group the firms/farms into classes 

based on goodness of fit of the technological frontier even if other “sample-separating’ 

information (q-variables) is not provided.   

For purposes of our analysis, due to degree of freedom problems for the LCM model 

from the many outputs and inputs in our data, we initially characterize our classes based on an 

approximation to the GL transformation function that does not include cross-effects.  This is 

equivalent to using a Cobb-Douglas function – it is essentially a first-order approximation 

allowing for appropriate curvature of the overall marginal product and transformation curves for 

each input and output but not for second-order interaction terms among these variables.  The 

resulting first-order elasticities represent the contributions of each output and input to 

production, as well as overall technical change and returns to scale, for each class.  To 

accommodate and measure the second order effects involving output and input technical change 

biases and substitution, we then estimate the full GL form for the full sample and the separate 

classes.  If the distinctions among classes capture key differences in technology, the average 

first-order elasticities for the constrained and fully flexible functional forms will be comparable, 

but incorporating the interaction terms will allow assessment of cross effects.  

4. THE MEASURES 

More specifically, to represent and evaluate the technological or production structure, the 

primary measures we wish to compute are first- and second-order elasticities of the 

transformation function.  The first-order elasticities of the transformation function in terms of 

milk output YM represent the (proportional) shape of the production possibility frontier (given 

inputs) for output YNMQ, and the shape of the production function (given other inputs and YNMQ) 

for input Xk – or output trade-offs and input contributions to milk output respectively. That is, 

the estimated output elasticity with respect to the “other” (non-milk) output, 

εM,NMQ=∂lnYM/∂lnYNMQ= ∂YM/∂YNMQ•(YNMQ/YM), would be expected to be negative as it 

reflects the slope of the production possibility frontier, with its magnitude capturing the 

(proportional) marginal trade-off.  The estimated output elasticity with respect to input k, 

εM,k=∂lnYM/∂lnXk= ∂YM/∂Xk•(Xk/YM), would be expected to be positive, with its magnitude 

representing the (proportional) marginal productivity of Xk.   

Second-order own-elasticities may also be computed to confirm that the curvature of 

these functions satisfies regularity conditions; the marginal productivity would be expected to 
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be increasing at a decreasing rate, and the output trade-off decreasing at an increasing rate, so 

second derivatives with respect to both YNMQ and Xk would be negative (concavity with respect 

to both outputs and inputs). Returns to scale may be computed as a combination of the YM 

elasticities with respect to the non-milk output(s) and inputs.  For example, for a production 

function returns to scale is defined as the sum of the input elasticities to reflect in a sense the 

distance between isoquants.  Similarly for a transformation function such a measure must 

control for the other output(s).  Formally, returns to scale are defined for the transformation 

function similarly to the treatment for the distance function in Caves, Christensen and Diewert 

(1982) – for our purposes as εM,X=Σk εM,k/(1 - εM,NMQ).6 Technical change is measured by shifts 

in the overall production frontier over time.  As our only technical change variable is the trend 

term T, productivity/technical change is estimated as the output elasticity with respect to T, 

εM,T=∂lnYM/∂T= ∂YM/∂T•(1/YM). This represents how much more milk may be produced on an 

annual basis in proportional terms, given the levels of the inputs and other output(s).  

These measures may be computed for each observation and presented as an average over 

a subset of observations (such as for the full sample, a farm, a time period or a particular class), 

or may be computed for the average values of the data for a subset of observations.  The latter 

approach is called the delta method; it evaluates the elasticities at one point that represents the 

average value of the elasticity for a particular set of observations, allowing standard errors to be 

computed for inference even though the elasticity computation involves a combination of 

econometric estimates and data7,8 In addition to computing technical change in terms of relative 

shifts in production frontiers, we can compute the relative levels of productivity among different 

groups or classes.  This requires determining whether one frontier is above the other, in terms of 

predicted output levels for a given amount of inputs, as in Kumbhakar et al. (2009) and Alvarez 

and del Corral (2009). Further, we can compute second order or cross elasticities to evaluate 

output and input substitution as well as output and input-using or -saving technical change 

(technical change biases) if a flexible functional form is estimated.   These elasticities involve 

second-order derivatives such as, for input substitution, εk,l = ∂2YM/∂Xk∂X l•[X l/(∂YM/∂Xk)].  If 

one thinks of MPM,k=∂YM/∂Xk as the marginal product of YM with respect to Xk (holding all 

other arguments of the function, including YNMQ, constant), this elasticity can be written as εk,l = 

                                                      
 
 
6 The adaptation of this treatment for the transformation function was outlined by W. Erwin Diewert in private correspondence. 
Essentially, given the transformation function defined in equation (1), if all inputs are increased by a scale factor S, and one looks 
for another scalar factor (US) such that U times the initial vector of outputs Y is still on the transformation function, U(S) is 
implicitly defined by: U(S)Y1=F(U(S)Y2,SX,T).  The implicit function rule can then be used to calculate the derivative U’(S) 
evaluated at S=1: U’(1) = (ΣkdlnF(Y2,X)/dlnXk)/(1-dlnF(Y2,X)/dlnY2).  If this measure exceeds one, it implies increasing returns to 
scale.    
7 The “delta method” computes standard errors using a generalization of the Central Limit Theorem, derived using Taylor series 
approximations, which is useful when one is interested in some function of a random variable rather than the random variable itself 
(Gallant and Holly, 1980, Oehlert, 1992).  For our application, this method uses the parameter estimates from our model and the 
corresponding variance covariance matrix to evaluate the elasticities at average values of the arguments of the function.     
8 Such computations for a particular “Class” are based on using the highest posterior probability to assign farms to a particular 
group.  If some farms have a reasonable probability of being in another class, it may be misleading to choose one reference 
technology.  One way to deal with this is instead to compute a posterior-probability-weighted sum of the measures (Orea and 
Kumbhakar, 2004, Greene, 2002).  However, if these probabilities are very high this is not likely to be a problem.  As our average 
posterior probabilities range from 0.97 to 0.99 for the different classes, it does not make a substantive difference.   
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∂MPM,k/∂X l•(X l/MPM,k).  Such an elasticity represents the extent to which the marginal product 

of Xk changes when Xl changes, or substitutability among the inputs.  Similarly, for technical 

change,  εk,T = ∂2YM/∂Xk∂T•[1/(∂YM/∂Xk)] = ∂MPM,k/∂T•(1/MPM,k) represents whether technical 

change is input k-using or -saving – or tends to increase or decrease the input-intensity of input 

k – as  εK,T is positive or negative.  We can also measure whether returns to scale is increasing 

or decreasing over time (with technical change) for each class by computing εY,X,T= ∂εY,X/∂T. 

5. THE DATA 

The data used for our illustration are for milk (total and organic) and non-milk outputs, 

and land, labor, capital, cow, fodder, energy, veterinary and chemicals inputs, as well as 

deflators (producer price indexes for milk and dairy products, agricultural materials, and 

machinery and buildings).  The data are taken from Landscentret, Denmark 

(“Regnskabsdatabase”: economic farm account database collected for various years) and 

Danmark Statistic (various agricultural price indezes). Summary statistics for the data by the 

final preferred (3) classes can be obtained from the authors upon request due to space 

limitations. Overall, milk was about two-thirds of total production for these farms, which 

averaged about 77 hectares with about 68 cows, 4300 labor hours/year, 6.2 million Danish 

Kronor in capital, and about 5600 Kronor in feed/cow/year, with revenue of about 1,800,000 

Kronor/year (in 1986 monetary units). When divided into classes, Class 1 farms tend to be 

larger operations with about 2,500,000 Kroner/year in revenue, more cows and land (about 93 

cows and 109 hectares), less labor and more capital input per cow, and more organic production 

and fodder/cow on average – although the range for all of the variables is very large.  Class 3 is 

the reverse – seemingly more traditional farms that are smaller, somewhat more diversified, 

with more labor and less land, capital and fodder per cow.  Class 2 is in the middle in terms of 

size, with the least milk/total revenue (more diversification) and organic/total production. 

Differences over time for the data for the first and last years of the sample show a dramatic 

increase in milk production per farm (nearly three-fold) and proportion of organic milk while 

non-milk output was dropping, combined with much more capital and land, less chemicals use, 

more than twice as many cows, and less labor and fodder per cow.  These trends are consistent 

with those for dairy farms in the U.S. and other EU countries toward larger more specialized 

farms and more capital-intensive production systems. 

6. THE RESULTS 

We estimated our LCM model by Maximum Likelihood (ML) methods using LIMDEP 

9.0.  As noted, our base LCM model includes all first order and own second order terms, to 

allow for appropriate curvature of the function, but it does not include any cross-terms between 

outputs and inputs as there were too many parameters to distinguish classes with the fully 

flexible general linear model in LIMDEP (i.e. insufficient degrees of freedom).  The overall 

first-order elasticities representing output and input composition and technical change would be 
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expected, however, to be well approximated by such estimates (as we will see below), so the 

fundamental characteristics of the different farms will be taken into account for the separation of 

the farms into classes. The parameter estimates for this model can be obtained from the authors 

upon request due to space limitations. As discussed above, the measures of interest for our 

analysis are, however, computed as combinations of these parameters rather than based directly 

on the estimated coefficients.  The first measures to evaluate are thus the elasticity measures for 

the full data sample.  As discussed above, these first order output (milk, YM) elasticity estimates 

for our constrained (no cross-terms) model reflect output tradeoffs, input contributions, returns 

to scale and technical change, evaluated at the mean values of the variables for all farms in our 

data.  

The (proportional) tradeoffs between the outputs are given by the εM,NMQ elasticity, where 

M denotes YM and NMQ denotes YNMQ.  The estimate for this elasticity of approximately -0.17 

shows that producing one percent more milk, given input use, on average requires reducing 

other outputs by about 17 percent for the farms in our data.  The (proportional) productive 

contributions of the inputs are given by the εM,k elasticities (k= LD, LAB, KAP, COW, FOD, 

EN, VET, CHM).  These output elasticities with respect to the inputs, which can be interpreted 

similarly to more familiar Cobb-Douglas production function coefficient estimates, show that 

the livestock input (XCOW) comprises the largest marginal input “share” or contribution to output 

at about 50 percent, fodder is about 21 percent, capital is next at about 16 percent, and land and 

veterinary care follow at about 12-13 percent.  Labor has a small productive contribution of 

about 6 percent and chemicals and energy even less at about 2 percent.  In combination, these 

estimates result in a slightly increasing returns to scale (εY,X) estimate of 1.04; a one percent 

increase in all netputs generates an increase in milk production of about 1.04 percent.   

In turn, our technical change measure reflects changes in potential output (milk) 

production over time holding input use and non-milk production constant, is statistically as well 

as economically significant at about 0.013; output per unit of input has increased about 1.3 

percent per year on average for the farms in our sample.  Note also that the reported second 

order own-elasticity estimates confirm the appropriate curvature on the relationships represented 

by our first order output elasticities; as non-milk production YNMQ increases the opportunity cost 

in terms of milk production increases on the margin, and the (proportional) marginal products of 

all inputs are (positive but) diminishing.  The rate of technical change is also decreasing over 

time. A fundamental premise of our study, however, is that such overall (average) measures do 

not well reflect individual firms’/farms’ production patterns if the technology is heterogeneous.  

That is, if there is more than one type of production frontier embodied in the data, it should be 

recognized that different farms may exhibit very different output or input intensities and 

changes associated with different production systems.  In particular, in the context of localized 

technical change, farms with different technologies would be expected to have different 

technical change patterns, both in terms of overall magnitudes and associated relative output and 

input mix changes. 
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To distinguish and evaluate such technologies and associated technical change, we need 

to specify the q- or separating-variables underlying the different technologies, and determine the 

number of different technologies or classes in which to group our data.  For the first of these 

problems, we used different combinations of possible variables reflecting four distinctions 

among farm technologies we believe to be important for  dairy farms – extensive/intensive, 

organic/conventional, input (labor and capital) intensity, and diversification/specialization.  

Although the models using different subsets of these potential q-variables are not nested and 

thus cannot be directly tested, we evaluated their relevance based on the significance of the 

resulting MNL coefficient (εnj) estimates.  These experiments suggested that the most relevant 

grouping was qFOD,COW=fodder/cow, qORG,TOT= organic revenue/total revenue, 

qLAB,COW=labor/cow  and qM,TOT=milk/total output.  The δo and δn estimates for this q-variable 

specification based on two, three, and four classes in the LCM model are presented in Table A1. 

All of the constant terms for the 2 and 3 class models are statistically significant at the 1 percent 

level, suggesting that even without the q-variables the different farm production factors show 

significantly distinct technologies.  However, the q-variables identify additional distinguishing 

or separating characteristics. 

A key distinguishing factor among these farms – in terms of statistical significance 

holding other production factors constant – appears to be their diversity versus specialization 

(the amount of milk relative to total output), although the average summary statistics did not 

appear that different.  For the two class specification, the farms in Class I (with prior probability 

of 80 percent being in that class) appear more specialized (with a positive and significant εM/TOT 

coefficient) than those in Class 2.  When three classes are distinguished, Class 3 becomes the 

base class with the highest prior probability, and farms in other classes have a lower milk share 

– especially Class 2, as was evident from the summary statistics.  Farms in both Class 1 and 

Class 2 also use less labor/cow than those in Class 3, and those in Class 1 also sell relatively 

more organic milk and in Class 2 (with a less than 10 percent prior probability of being in this 

class) purchase less fodder/cow, consistent with the summary statistics.  When four classes are 

distinguished, the significance of the q-variables is somewhat lower overall (than for the 3-class 

case), but farms in Classes 1-3 still have a significantly lower milk share relative to the base 

(and largest prior probability) class, while those in Class 1 also have more organic production 

and labor intensity, and in Class 3 have greater labor intensity.  In this case fodder/cow seems 

not to be as significant a separating variable, perhaps as it is instead captured in a combination 

of the other q-variables when this many combinations are allowed for.  

To determine how many classes are statistically supported, it is now recognized in the 

literature that one should “test down” from the most classes to determine whether restricting 

classes is justified by statistical tests.  Although likelihood ratio tests may be used, Greene 

(2005) showed that it is preferable to use AIC and SBIC tests – in this case to test down from 

four classes.  Such tests showed for our specification that three classes were statistically 

supported but two classes were not.  Also note that the prior probabilities for our preferred three 

class model are about 0.39. 0.08 and 0.54 for classes 1-3 but the average posterior probabilities 
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for the farms within each of these classes are about 0.99, 0.97 and 0.98 (for the 110, 74 and 120 

farms in those categories), respectively, indicating a very good “fit” for our classification 

scheme. Given the division of classes into three groups based on the chosen q-variables and first 

order technological specification, the next step is representing the full production technology for 

the separate classes.  First, however, it is important to consider whether the base production 

structure (transformation function) model without cross-effects, used for separating the classes, 

reflects the primary characteristics of the overall production technology.   

To evaluate the desirability of including additional cross-terms, as well as the 

appropriateness of using the base constrained (first order) model for distinguishing the classes, 

we estimated a fully flexible version of equation (1) for comparison. The parameter estimates 

for this model can be obtained from the authors upon request due to space limitations. Tests of 

the joint significance of the cross-effects relative to constraining them to zero showed that a 

fully flexible form is statistically supported. Tests for setting subsets of cross-terms, including 

all input-cross terms, all T-cross terms, and all YNMQ-Xk cross-terms, to zero also showed the 

joint significance of these cross-effects.  For our full analysis of the production structure, 

therefore, we wish to use the fully flexible model. As already noted, the fact that the LIMDEP 

LCM algorithm does not have enough degrees of freedom to estimate the fully flexible model 

for the classes precludes using such a model for the first step.  However, the validity of using 

the base model for distinguishing classes, but the flexible model for evaluating the full 

production structure for the classes, may be inferred by comparing the elasticities for the 

constrained and unconstrained model to determine whether they reflect sufficiently similar 

overall average contributions of the outputs and inputs.  Comparing these elasticity estimates 

shows that, although the cross-terms will provide us with additional insights about underlying 

relationships, the overall patterns are effectively captured by the constrained model. On balance, 

therefore, the use of the constrained model to do the initial division into classes seems 

justifiable, particularly as the heterogeneity of the farms in terms of their output mix is taken 

into account in the division into classes by including the qM,TOT q-variable, and can be explored 

more completely with the fully flexible model. That is, first consider the different productivity 

levels implied by the different production technologies.   One way to consider whether different 

technologies are more or less productive is to evaluate the fitted output levels (milk quantity – 

left hand side variable) for the data for the different classes based on the parameters of the other 

classes (Kumbhakar et al., 2009, Alvarez and del Corral, 2009).  To pursue this, we used the 

average data for the variables for each class, as reported in Table 1. 

 
Table 1:   Fitted Productivity Levels, average data for different groups 

sample technology full sample class 1 sample class 2 sample class 3  sample 
1st class 497.19 717.31 459.62 354.59 
2nd class 403.03 540.29 381.60 301.86 
3rd class 483.22 643.77 387.49 316.02 

 
For example, for the average data for the full sample, the fitted value of YM is highest for 

farms in Class 1 and lowest for those in Class 2, suggesting that the Class 1 technology is 
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generally the most productive.  The fitted values for the different classes support this 

conclusion; for example, the fitted values for Class 1 farms using their own estimated 

technological parameters is 717.31, but using those for the other classes is lower and for Class 2 

is the lowest.  For the data for the other classes, in reverse, using the Class 1 parameters gives a 

higher fitted output level than using the parameters for their own class.  This roughly confirms 

the notion from our discussion of the descriptive statistics and q-variable parameters that Class 1 

farms are more efficient.9,10 Next consider the first order and own second order elasticities for 

the separate classes and the fully flexible model, presented in Table A2, which represent the 

production characteristics of each technology. Note that, as the first order elasticities reflect 

each output’s and input’s marginal product weighted “share” (e.g., εM,k=[( ∂YM/∂Xk)•Xk]/YM), 

high values of these elasticities may arise either from a large marginal product or a large amount 

of input Xk.  Note also that the primary interpretation of the second order elasticities is in terms 

of curvature; all the estimates are negative, consistent with the concavity requirements of the 

transformation function. 

The first order elasticities for non-milk outputs for all classes are negative, as they should 

be, and the larger (in absolute value) estimate for Class 1 suggests that with that technology an 

increase in milk production on the margin involves more decrease in other outputs.  This is 

consistent with the summary statistics that suggest milk relative to non-milk output is higher for 

these farms, even though the average qM,TOT ratios are not very different than those for Class 3.   

The marginal contributions of cows, and especially land and chemicals are larger for Class 1 

than the other classes.  This appears consistent with high marginal products for each of these 

inputs, as their levels are comparable (relative to milk production) or lower (for chemicals) for 

this class relative to the other classes, again suggesting that these farms are somewhat more 

efficient than those in Classes 2 and 3.  In reverse, the marginal contribution of capital is higher 

for Classes 2 and 3, suggesting that more capital investment might enhance productivity.  

Further, for Class 2 the marginal contribution of labor is higher and for fodder is lower than for 

the other classes. In turn, returns to scale are essentially constant for Class 3, even though they 

are somewhat smaller farms, suggesting that the production systems of these farms must be 

adapted to take advantage of returns to scale as they grow – for example to become more capital 

and less labor intensive.  Increasing returns to scale are evident for the other two technologies – 

especially for Class 2.  Note that the overall returns to scale estimate for the GL model, 

therefore, overestimates returns to scale for Class 1 and especially Class 3 farms, and 

underestimates it for Class 2 farms.   

                                                      
 
 
9 Note that this might underestimate the efficiency of class 2 farms as they are more diversified and this only represents the milk 
production rather than total production. 
10 If these fitted values are based on less aggregated data the results are roughly the same, although for class 3 the fitted values for 
either the class 1 or class 3 technology is virtually equivalent, potentially because the smaller farms’ characteristics are not 
commensurate with taking advantage of the scale economies of the larger farms in class 1.  This is true both when the fitted values 
are computed by observation and then averaged (this also results in a virtually identical fitted value for each own-class compared to 
the descriptive statistics) and when the results are fitted for the average values for each farm and then averaged. 
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Further, technical progress is evident for all the technologies, but the most for the farms 

in Class 1; output given non-milk production and input use is growing at about three percent per 

year for farms in Class 1 and roughly half that for the other two kinds of farms.  It is also 

increasing at a decreasing rate, as is evident from the second order elasticity, but at similar rates 

for all classes.  The overall technical change measure for the full sample and GL model 

therefore under-estimates technical change for Class 1 but over-estimates it for the other classes.  

Further, without the cross terms the measure under-estimates technical change for all classes 

relative to the fully flexible model and class distinctions. 

The fully flexible model also provides insights about the input- and output-specific 

patterns of technical change, which underlie the overall technical change elasticity reflecting 

how much milk production per unit of input (or given input use) has increased over time.  This 

can be seen from the cross elasticities for the full sample.  The elasticities of εM,NMQ and each 

εM,k elasticity with respect to T are primarily significant. These elasticities show that on average 

for the full sample milk production growth over time has been associated with: (i) a greater 

trade-off between milk and non-milk production (consistent with a trend toward more 

specialization) ; (ii) a slightly greater marginal contribution of land (while land has been 

increasing slightly faster on average than cows, (iii) greater marginal contributions of both labor 

and capital (while labor and capital use per cow have been falling and rising, respectively); (iv) 

a smaller marginal contribution of cows (as cows per farm has expanded); (v) a greater marginal 

contribution of fodder while fodder purchases have not increased on average as much as cows; 

(vi) a smaller contribution of energy (with no apparent underlying intuition but it is a small 

proportion); and (vii) essentially the same contributions of chemical and vet use (while chemical 

use per hectare has been decreasing substantially  and vet services per cow have stayed 

approximately stable).  Note also that returns to scale have been increasing over time even while 

farm size has been increasing. 

When these elasticities are presented for the different classes, in Table A2, it is clear that 

different technical change patterns are occurring for the different technologies.  In particular, for 

Class 1 the marginal contribution of labor is larger and of capital is smaller and less significant 

– apparently due to a larger marginal product of labor with its lower levels and a marginal 

product of capital that has fallen somewhat with higher capital levels.  Returns to scale are also 

increasing even faster than on average, even though these farms tend to be the largest farms.  By 

contrast, both the marginal contributions of labor and capital are smaller for both other classes 

(although that for capital is statistically significant for Class 2).  The changes in the 

contributions of land and cows are also smaller but generally insignificant, and the rising returns 

to scale over time evident for Class 1 farms is less so for Class 2 and negligible for Class 3.  In 

reverse, the marginal contribution of chemicals is significantly increasing for Class 2, which is 

the class with the smallest share of organic milk production. 

Another question about technical change is the extent to which (and which) farms switch 

between classes (move to different production systems) or exit the industry.  Our “preferred” 

estimates with random effects for each farm and based on a panel data specification, however, 
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group the observations into class by farm rather than by observation, precluding consideration 

of such changes.  To address this question we thus must categorize the observations rather than 

the farms into classes.  This model is not nested and thus not directly comparable to the random 

effects farm-based specification, and in fact would be expected to yield biased estimates without 

the panel related random effects.  Estimating the model allows us, however, to generally 

consider whether the results are comparable and assess farm switching and exit patterns. 

Although exploring such a model in detail is beyond the scope of this paper, note that the 

classification into categories by observation is roughly consistent with the farm random effects 

model.  1099 of the observations fell into Class 1, 693 into Class 2, and 1396 into Class 3.  

Class 1 again contained the largest, most specialized and most organic-oriented farms – even 

larger in terms of land and cows than for the farm model (which might be expected as the 

industry was evolving toward such a farm structure).  Class 2 observations were again the least 

specialized farms, in between Class 1 and 3 in size, with the most labor and fodder per cow.   In 

terms of switches, 344 farms moved from Class 3 into other classes – 226 of them to Class 1 – 

over the time period.  172 farms moved from Class 2, but most of these moved to Class 3 (165) 

rather than Class 1.  The majority of the farms that switched away from Class 1 also moved to 

Class 3 – 91 of the 106 in this category.  There is therefore a general trend from Classes 2 to 3 

and 3 to 1, as would be expected by their measured productivities. Note also that 26 of the 30 

farms that exited the industry were categorized as Class 2 farms in their last year by this model; 

the remaining four included one in Class 1 and three in Class 3.  However, the farm 

classifications were nearly evenly divided among the different classes in the random effects 

farm model, suggesting that farms that became less productive over time tended to transition 

into Class 2 farms before they left the industry.  Thus, the categorization of farms into classes 

over 20 years could be misleading in terms of which will exit the industry, as they may initially 

have been relatively productive farms that fell behind over time.   

Finally, we can consider general substitutability patterns from the estimated cross-

elasticities (these estimates can be obtained from the authors upon request).  Overall, the cross-

terms that reflect substitutability among inputs are largely significant.  For the full sample, 

interesting patterns found are that more non-milk production is associated with a higher 

contribution of labor and lower contribution of fodder, as one would expect for more pasture-

based farms.  More land and more fodder imply a greater, but more labor and cows a lower, 

contribution of chemicals – perhaps as the marginal product of chemicals is larger for larger 

farms.  Further, more capital is associated with greater contributions of both cows and fodder, 

consistent with trends toward larger farms with more intensive production. When the sample is 

broken down into classes these patterns are quite different.  For example, more non-milk 

production is not associated with labor contribution for any class, and only implies a lower 

fodder contribution for Class 1.  It is, however, associated with a greater marginal contribution 

of cows for Class 3, and of chemicals for both Class 2 and Class 3.  More cows are also 

associated with a greater contribution of chemicals for Class 2 but both more cows and more 

land imply a lower contribution of chemicals for Class 3, while there is very little association of 
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any other netput with chemicals use for Class 1. Distinguishing the technologies thus appears 

very important for representing substitutability, but seems to imply different substitutability 

rather than lower overall substitutability. 

7. CONCLUDING REMARKS 

The main finding of our study is that overall (average) measures do not well reflect 

individual firms’ production patterns if the technology of an industry is heterogeneous. That is, 

if there is more than one type of production frontier embodied in the data, it should be 

recognized that different firms may exhibit very different output or input intensities and changes 

associated with different production systems. In particular, in the context of localized technical 

change, firms with different technologies can be expected to show different technical change 

patterns, both in terms of overall magnitudes and associated relative output and input mix 

changes. Assuming a uniform homogenous technology would result in inefficient policy 

recommendations leading to suboptimal industry outcomes. This seems to be especially relevant 

for environmentally motivated policy measures aiming to support less intensive production 

systems. Future research should consider localized technical change using more specific 

measures of technical change. This could be done by direct measures related to learning by 

doing and/or geographical proximity both as arguments of the technology function as well as 

potential factors for a deviation from the relevant technological frontier. 
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 APPENDIX 

 
Table A1: Q-Variable Coefficients for Technology Classes 

Two Classes Three Classes Four Classes Prior Class Probabilities 
class 1 estimate t-stat class 1 estimate t-stat class 1 estimate t-stat Class 1 Class 2 Class 3 Class 

4 
δ0 -5.250 -2.50 δ0 4.851 2.60 δ0 2.184 1.88 Two Class Model 
δFOD/COW -0.034 -0.35 δFOD/COW 0.049 0.66 δFOD/COW -0.046 -0.38 0.800 0.197   
δORG/TOT -0.478 -0.55 δORG/TOT 2.434 3.16 δORG/TOT 1.280 1.78 Three Class Model 
δLAB/COW 8.319 0.80 δLAB/COW -32.173 -3.79 δLAB/COW -34.710 -2.80 0.388 0.077 0.535  
δMLK/TOT 25.370 3.65 δMLK/TOT -13.445 -2.12 δMLK/TOT -13.824 -2.75 Four Class Model 
class 2 estimate t-stat class 2 estimate t-stat class 2 estimate t-stat 0.251 0.169 0.186 0.394 
δ0 0  δ0 15.369 5.38 δ0 -1.706 -1.89 
δFOD/COW 0  δFOD/COW -0.176 -1.82 δFOD/COW 0.126 1.27 

Posterior Probabilities 
(average for each class grouping) 

δORG/TOT 0  δORG/TOT -0.027 -0.01 δORG/TOT 0.630 0.48 Three Class Model 
δLAB/COW 0  δLAB/COW -51.947 -3.94 δLAB/COW 1.572 0.13 0.987 0.974 0.978 
δMLK/TOT 0  δMLK/TOT -51.116 -5.52 δMLK/TOT -40.234 -3.43  
 class 3 estimate t-stat class 3 estimate t-stat  
   δ0 0  δ0 -1.575 -1.69  

   δFOD/COW 0  δFOD/COW -0.063 -0.69  
   δORG/TOT 0  δORG/TOT -1.514 -0.66  
   δLAB/COW 0  δLAB/COW 18.008 1.84  
   δMLK/TOT 0  δMLK/TOT -27.342 -6.26  
    class 4 estimate t-stat  
      δ0 0   
      δFOD/COW 0   
    δORG/TOT 0   
    δLAB/COW 0   
      δMLK/TOT 0   

 
Table A2: 1st Order Elasticities for Different Classes - Full Generalized Linear Model 

 Class 1    Class 2    Class 3   
elasticity estimate t-stat  elasticity estimate t-stat  elasticity estimate t-stat  
εM,NMQ -0.184 -10.19  εM,NMQ -0.080 -4.68  εM,NMQ -0.058 -5.33  
εM,LD 0.138 6.32  εM,LD 0.032 1.46  εM,LD 0.029 2.47  
εM,LAB 0.109 3.96  εM,LAB 0.245 8.85  εM,LAB 0.089 5.80  
εM,KAP 0.124 5.40  εM,KAP 0.196 9.16  εM,KAP 0.208 15.64  
εM,COW 0.523 18.57  εM,COW 0.451 16.79  εM,COW 0.463 25.81  
εM,FOD 0.203 11.39  εM,FOD 0.144 8.16  εM,FOD 0.201 17.09  
εM,EN 0.023 2.43  εM,EN 0.055 4.06  εM,EN 0.012 1.64  
εM,VET 0.087 8.61  εM,VET 0.041 4.15  εM,VET 0.057 9.40  
εM,CHM 0.029 3.23  εM,CHM 0.001 0.06  εM,CHM 0.006 1.16  
εM,T 0.029 3.07  εM,T 0.013 1.90  εM,T 0.016 2.63  
εY,X 1.043 65.63  εY,X 1.079 63.04  εY,X 1.008 97.27  

(own second order elasticities are all negative, estimates upon request) 
 
 

 


