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Distinguishing Different Industry Technologies

and L ocalized Technical Change

Sauer J. and Morrison-Paul C.*

Abstract
When different technologies are present in an ifvgfusssuming a homogeneous technology
will lead to misleading implications about techricghange and inefficient policy
recommendations. In this paper a latent class miogdehpproach and flexible estimation of the
production structure is used to distinguish diffareechnologies for a representative sample of
E.U. dairy producers, as an industry exhibitingrsfigant structural changes and differences in
production systems in the past decades. The madslai transformation function to recognize
multiple outputs; separate technological classeseldaon multiple characteristics, a flexible
generalized linear functional form, a variety ofpirts, and random effects to capture firm
heterogeneity; and measures of first- and secow@orrelasticities to represent technical
change and biases. We find that if multiple promurctfrontiers are embodied in the data,
different firms exhibit different output or inputénsities and changes associated with different
production systems that are veiled by overall (age) measures. In particular, we find that
farms that are larger and more capital intensivgpexence greater productivity, technical
progress and labor savings, and enjoy scale ecoe®thiat have increased over time.

Keywords: Heterogenous Technologies, Transformdtiamction, Localized Technical Change

JEL codes: Q12, 033, C35

* This research commenced when the second authsrawasiting scholar in the ARE Department at UCvi3a
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Landscentret, Skejby, Denmark for making the daailable. Senior authorship is equally shared. Wank
numerous colleagues for comments on an earlierimersf this study, including A. Alvarez, E. Diewekt
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1. INTRODUCTION

In most industries different firms operate with feient technologies or production
systems. Recognizing these differences is key wergtanding structural change, which is
likely to involve varying technical change pattefos different systems or movements toward
different systems. That is, as an industry evglteshnical change does not just increase the
amount of output possible from a given amount @uis (productivity growth) and induce
substitution among inputs (technical change biases) is traditionally recognized in
productivity analysis. It also involves new protioe systems with different characteristics in
terms of output and input mix, which may be in then of a continuum with discrete changes
or may involve entirely different production froets. The presence of different technologies in
an industry means that empirical analysis of temdinthange, and its drivers and effects, is
more complex than is typically modeled by shiftdl &mists in a common production frontier or

Page 1 of 21



Ancona - 122 EAAE Seminar
"Evidence-Based Agricultural and Rural Policy Makin

function. In fact, it will be misleading to assuthat technology is the same for different firms,
as estimated coefficients of a common technolodl vé biased (Griliches, 1957). This has
been recognized in the literature on localized el change, which posits differential

“drivers” of economic performance depending on Kied of technology used by a firm

(Atkinson and Stigliz, 1969). Modeling and measgrilocalized technical change in this
context involves first characterizing the differasthnologies, and then distinguishing the
production patterns associated with these techiedamnd how they change over tifne.

In particular, the technological specification uded empirical analysis of production
technologies and technical change should accommdutzth different points on a production
frontier and separate frontiers for different firmBecognizing the presence of different output
and input mixes and especially technologies mayagedapparent substitution elasticities, as
substitution possibilities for a specific technologre likely more limited than implied by a
single common production frontier that combines erments within and between production
systems. It is also important to distinguish eént technical patterns in terms of movements
around versus between production frontiers, or geanin production systems, versus
movements in the function itself, or technical apanThat is, once different production systems
or technological frontiers are recognized in thedelptechnical change involves an outward
move at one point of the production function ratthen a general shift of the function, or a shift
in the technology-specific rather than common potida frontier. Empirically analyzing
productivity growth thus requires distinguishingfelient technical change patterns for the
different production systems, including the rateaofl input biases associated with technical
change — differences in overall productivity growatid resulting input intensity.

One industry that has exhibited significant struatichanges and production system
differences in the past few decades, in both ti& dnd E.U. countries, is the dairy industry.
To distinguish farms by their different technolaieesearchers have sometimes categorized
producers into, for example, organic versus conwgeat operations (e.g., Kumbhakar et al.,
2009). However, such a grouping may be both anlyitand incomplete. In this paper we
instead use a latent class model (LCM) to groupydaioducers into “classes” based on their
probability of having a variety of characteristtbsit proxy different technologies or production
systems, called separating variables or g-variablesexample, for dairy operations, one might
use characteristics such as cows/hectare or fanaertb proxy the use of pasture or purchased
feed (extensive vs. intensive production) and ladoov or capital/cow to proxy input intensity
(associated with different milking practices). Tlagent class model allows us to represent a
variety of classes (with the number of classesrdeted empirically), based on a combination
of differences in such variables as well as nefputput and input) variables. The technological
differences are then summarized in terms of thémattd parameters of the underlying
multinomial logit (MNL) model for each class, th@&nsmary statistics by class, and the

! It also involves productive response to speciictdrs such as learning by doing and knowledgéospils that may be technology-specific,
which are beyond the scope of this study but vélelddressed in subsequent work.
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estimates of the technology by class. Further,pibsterior probabilities show the extent to
which the important technological differences astiniguished by the model.

Because the LCM model distinguishes the classeke whnultaneously estimating their
technological structures as different productioonfrers, the classification of producers by
technology depends on both the parameters of th& bNwhich the probabilities are based
and the parameters of the technological specifinatiWwe model the production structure for
each class by a flexible transformation functiondelowith multiple outputs and inputs to
recognize farms’ different netput intensities.

In summary, our model distinguishes the technokigstructure from the probability of
being in a class, defined by a MNL model with npl#i separating variables. The posterior
probabilities distinguishing the classes and tetdgydepending on the parameters of both the
technology (transformation function) and the pralitgh(MNL) model. Our technical change
measures for the different technologies can thusdoepared to consider the most productive
technologies, changes in specific technologies,raodements between technologies. We find
that overall (average) measures do not well refledividual firms’ production patterns if the
technology of an industry is heterogeneous. That ikere is more than one type of production
frontier embodied in the data, it should be recoegithat different firms may exhibit very
different output or input intensities and changesoaiated with different production systems. In
particular, in the context of localized technichhnge, firms with different technologies can be
expected to show different technical change patdooth in terms of overall magnitudes and
associated relative output and input mix changes.

2. THE TECHNOLOGICAL MODEL

For our purposes, a transformation function is rdé# for modeling technological
processes because multiple outputs are producddahish dairy farms (milk, livestock and
crops), precluding estimation of the productionhtesiogy by a production function, yet we
wish to avoid the disadvantages of normalizing bg mput output as is required for a distance
function. That is, imposing linear homogeneity eniaput (output) distance function requires
normalizing the inputs (outputs) by the input (adjpappearing on the left hand side of the
estimating equation. This raises issues not obbuawhat variable should be chosen as the
numeraire, but also about econometric endogeneitalse the right hand side variables are
expressed as ratios with respect to the left hatehariable. Although a common approach in
input distance function-based agricultural studesto normalize by land (e.g., Paul and
Nehring, 2005), to express the function in input-pere terms, this is questionable when a key
issue to be addressed is whether different kindarafis with potentially different productivity
use land more or less intensively.

We thus rely on a transformation function modekespnting the most output producible
from a given input base and existing conditionsicWlalso represents the feasible production
set. This function in general form can be writtei®aF(Y ,X,T), whereY is a vector of outputs,

X is a vector of inputs, andl is a vector of (external) shift variables, whictflects the
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maximum amount of outputs producible from a giveput vector and external conditions. By
the implicit function theorem, iF(Y,X,T) is continuously differentiable and has non-zerst fi
derivatives with respect to one of its argumentmay be specified (in explicit form) with that
argument on the left hand side of the equationcofdingly, we estimate the transformation
function Yi= G(Y 1,X,T), where,Y; is the primary output of dairy farms (milk) antl; the
vector of other outputs, to represent the techncédgelationships for the dairy farms in our
data sample. Note that this specification doesr@it¢ct any endogeneity of output and input
choices, but simply represents the technologicalhgtY; that can be produced given the levels
of the other arguments of thesffunction. We approximate the transformation fimctby a
flexible functional form (second order approximatim the general function), to accommodate
various interactions among the arguments of thetiom including non-constant returns to scale
and technical change biases. A flexible functidoah can be expressed in terms of logarithms
(translog), levels (quadratic), or square roots1égalized linear, sometimes erroneously called
generalized Leontief for a primal function). We ube generalized linear functional form
suggested by Diewert (1973) to avoid any matherahtransformations of the original data
(e.g. taking logs of variables which would leadrtodelling problems based on zero values).

(1) Ymic = F(Ynmoit Xit, T)

=@+ 2anoY o + 228Xk + amonmo Y nmo F &iXk + ZaaXi X >
+ ZakNMQXkO'SYNr\AQO'5 + BT + by TT + b X, O°T + h\JMQTYNMQO'sT,

for farm i in time period t, where (¥Yy=total quantity of milk, ¥= Yyug=non-milk
outputs is the only component of;, X is a vector of X inputs Xp=land, Xag=labor,
Xkap=cCapital, Xcow=COWs, Xop= fodder, X\= energy, Xuv=chemicals, and
Xyer=veterinarian services, and a time trend T is thlg component of th& vector.

When estimating the technology for a group of okes@ons, if the firms (farms) in the
sample are using different technologies estima@ngcommon” technological frontier is
misleading. With a flexible functional form, everhen assuming a common technology,
differences among observations are at least pacttgmmodated because a different netput mix
is allowed for in the production structure estinsatgat depend on all the other arguments of the
function. For example, estimated output elasésitivith respect to a particular input will
depend on the levels of that input, all other isparid current technical conditions, and so will
differ by observation. Unobserved technologicakhageneity is also partially accommodated
by a standard error term for econometric estimatiomt then the factors underlying the
heterogeneity cannot be directly represented arldbis parameter estimates if they are
correlated with the explanatory variables (Grilishd957). To more fully recognize and
evaluate heterogeneity among production systemshug explicitly distinguish technologies
by estimating the technology separately for différgroups or “classes” of farms. This is
particularly important in order to explore techiichange specific to a particular technology
type. To group firms or farms with different techogies, researchers sometimes group their
observations by exogenous classifications, sudhrass that define themselves as “organic,” or
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by a particular input threshold such as hectaresgmémal (to define a pasture-based or
extensive operation). However, such divisionsadreast somewhat arbitrary, and also usually
rely on only one distinguishing factor. It seemfprable to group observations by their
probability of exhibiting certain characteristidsat differ among technologies, especially if
multiple characteristics may distinguish productgystems, as well as to estimate the groups
and the technology in a one-step framework to aflomdifferences also in netput levels and
mix. To accomplish this, we combine the estimatifrnour transformation function with a
latent class structure (Greene, 2002, 2005), dsieepl further in the next section.

3. THELATENT CLASS M ODEL

Various methods to explicitly allow for heterogegen a production model have been
used in the production literature. Some reseaschawve chosen their data sample based on
some criterion of homogeneous production, suchaaeiTand Belbase (1987) who delete farms
in their sample with technologies too differentrirthe norrfi and Felthoven et al. (2009) who
focus on a portion of a fishing fleet with specitibaracteristics (catcher-processors). Some
have chosen particular characteristic to dividestimple and estimate different frontiers, such
as Hoch (1962) who separates Minnesota dairy fdiynsocation, Bravo-Ureta (1986) who
separates new England dairy farms based on bremgmian and Matthews (2006) and Tauer
(1998) who separate Irish and New York dairy fabmsproduction process (stanchion versus
parlor milking and specialist and non-specialisinfs, respectively), and Kumbhakar et al.
(2009) and Gillespie et al. (2009) who separat@iBmand U.S. dairy farms, respectively, into
conventional and organic farms. Researchers sudflaaslos et al. (2002) and Alvarez et al.
(2008) instead accommodate multiple criteria fgrasating farms using cluster analysis based
on output and input ratios, which divides the samatcording to similarities in specific
characteristics by maximizing the variance betwg®mps and minimizing the variance within
groups. Further, studies such as Kalirajan and dblaw(1994), Huang (2004), and Greene
(2005) rely on random coefficient models that esalyp model each farm as a separate
technology in the form of continuous parameteratan.

It has increasingly been recognized, however, @ddily in the stochastic frontier
(technical inefficiency) context that is the fo@famost of these studies, that latent class models
are desirable for representing heterogeneity (&e2002, 2005, Orea and Kumbhakar, 2004).
This approach separates the data into multiplentdolgical “classes” according to estimated
probabilities of class membership based on multplecified characteristics. Each firm/farm
can then be assigned to a specific class baseldeoprobabilities. This method distinguishes
the classes based on homogeneity among firms/fammserms of both the estimated
technological and probability (multinominal logNINL) relationships, rather than looking for

2 Tauer and Belbase (1987) deleted dairy farms fiwzir data sample that participated in a partic@airy diversion) program,
that purchased most of their feed or replacemeestock, or that had a large proportion of non-radles.
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similarity in specific variables. The LCM model iesates a MNL model in one stage with the
estimation of the overall technological structuakthough the number of parameters that may be
estimated simultaneously by LIMDEP is limited bygdees of freedom for multiple
output/input specifications). Statistical tests ¢sndone to choose the number of classes or
technologies that should be distinguished. A ramddfects model assuming firm-specific
random terms along with the technological groupinge be incorporated to further capture
firm heterogeneity, as developed by Greene (200&) @ameron and Trivedi (2005) and
applied by Abdulai and Tietje (2007) for stocha&tantier analysis of German dairy farms and
Alvarez and del Corral (2009) for Spanish dairynfar For our analysis we focus on the
technological structure and technical change ratiar on unobserved “inefficiency,” so we do
not include a one-sided error as in a stochastiatigr model. Our specification of multiple
technologies based on multiple characteristicspuigatand inputs, along with random effects
and a flexible functional form, however, accommedagéterogeneity in our sample of Danish
dairy farms.

More specifically, we can write our latent classd®loin general form as equation (1) for
class j:

(2) Yuit = F(Ynmo,ivXit, T) |

where j denotes the class or group containing faand the vertical bar means a different
function for each class j. As we are assuming tiaterror term for this function is normally
distributed, the likelihood function for farm i &ime t for group j, LE, has the standard OLS
form. In addition, as in Greene (2005), the undaorhl likelihood function for farm i in group
J, LF, is the product of the likelihood functions in Baweriod t, and the likelihood function for
each farm, LFi, is the weighted sum of the liketiddunctions for each group j (with the prior
probabilities of class j membership as the weightB) = Zj P; LF; The prior probabilities P
must, by definition, fall between zero and one auh to one for each farm. They are therefore
typically parameterized as a multinomial logit (MNImodel, based on the farm-specific
characteristics used to distinguish the technotogie determine the probabilities of class
membership, called separating- or g-variable¥ @nd the parameters of the MNL to be
estimated for each class (relative to one groug@h@s numeraire);,. That is,

(3) B = exp6;a)/[Z; exp@;a)], or,
(4) Bi=expOoj+ Zn dnj Oni)/ [Z; €XP Ooj + Zn Onj Chir)]»

where the g are the N g-variables for farm i in time period For our application we
include four types of features that are key toidggtishing technologies and may be represented
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by alternative ratiod. One important feature of dairy farms is the istea or extensive nature
of production, which may be reflected by pasturesus purchased feed; two variables that
could capture this are thusdy na=cows/hectare andrgp cow=fodder/cow. The extent of
organic production may be captured hygna=chemicals/hectare orogs o= organic milk
revenueftotal revende. The input intensity of production may be represdntby
OLascow=labor/cow or qu,COV\,:capitaI/coWS. Finally, production diversity or specialization is
reflected in the ratio of outputs, gor=milk/total output. These separating variables are
specific technological indicators distinguishingnfa with different technologies. We chose our
preferred g-variables by trying different combioag of the four types of indicators and
evaluating the latent class model (LCM) g-variatefficient's estimates’ significance and the
resulting posterior probabilities for the individudasses. The number of classes is determined
by AIC/SBIC tests suggested by Greene (2002, 264)“test down” to show whether fewer
classes are statistically supported. Further, Ithse model incorporates a panel data
specification where each farm is recognized agparagée entity that is assigned to a particular
class.

_ 05 05
(5) it = & + 2anmg,jYnmoiit 2280k Xkt T imaNMQ, YNMQit
0. 0.5 0.5 0.5
+ 8aj Xiit + 228k, Xk it Xi1”° + 2 anMQ, Xkt Ynmoiit T brjti + brrj titi
0.5 0.5
+ 20 Xie L + Bumor, Ynmosi - ti + & |,

for farm i in time period t and class j, wighdenoting an iid standard error term and the
indezes as explained above. However, as an alitegrsgiecification we allow each observation
to be a separate entity, allowing farms to swit@tween classes to identify changes in
production systems over time (i.e. a cross-secdtgpecification):

(6) Vil = & + 2anmoYnmos  + X280k Xk + Bumanmo, Yamoi + 8 Xk
+ XA X X0 + Zaamo X Yamgi + brjti + brrtiti + Zbir x>t
+ bumor; Yamoioti + &1,

for observation i and class j, with e and the imdeas explained above.

The probabilities Pare therefore functions of the parameters of tidLIVhodel, and the
likelihoods LF are functions of the parameters of the technolmyyclass j farms, so the
likelihood function for firm i is a function of bbtthese sets of parameters. The overall log-
likelihood function for our model, defined as thersof the individual log-likelihood functions

3 Variables in levels such as the numbers of cowhemtares could also be included. However, as #neyessentially “size”
variables that are already included as produdttancture arguments, and thus are also taken adouat in the LCM model, we
only included the ratio measures. In preliminaryeistigation when we did try including such varghlhowever, their estimated
coefficients tended to be quite significant.

“We initially used a organic subsidies/total sukesidiariable but it had many missing values as tisevaly limited information for
these categories of farms before 1990, and iscplie highly correlated with the chemicals ratios.

® A measure of labor per total output rather th&iaer cow was also tried in preliminary estimagio
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LFi, can be maximized using standard econometric rdsth&urther, the posterior probabilities
of class members can be computed from the resupp@@meter estimates using Bayes
Theorem:

(7) P(/i) = RLF/Zj PiLF;

The posterior probabilities thus also depend orhn lthe parameters of the technology
(arguments of }, and the parameters of the MNL model (argumeh®) As noted by Orea
and Kumbhakar (2004), this means that the LCM madal group the firms/farms into classes
based on goodness of fit of the technological fesneven if other “sample-separating’
information (g-variables) is not provided.

For purposes of our analysis, due to degree ofitn@eproblems for the LCM model
from the many outputs and inputs in our data, vitealty characterize our classes based on an
approximation to the GL transformation functionttid@aes not include cross-effects. This is
equivalent to using a Cobb-Douglas function — itegsentially a first-order approximation
allowing for appropriate curvature of the overalinginal product and transformation curves for
each input and output but not for second-orderdctéon terms among these variables. The
resulting first-order elasticities represent thentdbutions of each output and input to
production, as well as overall technical change estdrns to scale, for each class. To
accommodate and measure the second order effgotsiimg output and input technical change
biases and substitution, we then estimate the&Llform for the full sample and the separate
classes. If the distinctions among classes capeyedifferences in technology, the average
first-order elasticities for the constrained anliiyfflexible functional forms will be comparable,
but incorporating the interaction terms will all@assessment of cross effects.

4, THE MEASURES

More specifically, to represent and evaluate ticlrielogical or production structure, the
primary measures we wish to compute are first- @edond-order elasticities of the
transformation function. The first-order elastast of the transformation function in terms of
milk output Yy represent the (proportional) shape of the prodagtossibility frontier (given
inputs) for output Yimo, and the shape of the production function (givéreninputs and Nuo)
for input X, — or output trade-offs and input contributions titknoutput respectively. That is,
the estimated output elasticity with respect to tHether” (non-milk) output,
eEmnma=0INY n/0INY \wo= Y w/0Y nmo® (Ynmo/YM), would be expected to be negative as it
reflects the slope of the production possibilitpritier, with its magnitude capturing the
(proportional) marginal trade-off. The estimategtpot elasticity with respect to input kK,
emx=0InY n/oINX, = aY /Xy (X/Yn), would be expected to be positive, with its magphe
representing the (proportional) marginal produtyiaif X.

Second-order own-elasticities may also be comptdedonfirm that the curvature of
these functions satisfies regularity conditiong tharginal productivity would be expected to
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be increasing at a decreasing rate, and the otrgue-off decreasing at an increasing rate, so
second derivatives with respect to botly and X% would be negative (concavity with respect
to both outputs and inputs). Returns to scale maydmputed as a combination of thg Y
elasticities with respect to the non-milk outputésid inputs. For example, for a production
function returns to scale is defined as the surthefinput elasticities to reflect in a sense the
distance between isoquants. Similarly for a tramsftion function such a measure must
control for the other output(s). Formally, retutesscale are defined for the transformation
function similarly to the treatment for the distarfanction in Caves, Christensen and Diewert
(1982) — for our purposes agx=2 ew/(1 - SM,NMQ).6 Technical change is measured by shifts
in the overall production frontier over time. Asrmnly technical change variable is the trend
term T, productivity/technical change is estimatedthe output elasticity with respect to T,
em1=0INY u/0T= 0Y /0T*(1/Yy). This represents how much more milk may be predwmn an
annual basis in proportional terms, given the keweélthe inputs and other output(s).

These measures may be computed for each obsereatibpresented as an average over
a subset of observations (such as for the full $anapfarm, a time period or a particular class),
or may be computed for the average values of tkee foa a subset of observations. The latter
approach is called the delta method; it evaludtiesetasticities at one point that represents the
average value of the elasticity for a particuldrafebservations, allowing standard errors to be
computed for inference even though the elastictiynputation involves a combination of
econometric estimates and d&tén addition to computing technical change in teohselative
shiftsin production frontiers, we can compute the re&lévelsof productivity among different
groups or classes. This requires determining venaihe frontier is above the other, in terms of
predicted output levels for a given amount of igpais in Kumbhakar et al. (2009) and Alvarez
and del Corral (2009). Further, we can compute rege@yder or cross elasticities to evaluate
output and input substitution as well as output amglt-using or -saving technical change
(technical change biases) if a flexible functiof@im is estimated. These elasticities involve
second-order derivatives such as, for input sulsiit, g, = OZYM/OXk6X|-[X J(OYw/0X)]. If
one thinks of MR =0Y w/0X, as the marginal product ofyYwith respect to X (holding all
other arguments of the function, includingw$, constant), this elasticity can be writteregs=

® The adaptation of this treatment for the transfiiam function was outlined by W. Erwin Diewert fmivate correspondence.
Essentially, given the transformation function defi in equation (1), if all inputs are increasedalscale factor S, and one looks
for another scalar factor (US) such that U times ithitial vector of output¥’ is still on the transformation function, U(S) is
implicitly defined by: U(S)¥=F(U(S)Y>,SX,T). The implicit function rule can then be usedcalculate the derivative U'(S)
evaluated at S=1: U'(1) =(dInF(Y2,X)/dInX\)/(1-dInF(Y2,X)/dInY,). If this measure exceeds one, it implies indrepeeturns to
scale.

" The “delta method” computes standard errors uaimgneralization of the Central Limit Theorem, et using Taylor series
approximations, which is useful when one is intes@sn some function of a random variable rathantthe random variable itself
(Gallant and Holly, 1980, Oehlert, 1992). For application, this method uses the parameter estsrfabm our model and the
corresponding variance covariance matrix to eveltia elasticities at average values of the argtsradrihe function.

8 Such computations for a particular “Class” areeblasn using the highest posterior probability teigrs farms to a particular
group. If some farms have a reasonable probahifitheing in another class, it may be misleadinghioose one reference
technology. One way to deal with this is insteadcompute a posterior-probability-weighted sum e tmeasures (Orea and
Kumbhakar, 2004, Greene, 2002). However, if ti@sbabilities are very high this is not likely te b problem. As our average
posterior probabilities range from 0.97 to 0.99tfwr different classes, it does not make a subgéadifference.
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OMPy /0X* (X/MPy ). Such an elasticity represents the extent tehvtie marginal product
of Xy changes when pchanges, or substitutability among the inputsmil@rly, for technical
change, & 1 = 02Y w/0X, 0T+ [1/(QY w/0X,)] = OMPy,/0T*(1/MPy,,) represents whether technical
change is input k-using or -saving — or tends twdase or decrease the input-intensity of input
k — as g 7 is positive or negative. We can also measure lveneeturns to scale is increasing
or decreasing over time (with technical change)efieh class by computigg x 1= 0€y x/0T.

5. THEDATA

The data used for our illustration are for milktéloand organic) and non-milk outputs,
and land, labor, capital, cow, fodder, energy, nmetey and chemicals inputs, as well as
deflators (producer price indexes for milk and yaaroducts, agricultural materials, and
machinery and buildings). The data are taken frdmandscentret, Denmark
(“Regnskabsdatabase”: economic farm account dagalsaiected for various years) and
Danmark Statistic (various agricultural price iné&€z Summary statistics for the data by the
final preferred (3) classes can be obtained from #aluthors upon request due to space
limitations. Overall, milk was about two-thirds ¢ftal production for these farms, which
averaged about 77 hectares with about 68 cows, #88r hours/year, 6.2 million Danish
Kronor in capital, and about 5600 Kronor in feedfeear, with revenue of about 1,800,000
Kronor/year (in 1986 monetary units). When dividatb classes, Class 1 farms tend to be
larger operations with about 2,500,000 Kroner/yimaievenue, more cows and land (about 93
cows and 109 hectares), less labor and more camial per cow, and more organic production
and fodder/cow on average — although the rangelfaf the variables is very large. Class 3 is
the reverse — seemingly more traditional farms trat smaller, somewhat more diversified,
with more labor and less land, capital and fodaargow. Class 2 is in the middle in terms of
size, with the least milk/total revenue (more deigcation) and organic/total production.
Differences over time for the data for the firsddast years of the sample show a dramatic
increase in milk production per farm (nearly thfekel) and proportion of organic milk while
non-milk output was dropping, combined with muchrenoapital and land, less chemicals use,
more than twice as many cows, and less labor ashdiefoper cow. These trends are consistent
with those for dairy farms in the U.S. and other &ddintries toward larger more specialized
farms and more capital-intensive production systems

6. THERESULTS

We estimated our LCM model by Maximum Likelihood i{Mmethods using LIMDEP
9.0. As noted, our base LCM model includes aitforder and own second order terms, to
allow for appropriate curvature of the functiont iudoes not include any cross-terms between
outputs and inputs as there were too many paramétedistinguish classes with the fully
flexible general linear model in LIMDEP (i.e. infisfent degrees of freedom). The overall
first-order elasticities representing output arglincomposition and technical change would be
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expected, however, to be well approximated by ssthmates (as we will see below), so the
fundamental characteristics of the different familsbe taken into account for the separation of
the farms into classes. The parameter estimatekifomodel can be obtained from the authors
upon request due to space limitations. As discusdede, the measures of interest for our
analysis are, however, computed as combinatiottisese parameters rather than based directly
on the estimated coefficients. The first meastoesvaluate are thus the elasticity measures for
the full data sample. As discussed above, thesediider output (milk, ¥) elasticity estimates
for our constrained (no cross-terms) model refte¢put tradeoffs, input contributions, returns
to scale and technical change, evaluated at the wedaes of the variables for all farms in our
data.

The (proportional) tradeoffs between the outpuésgaven by they nug elasticity, where
M denotes Y; and NMQ denotes g The estimate for this elasticity of approximated.17
shows that producing one percent more milk, givgoui use, on average requires reducing
other outputs by about 17 percent for the farmsun data. The (proportional) productive
contributions of the inputs are given by thg elasticities (k= LD, LAB, KAP, COW, FOD,
EN, VET, CHM). These output elasticities with respto the inputs, which can be interpreted
similarly to more familiar Cobb-Douglas productifumction coefficient estimates, show that
the livestock input (¥ow) comprises the largest marginal input “share”artdbution to output
at about 50 percent, fodder is about 21 percepttatas next at about 16 percent, and land and
veterinary care follow at about 12-13 percent. drabas a small productive contribution of
about 6 percent and chemicals and energy everatessout 2 percent. In combination, these
estimates result in a slightly increasing retumsdale &y x) estimate of 1.04; a one percent
increase in all netputs generates an increasellknpmiduction of about 1.04 percent.

In turn, our technical change measure reflects gbsnin potential output (milk)
production over time holding input use and non-mpitkduction constant, is statistically as well
as economically significant at about 0.013; outpet unit of input has increased about 1.3
percent per year on average for the farms in ompta Note also that the reported second
order own-elasticity estimates confirm the appraericurvature on the relationships represented
by our first order output elasticities; as non-nphoduction Xmq increases the opportunity cost
in terms of milk production increases on the margimd the (proportional) marginal products of
all inputs are (positive but) diminishing. Theeatf technical change is also decreasing over
time. A fundamental premise of our study, howeigthat such overall (average) measures do
not well reflect individual firms’/farms’ productiopatterns if the technology is heterogeneous.
That is, if there is more than one type of produrctirontier embodied in the data, it should be
recognized that different farms may exhibit veryfedent output or input intensities and
changes associated with different production system particular, in the context of localized
technical change, farms with different technologigsuld be expected to have different
technical change patterns, both in terms of ovenatjnitudes and associated relative output and
input mix changes.
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To distinguish and evaluate such technologies asdaated technical change, we need
to specify the g- or separating-variables undegyhe different technologies, and determine the
number of different technologies or classes in Whi group our data. For the first of these
problems, we used different combinations of possimriables reflecting four distinctions
among farm technologies we believe to be important dairy farms — extensive/intensive,
organic/conventional, input (labor and capital)eimdity, and diversification/specialization.
Although the models using different subsets of ¢hpstential g-variables are not nested and
thus cannot be directly tested, we evaluated tted@vance based on the significance of the
resulting MNL coefficient £,) estimates. These experiments suggested thamale relevant
grouping was  gpcow~fodder/cow, greto™=  Organic revenue/total revenue,
Ouas.cow=labor/cow and gror=milk/total output. Thes, andé, estimates for this g-variable
specification based on two, three, and four classtée LCM model are presented in Table Al.
All of the constant terms for the 2 and 3 class el®dre statistically significant at the 1 percent
level, suggesting that even without the g-variathes different farm production factors show
significantly distinct technologies. However, theariables identify additional distinguishing
or separating characteristics.

A key distinguishing factor among these farms —témms of statistical significance
holding other production factors constant — appéanse their diversity versus specialization
(the amount of milk relative to total output), atlgh the average summary statistics did not
appear that different. For the two class spedificathe farms in Class | (with prior probability
of 80 percent being in that class) appear moreialmsz (with a positive and significasfror
coefficient) than those in Class 2. When thressga are distinguished, Class 3 becomes the
base class with the highest prior probability, &rths in other classes have a lower milk share
— especially Class 2, as was evident from the susnsiatistics. Farms in both Class 1 and
Class 2 also use less labor/cow than those in Glaaad those in Class 1 also sell relatively
more organic milk and in Class 2 (with a less th@rpercent prior probability of being in this
class) purchase less fodder/cow, consistent wilsthmmary statistics. When four classes are
distinguished, the significance of the g-variabtesomewhat lower overall (than for the 3-class
case), but farms in Classes 1-3 still have a dagifly lower milk share relative to the base
(and largest prior probability) class, while thaseClass 1 also have more organic production
and labor intensity, and in Class 3 have greatsrlantensity. In this case fodder/cow seems
not to be as significant a separating variablehges as it is instead captured in a combination
of the other g-variables when this many combinatiare allowed for.

To determine how many classes are statisticallypeued, it is now recognized in the
literature that one should “test down” from the mokasses to determine whether restricting
classes is justified by statistical tests. Althlodikelihood ratio tests may be used, Greene
(2005) showed that it is preferable to use AIC &BIC tests — in this case to test down from
four classes. Such tests showed for our spedditahat three classes were statistically
supported but two classes were not. Also notethigaprior probabilities for our preferred three
class model are about 0.39. 0.08 and 0.54 fore$at<3 but the average posterior probabilities
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for the farmswithin each of these classes are about 0.99, 0.97 a8dférahe 110, 74 and 120
farms in those categories), respectively, indigaten very good “fit” for our classification
scheme. Given the division of classes into threeigs based on the chosen g-variables and first
order technological specification, the next stege@esenting the full production technology for
the separate classes. First, however, it is impbrio consider whether the base production
structure (transformation function) model withoubss-effects, used for separating the classes,
reflects the primary characteristics of the ovepatiduction technology.

To evaluate the desirability of including additibneross-terms, as well as the
appropriateness of using the base constrained ¢fider) model for distinguishing the classes,
we estimated a fully flexible version of equatidr) for comparison. The parameter estimates
for this model can be obtained from the authorshugguest due to space limitations. Tests of
the joint significance of the cross-effects relatio constraining them to zero showed that a
fully flexible form is statistically supported. Tissfor setting subsets of cross-terms, including
all input-cross terms, all T-cross terms, and allx¥X« cross-terms, to zero also showed the
joint significance of these cross-effects. For dwit analysis of the production structure,
therefore, we wish to use the fully flexible modeét already noted, the fact that the LIMDEP
LCM algorithm does not have enough degrees of tmeetb estimate the fully flexible model
for the classes precludes using such a model ®fitst step. However, the validity of using
the base model for distinguishing classes, but fteeible model for evaluating the full
production structure for the classes, may be iatery comparing the elasticities for the
constrained and unconstrained model to determinethen they reflect sufficiently similar
overall average contributions of the outputs amulis. Comparing these elasticity estimates
shows that, although the cross-terms will providewith additional insights about underlying
relationships, the overall patterns are effectiwaptured by the constrained model. On balance,
therefore, the use of the constrained model to hdo ihitial division into classes seems
justifiable, particularly as the heterogeneity loé farms in terms of their output mix is taken
into account in the division into classes by inahgdthe g ror g-variable, and can be explored
more completely with the fully flexible model. Thiat first consider the different productivity
levels implied by the different production techrgiks. One way to consider whether different
technologies are more or less productive is touatalthe fitted output levels (milk quantity —
left hand side variable) for the data for the dife classes based on the parameters of the other
classes (Kumbhakar et al., 2009, Alvarez and deta;ac2009). To pursue this, we used the
average data for the variables for each clasgmsted in Table 1.

Table 1: Fitted Productivity Levels, average dataifferent groups

sample technology full sample class 1 sample Aasmmple class 3 sample
1st class 497.19 717.31 459.62 354.59
2nd class 403.03 540.29 381.60 301.86
3rd class 483.22 643.77 387.49 316.02

For example, for the average data for the full daptpe fitted value of ) is highest for
farms in Class 1 and lowest for those in Classuggssting that the Class 1 technology is
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generally the most productive. The fitted values the different classes support this
conclusion; for example, the fitted values for Glak farms using their own estimated
technological parameters is 717.31, but using thasthe other classes is lower and for Class 2
is the lowest. For the data for the other clagse®verse, using the Class 1 parameters gives a
higher fitted output level than using the paranmsefer their own class. This roughly confirms
the notion from our discussion of the descriptitaistics and g-variable parameters that Class 1
farms are more efficieft° Next consider the first order and own second oedasticities for
the separate classes and the fully flexible mopiedsented in Table A2, which represent the
production characteristics of each technology. Nbt, as the first order elasticities reflect
each output’s and input’'s marginal product weigHtgtare” (e.g.gmx=[( Y m/0Xk)* X /Y wm),

high values of these elasticities may arise eifttten a large marginal product or a large amount
of input X. Note also that the primary interpretation of $eeond order elasticities is in terms
of curvature; all the estimates are negative, ab@si with the concavity requirements of the
transformation function.

The first order elasticities for non-milk outputs fll classes are negative, as they should
be, and the larger (in absolute value) estimateéCfass 1 suggests that with that technology an
increase in milk production on the margin involvesre decrease in other outputs. This is
consistent with the summary statistics that suggdtrelative to non-milk output is higher for
these farms, even though the averageog ratios are not very different than those for Class
The marginal contributions of cows, and especilhd and chemicals are larger for Class 1
than the other classes. This appears consistéimthigh marginal products for each of these
inputs, as their levels are comparable (relativeniia production) or lower (for chemicals) for
this class relative to the other classes, agaigesiing that these farms are somewhat more
efficient than those in Classes 2 and 3. In reydie marginal contribution of capital is higher
for Classes 2 and 3, suggesting that more capitaésiment might enhance productivity.
Further, for Class 2 the marginal contributionaifdr is higher and for fodder is lower than for
the other classes. In turn, returns to scale aengially constant for Class 3, even though they
are somewhat smaller farms, suggesting that thduptmn systems of these farms must be
adapted to take advantage of returns to scaleeggtiow — for example to become more capital
and less labor intensive. Increasing returns abesare evident for the other two technologies —
especially for Class 2. Note that the overall metuto scale estimate for the GL model,
therefore, overestimates returns to scale for Clasand especially Class 3 farms, and
underestimates it for Class 2 farms.

9 Note that this might underestimate the efficienéylass 2 farms as they are more diversified &igldnly represents the milk

production rather than total production.

10 If these fitted values are based on less aggrgitta the results are roughly the same, althoaghldss 3 the fitted values for

either the class 1 or class 3 technology is vilyuabuivalent, potentially because the smaller f&rcharacteristics are not

commensurate with taking advantage of the scaleanies of the larger farms in class 1. This i tooth when the fitted values
are computed by observation and then averagedalgosresults in a virtually identical fitted valier each own-class compared to
the descriptive statistics) and when the resultitted for the average values for each farm &ed tiveraged.
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Further, technical progress is evident for all théhnologies, but the most for the farms
in Class 1; output given non-milk production andunuse is growing at about three percent per
year for farms in Class 1 and roughly half that flee other two kinds of farms. It is also
increasing at a decreasing rate, as is evident fn@nsecond order elasticity, but at similar rates
for all classes. The overall technical change mmeagor the full sample and GL model
therefore under-estimates technical change forsCldsut over-estimates it for the other classes.
Further, without the cross terms the measure ueskimates technical change falt classes
relative to the fully flexible model and class ahstions.

The fully flexible model also provides insights abdhe input- and output-specific
patterns of technical change, which underlie theral technical change elasticity reflecting
how much milk production per unit of input (or givenput use) has increased over time. This
can be seen from the cross elasticities for theshrple. The elasticities &fynmo and each
emk elasticity with respect to T are primarily sigondint. These elasticities show that on average
for the full sample milk production growth over #nhas been associated with: (i) a greater
trade-off between milk and non-milk production (smtent with a trend toward more
specialization) ; (ii) a slightly greater marginebntribution of land (while land has been
increasing slightly faster on average than coviiygiieater marginal contributions of both labor
and capital (while labor and capital use per cowehaeen falling and rising, respectively); (iv)
a smaller marginal contribution of cows (as cowsfpan has expanded); (v) a greater marginal
contribution of fodder while fodder purchases hawtincreased on average as much as cows;
(vi) a smaller contribution of energy (with no apgat underlying intuition but it is a small
proportion); and (vii) essentially the same conttitns of chemical and vet use (while chemical
use per hectare has been decreasing substanteg vet services per cow have stayed
approximately stable). Note also that returnscadeshave been increasing over time even while
farm size has been increasing.

When these elasticities are presented for therdifteclasses, in Table A2, it is clear that
different technical change patterns are occurrimgte different technologies. In particular, for
Class 1 the marginal contribution of labor is largad of capital is smaller and less significant
— apparently due to a larger marginal product bbtawith its lower levels and a marginal
product of capital that has fallen somewhat witljhler capital levels. Returns to scale are also
increasing even faster than on average, even thibiegle farms tend to be the largest farms. By
contrast, both the marginal contributions of labod capital are smaller for both other classes
(although that for capital is statistically sigodnt for Class 2). The changes in the
contributions of land and cows are also smallergemerally insignificant, and the rising returns
to scale over time evident for Class 1 farms is ks for Class 2 and negligible for Class 3. In
reverse, the marginal contribution of chemicalsigmificantly increasing for Class 2, which is
the class with the smallest share of organic mitidpction.

Another question about technical change is thengéxéewhich (and which) farms switch
between classes (move to different production asysteor exit the industry. Our “preferred”
estimates with random effects for each farm an@dbas a panel data specification, however,

Page 15 of 21



Ancona - 122 EAAE Seminar
"Evidence-Based Agricultural and Rural Policy Makin

group the observations into class by farm rathan by observation, precluding consideration
of such changes. To address this question wertius$ categorize the observations rather than
the farms into classes. This model is not nestelttaus not directly comparable to the random
effects farm-based specification, and in fact wdaddexpected to yield biased estimates without
the panel related random effects. Estimating tladeh allows us, however, to generally
consider whether the results are comparable anegsadarm switching and exit patterns.
Although exploring such a model in detail is beyahé scope of this paper, note that the
classification into categories by observation iggldy consistent with the farm random effects
model. 1099 of the observations fell into Clas$93 into Class 2, and 1396 into Class 3.
Class 1 again contained the largest, most spesthind most organic-oriented farms — even
larger in terms of land and cows than for the fanodel (which might be expected as the
industry was evolving toward such a farm structur€)ass 2 observations were again the least
specialized farms, in between Class 1 and 3 in giith the most labor and fodder per cow. In
terms of switches, 344 farms moved from Class @ aher classes — 226 of them to Class 1 —
over the time period. 172 farms moved from Cladsu® most of these moved to Class 3 (165)
rather than Class 1. The majority of the farmg #watched away from Class 1 also moved to
Class 3 — 91 of the 106 in this category. Therthesefore a general trend from Classes 2 to 3
and 3 to 1, as would be expected by their measuneductivities. Note also that 26 of the 30
farms that exited the industry were categorize@lass 2 farms in their last year by this model;
the remaining four included one in Class 1 and ehie Class 3. However, the farm
classifications were nearly evenly divided among tfifferent classes in the random effects
farm model, suggesting that farms that became gesductive over time tended to transition
into Class 2 farms before they left the industfjhus, the categorization of farms into classes
over 20 years could be misleading in terms of whwdhexit the industry, as they may initially
have been relatively productive farms that fellibdlover time.

Finally, we can consider general substitutabiligtterns from the estimated cross-
elasticities (these estimates can be obtained fremauthors upon request). Overall, the cross-
terms that reflect substitutability among inpute &argely significant. For the full sample,
interesting patterns found are that more non-mitkdpction is associated with a higher
contribution of labor and lower contribution of fiet, as one would expect for more pasture-
based farms. More land and more fodder imply atgre but more labor and cows a lower,
contribution of chemicals — perhaps as the margimatiuct of chemicals is larger for larger
farms. Further, more capital is associated withatgr contributions of both cows and fodder,
consistent with trends toward larger farms with enimtensive production. When the sample is
broken down into classes these patterns are qiffieretht. For example, more non-milk
production is not associated with labor contribatior any class, and only implies a lower
fodder contribution for Class 1. It is, howevessaciated with a greater marginal contribution
of cows for Class 3, and of chemicals for both €lasand Class 3. More cows are also
associated with a greater contribution of chemifaisClass 2 but both more cows and more
land imply a lower contribution of chemicals foraG$ 3, while there is very little association of
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any other netput with chemicals use for Class $timguishing the technologies thus appears
very important for representing substitutabilityytlseems to implydifferent substitutability
rather tharlower overall substitutability.

7. CONCLUDING REMARKS

The main finding of our study is that overall (sag@e) measures do not well reflect
individual firms’ production patterns if the techogy of an industry is heterogeneous. That is,
if there is more than one type of production frentembodied in the data, it should be
recognized that different firms may exhibit verffelient output or input intensities and changes
associated with different production systems. Irtipalar, in the context of localized technical
change, firms with different technologies can bpeeted to show different technical change
patterns, both in terms of overall magnitudes assbeiated relative output and input mix
changes. Assuming a uniform homogenous technologuldvresult in inefficient policy
recommendations leading to suboptimal industryautes. This seems to be especially relevant
for environmentally motivated policy measures agnio support less intensive production
systems. Future research should consider localieetnical change using more specific
measures of technical change. This could be dondiregt measures related to learning by
doing and/or geographical proximity both as argusiai the technology function as well as
potential factors for a deviation from the relevethnological frontier.
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Table Al: Q-Variable Coefficients for TechnologyaSses

Two Classes

Three Classes

Four Classes

Prior Class bililes

class 1 estimate t-stat class1 estimate t-stat ssdla estimate t-stat Class1 Class2 Class3 Class
4
d -5.250 -2.50 §, 4.851 2.60 &, 2.184 1.88 Two Class Model
Oropicow -0.034 -0.35 &ropicow 0.049 0.66  dopjcow -0.046 -0.38 0.800 0.197
OorG/TOT -0.478 -0.55 dprerror 2.434 3.16  dorarror 1280 1.78 Three Class Model
O aB/COW 8.319 0.80 Jagcow -32.173 -3.79 3 asicow -34.710 -2.80 0.388 0.077 0.535
OMLK/TOT 25370 3.65 Jywror -13.445 -2.12  dyikror -13.824 -2.75 Four Class Model
class 2 estimate t-stat class 2 estimate t-stat ss@a  estimate t-stat 0.251 0.169 0.186 0.394
3o 0 & 15.369 5.38 & -1.706  -1.89 Posterior Probabilities
Oropicow 0 Oropicow -0.176 -1.82  Seopjcow 0.126  1.27 (average for each class grouping)
OorG/TOT 0 OorG/TOT -0.027 -0.01  dpreror 0.630 0.48 Three Class Model
O aB/COW 0 O psicow  -51.947 -3.94 3 asicow 1.572  0.13 0.987 0.974 0.978
OvLk/TOT 0 dwkror  -51.116 -5.52 3ot -40.234 -3.43
class 3 estimate  t-stat class 3 estimate  t-stat
d 0 d -1.575 -1.69
Sropicow 0 Sropicow -0.063  -0.69
SoraiToT 0 SoraiToT -1.514  -0.66
O aBicow 0 O aBicow 18.008 1.84
dvLk/TOT 0 OvLk/TOT -27.342  -6.26
class 4 estimate  t-stat
d 0
Srobicow 0
doraiToT 0
O aBicow 0
OmLkToT 0
Table A2: 1st Order Elasticities for Different Cdas +ull Generalized Linear Model
Class 1 Class 2 Class 3
elasticity  estimate t-stat elasticity estimate tat-s elasticity estimate t-stat
EM.NMQ -0.184 -10.19 EM.NMO -0.080 -4.68 EMNMQ -0.058 -5.33
EM.LD 0.138 6.32 EM.LD 0.032 1.46 EM.LD 0.029 2.47
EM.LAB 0.109 3.96 EM.LAB 0.245 8.85 EM.LAB 0.089 5.80
EM.KAP 0.124 5.40 EM.KAP 0.196 9.16 EM.KAP 0.208 15.64
Em.cow 0.523 18.57 Em.cow 0.451 16.79 Em.cow 0.463 25.81
EM.FOD 0.203 11.39 EM.FOD 0.144 8.16 EM.FOD 0.201 17.09
EM.EN 0.023 2.43 EM.EN 0.055 4.06 EM.EN 0.012 1.64
EM.VET 0.087 8.61 EMVET 0.041 4.15 EMVET 0.057 9.40
EM.CHM 0.029 3.23 EM.CHM 0.001 0.06 EM.CHM 0.006 1.16
EmT 0.029 3.07 EmT 0.013 1.90 T 0.016 2.63
€y x 1.043 65.63 €y .x 1.079 63.04 E€y.x 1.008 97.27

(own second order elasticities are all negativimages upon request)
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