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JOINT ESTIMATION OF RISK PREFERENCES AND TECHNOLOGY: 

FLEXIBLE UTILITY OR FUTILITY? 

 

 
Abstract 

The present study sets up a thought experiment calibrated to represent risks of a high-risk 

production activity (farming), and investigating whether the structure of risk aversion (i.e., the 

changes in absolute or relative risk aversion associated with changes in wealth) can be estimated 

with reasonable precision.  Findings strongly suggest that typical production data are unlikely to 

allow identification of the structure of risk aversion.  A flexible utility parameterization is found 

to worsen technology parameter estimates.  Findings also indicate that even under a restricted 

utility specification, the quality of utility parameters estimated from small samples is very poor. 
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JOINT ESTIMATION OF RISK PREFERENCES AND TECHNOLOGY: 
FLEXIBLE UTILITY OR FUTILITY? 

 

Risk and uncertainty are prominent features of agricultural production and marketing.  Not 

surprisingly, numerous studies in agricultural economics have focused on producer behavior 

under uncertainty (Just and Pope 2002).  One of the most popular topics of study in this field 

has been the estimation of decisions makers’ risk preferences, both by direct elicitation from 

experimental data or responses to hypothetical questions (e.g., Binswanger, Robison), or by 

analyzing observed production and/or investment choices (e.g., Brink and McCarl; Antle 1987; 

Antle 1989; Love and Buccola; Saha, Shumway, and Talpaz; Chavas and Holt; Kumbhakar 

2002a). 

The seminal studies estimating risk preferences from actual production and/or investment 

decisions focused on the level of risk aversion, by estimating risk preferences separately from 

technology (e.g., Simmons and Pomareda, Brink and McCarl) and assuming restrictive utility 

functions (e.g., mean variance analysis).  Such studies have been superseded by work where 

risk preferences are estimated simultaneously with technology, as doing so can increase 

estimation efficiency and may avoid inconsistency problems (e.g., Love and Buccola; Saha, 

Shumway, and Talpaz; Saha; Coyle; Kumbhakar 2002a; Kumbhakar 2002b; Chavas and Holt), 

even though Antle (1989) argued that there are some advantages in separating the estimation of 

technology and risk preferences.  In addition, starting with Saha, Shumway, and Talpaz, the 

literature has emphasized the estimation of decision makers’ “structure” of risk aversion (i.e., the 

changes in absolute or relative risk aversion associated with changes in wealth) by allowing for 

more flexible utility functions. 

Knowledge about the structure of risk aversion is of interest because it determines, among 

other things, decision makers’ responses to background risk, whether risky assets can be 

considered normal goods, and whether agents save for precautionary purposes (Gollier).  

Importantly, however, Kallberg and Ziemba (p. 1257) concluded that “… utility functions having 
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different functional forms and parameter values but ‘similar’ absolute risk aversion indices have 

‘similar’ optimal portfolios.”  More recently, Černý argued that, except for investments 

involving very large and skewed risks, decisions by agents with similar levels of “local” risk 

aversion are almost identical, regardless of their levels of relative risk aversion. 

Estimation of the structure of risk aversion in production models is based on the premise 

that, in the presence of uncertainty, optimal input choices vary according to the decision maker’s 

structure of risk aversion.  However, the studies by Kallberg and Ziemba, and Černý suggest 

that, given the same level of risk aversion (as measured by either the absolute risk aversion index 

or the level of local relative risk aversion), differences in optimal input decisions induced by 

different structures of risk aversion are negligible except for very large and skewed risks.  This 

implies that, unless risks are very large and skewed, identification of the structure of risk 

aversion in production models may rely on too weak a source of information to allow the kind of 

econometric estimation that the literature has been pursuing. 

The purpose of the present study is to investigate whether it is indeed feasible to estimate 

the structure of risk aversion given the risks underlying the data usually employed by researchers 

in empirical production analysis.  To this end, a thought experiment is performed with risks 

calibrated using historical farm data.  Farming is chosen because it involves substantial risks, 

thereby increasing the chances for the structure of risk aversion to exert a noticeable impact on 

production decisions.  In addition, many of the empirical studies concerned have relied on data 

from production agriculture.  Importantly, the experiment is designed to favor the likelihood of 

obtaining good estimates of the risk aversion structure, so that failure to get reasonable estimates 

provides strong evidence against the hypothesis that the structure of risk aversion can be 

recovered from production data.  Succinctly, the experiment involves the generation of 

simulated data sets from simple and widely-used utility and production functions, and 

subsequently employing such data to simultaneously estimate utility and technology parameters 

(under the assumption that the econometrician knows the true functional forms of utility and 

production). 
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The study contributes to the literature by providing evidence against the hypothesis that 

typical production data contain enough information to allow identification of the structure of risk 

aversion.  Further, a flexible utility parameterization seems to worsen the estimates of 

technology parameters.  Overall, our findings greatly undermine the case for estimating the 

structure of risk aversion in studies of production.  More generally, the method employed here 

may be useful in other situations where identification of the parameters and/or models of interest 

is suspected to be too weak to be useful, by allowing researchers to discard doomed-to-fail 

estimation projects as soon as possible. 

 

I.  Model 

We adopt standard assumptions in the production literature by postulating that at decision time t 

= 0, a competitive producer chooses the amounts of inputs (x) that maximize the expected utility 

of end-of-period random wealth: 

 

(1.1) x* = argmaxxEW{U[ )(~ xW ]}, 

 

where x* denotes the vector of optimal input amounts, EW(⋅) is the expectation operator with 

respect to random variable W~ , U(⋅) is the producer’s utility function, and )(~ xW  is his end-of-

period random wealth.  The latter is defined to be the agent’s initial wealth (W0) plus random 

profits from production: 

 

(1.2) )(~ xW  ≡ p~ )(~ xy  − r x + W0, 

 

where p~  is random end-of-period output price, )(~ xy  is random output, and r is the vector of 

variable input prices. 

For the present purposes, model (1.1)-(1.2) is too general to be operational.  To be able 

to make headway from an empirical standpoint, it is necessary to be more specific about the 
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utility function U(⋅), the technology )(~ xy , and the nature of randomness in price and output.  

Such issues are addressed in the following subsections. 

 

I.1.  The Decision Maker’s Utility Function 

The producer is assumed to be characterized by the hyperbolic absolute risk aversion (HARA) 

utility function (1.3): 

 
(1.3) U(W) = (1 − γ1)−1 (γ0 + 11) γ−W , 

 

which is defined on the domain of W satisfying (γ0 + W) > 0.  The negative of parameter γ0 

represents the agent’s lowest admissible wealth.  Parameter γ1 is the agent’s “baseline” risk 

aversion (Černý), and must be strictly positive if (1.3) is to represent risk-averse preferences.  

HARA utility is adopted here because it comprises the most popular functional forms used in 

expected utility analysis (i.e., the exponential, quadratic, and power utilities) (Gollier). 

Importantly, quite different structures of risk aversion can be obtained under appropriate 

parameterizations of (1.3).  To see this, note that the HARA coefficient of relative risk aversion 

is given by (1.4): 

 

(1.4) R(W) = γ1 W (γ0 + W)−1, 

 

so that ∂R(W)/∂W = γ1 γ0 (γ0 + W)−2.  Since the sign of ∂R(W)/∂W is equal to the sign of 

parameter γ0, it follows that the HARA agent is characterized by decreasing, constant, or 

increasing relative risk aversion (DRRA, CRRA, and IRRA) if and only if parameter γ0 is 

negative, zero, or positive, respectively.1  Furthermore, as shown later, it is straightforward to 

                                                           
1The coefficient of absolute risk aversion for HARA utility (1.3) is A(W) = γ1 (γ0 + W)−1.  Hence, such utility is 
characterized by decreasing absolute risk aversion, as ∂A(W)/∂W = −γ1 (γ0 + W)−2 < 0.  A three-parameter HARA 
utility would allow for preferences depicting increasing absolute risk aversion (e.g., Gollier, p.26).  However, such 
generalization is not pursued here because the implied preferences are widely regarded as inconsistent with real-
world attitudes toward risk (Gollier, p. 238). 
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parameterize (1.3) so as to test Černý’s claim that optimal decisions are essentially the same 

regardless of whether the agent’s utility is characterized by DRRA, CRRA, or IRRA, except for 

decisions involving very large and skewed risks.  More specifically, Černý labels R(W) as the 

agent’s “local” relative risk aversion, and argues that the key determinant for the optimal 

decision is R(W0) (i.e., the local risk aversion evaluated at the “safe” wealth level W0). 

 

I.2.  Production Technology 

The production technology )(~ xy  assumed for the analysis is of a Cobb-Douglas form:2 

 

(1.5) y(xA, xB; ye~ ) = α0 A
Axα  B

Bxα  ye~ , 

 

where α0, αA, and αB are technology parameters, and ye~  is a random variable whose 

distribution is discussed in the next section.  The main reason for adopting technology (1.5) is 

its simplicity.  It seems highly unlikely for utility parameters γ0 and γ1 to be less accurately 

estimated under (1.5) than under more complex technologies.  In addition, the Cobb-Douglas 

technology is arguably the most widely used production function in economic analysis. 

 

II.  Simulation Design, Calibration, and Simulated Data Generation 

Given the model set up in the previous section, the present study’s objective is to investigate 

whether it is possible to estimate the vector of utility parameters γ ≡ [γ0, γ1] simultaneously with 

the vector of technology parameters α ≡ [α0, αA, αB] for levels of uncertainty --as reflected by 

the probability distributions of ye~  and p~ -- usually found in production agriculture.  The null 

hypothesis is that the typical data sets used in the empirical production literature do allow 
                                                           
2The present analysis is also performed using the Just-Pope production function y(xA, xB; ye~ ) = α0

A
Axα B

Bxα  + exp(βA 

xA + βB xB) ye~  (Just and Pope 1978) instead of (1.5), parameterized with α0 = 3, αA = 0.2, αB = 0.6, βA = 0.06, βB = 

−0.03, and ye~  distributed as described in Appendix B.  (Note that βB < 0 means that input B is risk-reducing).  
Results for the alternative production specification are omitted to save space, as the conclusions are essentially the 
same as for the simpler production function (1.5). 
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estimation of the structure of risk aversion (i.e., the simultaneous identification of γ0 and γ1).  

The validity of such hypothesis is evaluated by means of a thought experiment.  The experiment 

consists of generating data corresponding to the postulated decision-making model by means of 

simulations, and then employing such data to estimate the underlying utility and technology 

parameters. 

It is important to emphasize that the thought experiment is designed to obtain simulated 

data so as to favor the odds of being able to accurately estimate γ.  That is, the data are 

deliberately constructed so as to exhibit nicer properties than actual field data.  For example, the 

true behavioral model underlying the simulated data is very simple (i.e., (1.1) through (1.5)), all 

observations are identically and independently distributed (so that there is no time or cross-

section correlation reducing the informational content of the data), there are neither optimization 

nor data-recording mistakes, inputs are not subject to physical constraints like field size or 

integer quantities, etc.  Employing ideally well-behaved data is critical for our purposes, 

because it favors estimation of the structure of risk aversion.  That is, the data are generated so 

as to protect the null hypothesis of identification to the extent possible.  Rejecting the null 

hypothesis under such conditions should provide much stronger support for the claim that the 

structure of risk aversion cannot be recovered from field data. 

 

II.1.  Simulation Design 

Simulated data are generated for nine basic scenarios, involving the combination of three 

structures of risk aversion (DRRA, CRRA, and IRRA) with three levels of uncertainty regarding 

random variables ye~  and p~  (low, medium, and high variance).  For each basic scenario, the 

simulated data consist of one million vectors, where the nth vector contains observations 

corresponding to the nth production decision vn ≡ [W0,n, p0,n, rA,n, rB,n, *
,nAx , *

,nBx , pn, yn].  

Vector vn comprises the relevant “exogenous” variables known at the time of making the nth 

decision (i.e., initial wealth W0,n, output price at decision-making time p0,n, and input prices rA,n 

and rB,n), the corresponding optimal input amounts ( *
,nAx  and *

,nBx ), and the associated end-of-
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period realizations of the variables that were random when the nth decision was made (i.e., 

output price pn and output yn). 

 

II.2.  Calibration 

The DRRA, CRRA, and IRRA scenarios are obtained by parameterizing the HARA utility (1.4) 

with [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively.  Parameters γ0 and γ1 are 

purposely set at substantially different levels across scenarios to facilitate obtaining different 

values at the estimation stage.  The CRRA scenario with [γ0, γ1] = [0, 3] implies a constant 

coefficient of relative risk aversion R(W) = 3, which reflects a reasonable level of relative risk 

aversion (Kocherlakota, Gollier, pp. 31 and 289).  The advocated DRRA γ1 parameterization 

constitutes a benchmark, as the coefficient of absolute prudence divided by the coefficient of 

absolute risk aversion equals exactly two when γ1 = 1 in (1.3).  Gollier (pp. 147, 287, 288, and 

387) derives a series of risk preference properties that hinge upon whether the coefficient of 

absolute prudence divided by the coefficient of absolute risk aversion is smaller or greater than 

two. 

Importantly, the aforementioned DRRA, CRRA, and IRRA parameterizations are chosen 

so that they all yield an average value of R(W0) equal to 3 under the assumed probability density 

function (pdf) of initial wealth (see (2.1) below).  The latter feature allows us to investigate 

whether R(W0) does indeed reflect all that matters regarding the impact of risk preferences on 

optimal decisions, as argued by Černý.  If he is correct, the DRRA and IRRA scenarios 

simulated here should yield optimal input amounts almost identical to the optimal input levels 

corresponding to the CRRA decision maker with coefficient of relative risk aversion R(W) = 3. 

Since monetary units can be arbitrarily chosen, we standardize all prices by setting their 

unconditional means equal to one.  The prices known to the agent when making the nth 

decision (i.e., p0,n, rA,n, are rB,n) are obtained by assuming that they are identically and 

independently log-normally distributed with mean −0.03125 and variance 0.0625, which implies 

a mean equal to one and a coefficient of variation of 25.4%.  The twin assumptions of 



 

 

8

independence and relatively large variability of decision-time prices are adopted to facilitate the 

estimation of utility parameters, as real-world data typically exhibit dependence and less 

variability than is being postulated here. 

Production function (1.5) is parameterized with αA = 0.2 and αB = 0.6, which implies 

decreasing returns to scale.  Having clearly different magnitudes for αA and αB may provide 

information about the impact of the parameter size on the precision of its estimate.  To yield 

reasonable values of rates of return on variable inputs, scale parameter α0 is fixed at a value of 3.  

If there were no uncertainty regarding ye~  and p~ , and they were fixed at their mean values of 

one, optimal inputs corresponding to the mean decision-time prices (i.e., 0p  = Ar  = Br  = 1) 

would equal *
Ax  = 2.0995 units and *

Bx  = 6.2986 units.  The latter figures translate into costs 

of 8.3981 and gross revenues of 10.4976, for a net rate of return of 25% (= 10.4976/8.3981 − 1) 

on variable inputs. 

Simulated observations on initial wealth are generated from (2.1): 

 

(2.1) W0 = 18.9 + 69.2 z, 

 

where z is random variable distributed according to the standard beta pdf Beta(0.87, 1.27).  

Hence, initial wealth has lower bound W0 = 18.9, upper bound 0W  = 88.1 (= 18.9 + 69.2), mean 

47.03, and standard deviation 19.18.  The rationale for using (2.1) is twofold.  First, (2.1) 

provides a distribution of initial wealth consistent with real-world data under the advocated 

standardization of prices and quantities (see Appendix A for details).  Second, as pointed out 

earlier, the mean value of R(W0) corresponding to (2.1) equals 3 under the adopted DRRA, 

CRRA, and IRRA parameterizations. 

Output shocks ye~  are assumed to have a probability distribution whose shape mimics 

the empirical distribution of farm-level corn yields in Iowa.  Estimation of the probability 

distribution of ye~  is explained in Appendix B.  Output shocks have a mean of one; in the 

medium-variance scenario their standard deviation is 0.207, whereas in the low- and high-
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variance scenarios their standard deviations are 0.104 and 0.310, respectively.3 

Finally, the postulated random generating process for end-of-period crop prices is (2.2): 

 

(2.2) ln( p~ ) = μp + 0.5 ln(p0) − 0.3 ln( ye~ ) + pe~ , 

 

where p0 is the (known) price at the time of decision making, and pe~  is a zero-mean normally 

distributed random variable.  The term involving ln( ye~ ) accounts for the stylized fact that 

output shocks tend to have a negative impact on output prices.  The standard deviations of pe~  

for the low-, medium-, and high-variance scenarios are 0.1, 0.2, and 0.3, respectively.4  To 

obtain an unconditional mean of p~  equal to 1, the intercept term μp is fixed at −0.0232 in the 

medium-variance scenario, and 0.0014 and −0.0659 in the low- and high-variance scenarios, 

respectively.  Expression (2.2) is based on historical price and yield-shock data, and its 

estimation is described in Appendix C. 

 

II.3.  Generation of Simulated Data for the nth Production Decision 

Conceptually, vector vn ≡ [W0,n, p0,n, rA,n, rB,n, *
,nAx , *

,nBx , pn, yn] comprising simulated data for 

the nth production decision is calculated in three steps.  In the first step, a random draw from 

(2.1) is used to compute initial wealth (W0,n), and random draws from the respective log-normal 

distributions are used to obtain decision-time output price (p0,n) and input prices (rA,n and rB,n).  

In the second step, numerical methods are employed to solve for *
,nAx  and *

,nBx , i.e., the input 

amounts that maximize expected utility given the information available at decision time.  The 

latter comprises the vector [W0,n, p0,n, rA,n, rB,n], the production technology, and the probability 

distributions of ye~  and p~ .  In the third step, actual realizations of output (yn) and output price 

(pn) are obtained.  Realized output is calculated by drawing an output shock (ey,n) from the 
                                                           
3That is, the standard deviation in the low-variance (high-variance) scenario is 50% smaller (larger) than the 
standard deviation in the medium-variance scenario. 
4Again, standard deviations in the low- and high-variance scenarios are respectively 50% smaller and 50% larger 
than the standard deviation in the medium-variance scenario. 
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probability distribution of ye~ , and plugging it along with optimal inputs ( *
,nAx  and *

,nBx ) into 

production function (1.5).  As per realized output price, it is computed by drawing a price shock 

(ep,n) from the pdf of pe~ , and substituting it together with the decision-time price (p0,n) and the 

output shock (ey,n) into price equation (2.2). 

To make results as comparable as possible for the alternative (DRRA, CRRA, IRRA) × 

(low-, medium-, high-variance) scenarios, the same vector of “exogenous” decision-time 

variables [W0,n, p0,n, rA,n, rB,n] is used across all nine basic scenarios for the nth production 

decision.  A different procedure is required for end-of-period shocks ey,n and ep,n, however, 

because having low-, medium-, and high-variance cases prevents us from using the same [ey,n, 

ep,n] values across all scenarios.  Hence, to compute end-of-period shocks so as to enhance 

comparability across settings, we first draw from appropriate standard pdfs (uniform for ye~  and 

normal for pe~ ), and then convert such draws into the shocks corresponding to the alternative 

scenarios by performing suitable transformations.5 

Calculation of optimal inputs is the step that requires the greatest computational effort.  

To describe how the numerical optimization is performed, let function u(xA,n, xB,n, ye~ , pe~ ; W0,n, 

p0,n, rA,n, rB,n) represent the utility of random end-of-period wealth corresponding to the nth 

production decision.  With this notation, the optimization problem consists of maximizing (2.3) 

with respect to xA,n and xB,n: 

 

(2.3) 
py eeE , [u(xA,n, xB,n, ye~ , pe~ ; W0,n, p0,n, rA,n, rB,n)] ≡ ∫∫ ⋅);,,,( ,, pynBnA eexxu fy,p(ey, ep) dey dep, 

 

where fy,p(⋅) denotes the joint pdf of ye~  and pe~ .  However, output shocks ( ye~ ) are assumed to 

be independent of price shocks ( pe~ ), so that fy,p(ey, ep) = fy(ey) fp(ep), where fy(⋅) and fp(⋅) are the 

marginal pdfs of output and price shocks, respectively.  Further, since the expectation in (2.3) 

has no analytical solution, its computation requires numerical quadrature methods (Miranda and 
                                                           
5To illustrate this point, consider the generation of the nth end-of-period price shocks.  We first draw a realization 
zp,n from the standard normal pdf, and then calculate ep,n for the low-, medium-, and high-variance scenarios as 0.1 
zpn, 0.2 zp,n, and 0.3 zp,n, respectively (see explanation of (2.2) above). 
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Fackler, ch. 4).  Hence, the objective function employed for numerical optimization is the one 

shown on the right-hand-side of (2.4): 

 

(2.4) 
py eeE , [u(xA,n, xB,n, ye~ , pe~ ; W0,n, p0,n, rA,n, rB,n)] ≡ Σs Σq u(xA,n, xB,n, ey,q, ep,s; ⋅) πy,q πp,s, 

 

where ey,q and ep,s are quadrature nodes, and πy,q and πp,s are the respective quadrature weights.  

For output shocks, 100 nodes (and weights) are used, as described in Appendix B.  Nodes and 

weights for price shocks are determined by a 10-point Gaussian quadrature.6 

Numerical optimization of the objective function on the right-hand side of (2.4) is 

performed by means of the “fmincon” function in MATLAB version 7.0.4.365.  Function 

“fmincon” is set up to find a minimum of a constrained nonlinear multivariable objective 

function.  In the present setup, the only constraint imposed on the optimization is that costs 

(rA,n
*

,nAx + rB,n
*

,nBx ) do not exceed γ0 + W0,n; otherwise, the HARA condition γ0 + Wn > 0 would 

be violated for sufficiently small levels of revenue (pn yn). 

The accuracy of the “fmincon” optimal inputs is verified by comparing them with the 

input amounts obtained by performing a grid-search optimization for a test set, consisting of the 

625 (= 54) combinations of initial wealth and decision-time prices resulting from the Cartesian 

product of the 5-point Gaussian quadrature nodes for W0, p0, rA, and rB.  Test set results are also 

used to construct initial values (through regressions of the corresponding *
Ax  and *

Bx  on W0, p0, 

rA, and rB) for the optimization concerning xA,n and xB,n. 

 

II.4.  Generation of Simulated Samples 

The procedure described in the preceding subsection is used to generate 0.5 million vn vectors 

(i.e., data for 0.5 million production decisions) for each of the nine basic scenarios analyzed.  

Such vectors are then grouped into 5,000 (1,000; 500) samples of 100 (500; 1,000) vectors each.  

                                                           
6By construction, an S-point Gaussian quadrature computes the first 2 S − 1 moments of pe~  without error. 
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In turn, each of the simulated samples is used to perform an econometric estimation of the utility 

and technology parameters, resulting in 5,000 (1,000; 500) estimates for each parameter from the 

samples with 100 (500; 1,000) observations, respectively. 

Since the objects of interest are the distributions of the parameter estimates, to enhance 

the estimation of such distributions the data set is augmented by means of antithetic replications 

(Geweke).  More specifically, an additional set of 0.5 million antithetic decision vectors vn+ ≡ 

[W0,n+, p0,n+, rA,n+, rB,n+, *
, +nAx , *

, +nBx , pn+, yn+] are constructed and used for estimation.  

Variables W0,n+, p0,n+, rA,n+, and rB,n+ are the antithetic replications of W0,n, p0,n, rA,n, and rB,n, 

respectively.  Variables *
, +nAx  and *

, +nBx  are the optimal inputs corresponding to W0,n+, p0,n+, 

rA,n+, and rB,n+.  Finally, pn+ is calculated from (2.2) using p0,n+ and the antithetic replications of 

ey,n and ep,n, whereas is yn+ obtained by plugging *
, +nAx , *

, +nBx , and the antithetic replication of 

ey,n into (1.5).  Antithetic replications allow us to obtain a total of 10,000 (2,000; 1,000) 

estimates for each parameter from the samples with 100 (500; 1,000) observations.7 

 

II.5.  “Mixed-Variance” Scenarios 

In addition to the nine aforementioned basic scenarios, a set of three “mixed-variance” scenarios 

are generated for DRRA, CRRA, and IRRA preferences.  In the mixed-variance settings, the nth 

production decision vector is augmented by incorporating variable σn (i.e., vn ≡ [W0,n, p0,n, rA,n, 

rB,n, σn, *
,nAx , *

,nBx , pn, yn]), where σn equals 0.5, 1, or 1.5 depending on whether the distribution 

of price and output shocks for the nth decision have small-, medium-, or large-variance, 

respectively.  The mixed-variance scenarios are aimed at incorporating heteroskedasticity in the 

output and price shocks.  The variance of shocks may change from period to period, but is 

assumed to be known at the time of decision making.  Hence, the nth period’s optimal choice 

incorporates the level of uncertainty corresponding to the nth period’s output and price shocks.  

Data for the nth period mixed-variance scenario are straightforward to generate, by randomly 

                                                           
7Data corresponding to one million production decisions can obviously be generated without resorting to antithetic 
replications.  However, they allow us to obtain more accurate estimates of the distributions of interest. 
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selecting vn from the small-, medium-, and large-variance scenarios with probabilities 1/3 each, 

and augmenting such vector by the associated σn. 

 

III.  Estimation 

To favor the null hypothesis that utility parameters can be recovered from the production 

decision data, we assume that the econometrician knows the specific form of the utility and 

production functions, and is only interested in estimating their corresponding parameters.  

Therefore, the present estimation is not affected by issues pertaining to functional form 

approximations. 

Clearly, shocks enter the decision maker’s objective function in a highly nonlinear 

fashion.  Thus, even if shocks followed a standard (e.g., normal or log-normal distribution), 

maximum likelihood estimation would require a linear approximation to render the problem 

tractable (Jagannathan, Skoulakis, and Wang).  Further, the postulated distribution of output 

shocks is not standard and it would be highly unrealistic to assume that it is known to the 

econometrician.  This hampers the use of maximum likelihood (ML), as ML estimates may not 

be consistent when the distribution of the observable variables is misspecified (Hansen and 

Singleton).  For such reasons, estimation is performed by means of the generalized method of 

moments (GMM).8 

Useful references for the theory underlying GMM and its numerous applications include 

Hansen, Davidson and Mackinnon (ch. 17), Ogaki, and Cliff.  The optimal decision making 

framework lends itself nicely to apply the GMM method.  Succinctly, estimation is based on a 

system of three regression equations corresponding to the production function (i.e., (3.1)) and the 

first-order conditions (FOCs) for optimization of (2.3) (i.e., (3.2)): 

 

(3.1) εy,n(α) ≡ yn − α0 A
nAx α∗

,  B
nBx α∗

, , 

 
                                                           
8We are not aware of a method other than GMM to obtain consistent parameter estimates in the present setup. 
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(3.2) εj,n(αj, γ) ≡ (γ0 + pn yn − rA,n
*

,nAx  − rB,n
*

,nBx  − 1),0
γ−

nW  ( nnjjn yxp 1
,
−∗α  − rj,n),  

 

for j = A and B, and n = 1, ..., N, where N is the sample size.  Note that εy,n provides no 

information to identify utility parameters, and that εA,n (εB,n) contains no information to identify 

production parameters α0 and αB (αA).  For the small-,medium-, and large-variance scenarios, 

the set of instruments used for each of the equations above consists of vector ιn ≡ [1, W0,n, p0,n, 

rA,n, rB,n, *
,nAx , *

,nBx ]' , comprising a constant (standardized to unity) and the variables known at 

the time of decision making.  For the mixed-variance scenario, vector ιn is augmented by the 

variance variable σn.9 

The rationale for using GMM in the present study is the same as for the typical use of 

GMM to test asset pricing relationships via Euler equations (e.g., Altug(  and Labadie, ch. 3).  

That is, for any variable z known at the time of decision making, it must be the case that 

)~(, zE jee py
ε  = )~(, jee py

E ε z = 0 for j = y, A, B.  This is true because z is non-random from the 

perspective of the decision time, )~(, yee py
E ε  = 0 from production function (1.5), and )~(, Aee py

E ε  

= )~(, Bee py
E ε  = 0 from FOCs.  By the law of iterated expectations, it follows that the 

unconditional expectations are also zero, )~( zE jε  = E[ )~(, zE jee py
ε ] = 0 for j = y, A, B.  Given a 

sample of size N, the set of sample counterparts of )~( zE jε  is the vector gN(α, γ) ≡ 1/N Σn 

[εy,n(α) εA,n(αB, γ) εB,n(αB, γ)]' ⊗ ιn, where ⊗ denotes the Kronecker product.  Since parameters 

[α, γ] are the only elements of gN(⋅) unknown to the econometrician, the GMM estimates [α̂ , γ̂ ] 

are chosen so as to render gN(⋅) as close to zero as possible by minimizing a quadratic form in 

gN(⋅) with respect to the unknown parameters: 

 

(3.3) [α̂ , γ̂ ] = argmax[α,γ][gN(α, γ)gN(α, γ)' VN gN(α, γ)]. 

 

In (3.3), VN is a positive definite weighting matrix which converges in probability to a positive 
                                                           
9Including σn in the set of instruments implies that the econometrician knows with certainty whether the variance 
associated with the nth period’s shocks is small, medium, or large.  This is obviously unrealistic, but is assumed 
here to favor the null hypothesis of identification. 
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definite matrix V0.  Loosely speaking, the GMM estimates yield the sample counterparts of 

orthogonality conditions )~( zE jε  as close to zero as possible. 

Estimation is performed using the GMM and MINZ software libraries in MATLAB 

version 7.0.4.365 (Cliff), which can be downloaded from http://mcliff.cob.vt.edu/progs.html.  

Results reported in the next section are obtained from two-step GMM estimation.  The true 

parameter values are used to initialize the numerical GMM optimization, so as to facilitate 

convergence.  Also to enhance convergence, the weighting matrix for the first GMM step is set 

equal to VN = (1k ⊗ ι'ι)−1, where 1k is the (k × k) identity matrix, k is the number of regression 

equations (three in the present application), and ι = [ι1, ..., ιN]' (Cliff).  In addition, to ensure that 

0γ̂  does not violate the constraint ( 0γ̂  + W) > 0 associated with HARA utility (1.3), for 

estimation purposes we impose the restriction that 0γ̂  > 0.001 − min(W1,n, n = 1, ..., N),     

where W1,n ≡ pn yn − rA,n
*

,nAx  − rB,n
*

,nBx  − W0,n. 

 

IV.  Results and Discussion 

Estimation results for the flexible utility specification are summarized in Tables 1 through 3.  

The tables contain the mean, the median (within parentheses), and the 2.5% and 97.5% quantiles 

(within brackets) for each of the utility and technology parameter estimates.  In the following 

discussion, the 2.5%-97.5% quantile intervals are referred to as the 95% confidence intervals 

(CIs).  Tables 1, 2, and 3 report results for the small-, large-, and mixed-variance scenarios, 

respectively.  Outcomes for the medium-variance scenario are not reported to save space, as 

they typically lie between the small- and large-variance results. 

The estimates for technology parameters exhibit patterns to be expected.  The precision 

of 0α̂ , Aα̂ , and Bα̂  --as measured by the width of the 95% CIs-- increases with the sample 

size and decreases with the variance of the output and price shocks.  Parameter αB (whose true 

value is 0.6) tends to be estimated with slightly greater precision than αA (which has a true value 

of 0.2).  Technology estimates for the samples with 100 observations and large variance shocks 

are imprecise.  This is true because the 95% CIs for Aα̂  overlap with the respective 95% CIs  
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Table 1.  Parameter estimates for flexible utility estimation specification, small variance 

scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −19.8c (−19.8) −63.8c (−21.5) 3.03c (3.03) 0.20c (0.20) 0.60c (0.60)
  [−21.2, −15.3] [−805.9, −4.8] [2.03, 3.47] [0.05, 0.33] [0.46, 0.72] 
       

DRRAb 500 −19.4 (−19.4) −61.4 (−13.4) 3.06 (3.06) 0.20 (0.20) 0.59 (0.59) 
  [−19.8, −19.1] [−44.5, −3.3] [2.90, 3.22] [0.15, 0.25] [0.54, 0.64] 
       

DRRAb 1,000 −19.3 (−19.3) −11.8 (−11.8) 3.06 (3.06) 0.20 (0.20) 0.59 (0.59) 
  [−19.6, −19.0] [−20.6, −3.7] [2.96, 3.16] [0.16, 0.23] [0.56, 0.62] 
       

CRRAb 100 1155.5 (32.5) 71.6 (32.6) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [2.3, 299.2] [5.5, 279.7] [2.74, 3.29] [0.11, 0.29] [0.52, 0.68]        

CRRAb 500 124.9 (31.1) 146.9 (31.1) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [6.4, 210.7] [8.2, 218.8] [2.90, 3.12] [0.16, 0.24] [0.57, 0.63]        

CRRAb 1,000 65.4 (27.4) 56.5 (27.3) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [6.8, 205.5] [8.5, 230.3] [2.94, 3.11] [0.17, 0.24] [0.57, 0.62]        

IRRAb 100 7732.4 (43.9) 35.8 (13.0) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [7.2, 424.9] [2.3, 100.2] [2.74, 3.29] [0.11, 0.30] [0.52, 0.68]        

IRRAb 500 61.4 (44.4) 153.3 (17.0) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [43.1, 87.7] [7.2, 253.9] [2.90, 3.11] [0.16, 0.24] [0.57, 0.63]        

IRRAb 1,000 55.4 (44.6) 96.0 (17.7) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [43.1, 81.6] [7.1, 262.2] [2.94, 3.08] [0.18, 0.22] [0.58, 0.62]        
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
cMean is calculated using only observations falling between the 2.5% and 97.5% quantiles, to avoid influence of 
extreme observations. 
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Table 2.  Parameter estimates for flexible utility estimation specification, large variance scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −19.5c (−19.5) −29.8c (−10.5) 3.14c (3.12) 0.18c (0.18) 0.57c (0.57)
  [−20.9, −18.8] [−428.8, 0.2] [2.11, 4.30] [−0.13, 0.52] [0.24, 0.86] 
       

DRRAb 500 −15.6 (−19.0) −6.3 (−6.6) 3.24 (3.24) 0.18 (0.18) 0.55 (0.55) 
  [−19.5, −18.7] [−14.8, −0.2] [2.82, 3.62] [0.07, 0.28] [0.45, 0.66] 
       

DRRAb 1,000 −18.8 (−18.9) −4.5 (−5.4) 3.25 (3.25) 0.18 (0.18) 0.54 (0.55) 
  [−19.3, −18.7] [−10.2, −0.3] [2.99, 3.51] [0.12, 0.23] [0.48, 0.61] 
       

CRRAb 100 1531.6 (29.0) 96.2 (43.7) 3.01 (3.01) 0.20 (0.21) 0.58 (0.60) 
  [7.2, 258.4] [8.0, 335.7] [2.28, 3.85] [−0.05, 0.47] [0.37, 0.82] 
       

CRRAb 500 50.9 (28.4) 53.9 (38.5) 3.01 (3.01) 0.21 (0.20) 0.59 (0.60) 
  [10.2, 204.6] [9.4, 204.5] [2.72, 3.32] [0.11, 0.31] [0.51, 0.68]        

CRRAb 1,000 46.3 (24.1) 50.3 (28.5) 3.01 (3.01) 0.20 (0.20) 0.59 (0.60) 
  [11.2, 214.9] [9.9, 191.1] [2.82, 3.21] [0.14, 0.27] [0.54, 0.66]        

IRRAb 100 7016.4 (43.6) 33.0 (14.7) 3.01 (3.00) 0.21 (0.20) 0.61 (0.61) 
  [7.0, 168.7] [3.9, 148.0] [2.33, 3.75] [−0.03, 0.46] [0.39, 0.82] 
       

IRRAb 500 46.7 (44.1) 31.5 (14.8) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [23.3, 62.0] [7.0, 101.0] [2.71, 3.30] [0.10, 0.31] [0.51, 0.68]        

IRRAb 1,000 48.8 (44.2) 39.6 (14.6) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [43.1, 83.3] [7.3, 143.0] [2.81, 3.22] [0.13, 0.27] [0.54, 0.66]        
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
cMean is calculated using only observations falling between the 2.5% and 97.5% quantiles, to avoid influence of 
extreme observations. 
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Table 3.  Parameter estimates for flexible utility estimation specification, mixed variance 

scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −19.7c (−19.6) −42.4c (−14.3) 3.09c (3.07) 0.19c (0.19) 0.59c (0.59)
  [−21.0, −18.8] [−578.1, −0.3] [2.37, 3.90] [−0.04, 0.43] [0.35, 0.80] 
       

DRRAb 500 −19.2 (−19.2) −8.2 (−8.0) 3.14 (3.14) 0.19 (0.19) 0.58 (0.58) 
  [−19.7, −18.8] [−19.6, −0.9] [2.85, 3.40] [0.11, 0.27] [0.51, 0.66] 
       

DRRAb 1,000 −19.1 (−19.1) −5.7 (−5.3) 3.15 (3.15) 0.19 (0.19) 0.58 (0.58) 
  [−19.4, −18.7] [−13.1, −1.2] [2.97, 3.31] [0.14, 0.24] [0.53, 0.62] 
       

CRRAb 100 3220.0 (32.1) 62.6 (38.0) 3.00 (3.00) 0.18 (0.20) 0.55 (0.60) 
  [6.7, 228.9] [7.7, 247.8] [2.50, 3.55] [0.03, 0.37] [0.44, 0.75]        

CRRAb 500 68.1 (37.6) 58.3 (37.2) 3.00 (3.00) 0.20 (0.20) 0.58 (0.60) 
  [11.1, 204.9] [10.4, 149.3] [2.78, 3.24] [0.13, 0.28] [0.53, 0.66]        

CRRAb 1,000 83.7 (34.7) 46.1 (33.3) 3.01 (3.00) 0.20 (0.20) 0.59 (0.60) 
  [12.0, 177.9] [11.1, 135.2] [2.82, 3.20] [0.14, 0.27] [0.54, 0.65]        

IRRAb 100 13505.0 (43.7) 34.1 (13.3) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [7.1, 313.9] [2.6, 115.0] [2.54, 3.52] [0.04, 0.36] [0.46, 0.74]        

IRRAb 500 50.5 (44.2) 52.6 (16.3) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [15.8, 95.1] [6.8, 202.9] [2.80, 3.20] [0.13, 0.27] [0.54, 0.66]        

IRRAb 1,000 171.1 (44.7) 404.6 (19.8) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [20.0, 146.1] [7.0, 196.6] [2.87, 3.14] [0.16, 0.24] [0.56, 0.64]        
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
cMean is calculated using only observations falling between the 2.5% and 97.5% quantiles, to avoid influence of 
extreme observations. 
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for Bα̂ ; further, the lower bounds for the former are negative.  For CRRA and IRRA 

preferences, median technology estimates are essentially the same as the corresponding true 

values.  For DRRA preferences, however, the medians of 0α̂ , Aα̂ , and Bα̂  tend to be slightly 

different from the true values when the variance of shocks is large, and such differences increase 

with the sample size.  In such instances, medians for 0α̂  tend to be larger than the true values, 

and the opposite is true for the Aα̂  and Bα̂  medians.  The distributions of technology 

estimates for the mixed-variance scenarios fall between those for the small- and large-variance 

counterparts. 

Unlike technology estimates, the estimates of the preference parameters bear little 

resemblance to the true values.  Consider the CRRA scenario first.  Both γ0 and γ1 are grossly 

overestimated, as the smallest 0γ̂  and 1̂γ  medians are respectively 24.1 and 27.3 (1000-

observation samples for large- and small-variance scenarios, respectively), compared to true 

values of γ0 = 0 and γ1 = 3.  Prominently, none of the 95% CIs for 0γ̂  and 1̂γ  include the true 

values.  Further, as the sample size increases, the distance between the true values and the 

closest (i.e., lowest) bounds of the 95% CIs increases.  For example, when the variance is large 

and samples have 100, 500, and 1000 observations, the 2.5% quantiles for 0γ̂  ( 1̂γ ) are 7.2, 10.2 

and 11.2 (8.0, 9.4, and 9.9), respectively.  It is also worth noting that the distributions of 0γ̂  

and 1̂γ  are substantially skewed to the right. 

IRRA estimates 0γ̂  and 1̂γ  tend to be slightly better behaved than their CRRA 

counterparts.  This is true because the 95% CIs sometimes include the true values, and the 

medians for 0γ̂  are relatively close to the true value γ0 = 43.  Overall, however, 0γ̂  and 1̂γ  

display very poor behavior.  For example, the 95% CIs are extremely wide, and the medians are 

further away from the true values as the sample sizes increase.  As in the CRRA case, the 

distributions of 0γ̂  and 1̂γ  are noticeably right-skewed. 

The worst-behaved preference estimates are the 1̂γ s under DRRA.  In this instance, not 

only the 95% CIs are quite wide and lie strictly below the true value γ1 = 1, but also they fall 

entirely on the negative orthant (except for a minuscule segment of the 95% CI for 100-
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observation samples in the large-variance setting).  The latter means that the 1̂γ s would mislead 

the econometrician into concluding that the decision maker exhibits risk-loving preferences.  

The 95% CIs for γ0 under DRRA are much narrower than under CRRA or IRRA.  However, the 

former almost always lie entirely below the true value of γ1 = −18.4.  The reason for the 

relatively narrow 95% CIs for γ0 under DRRA is that the estimation constraint 0γ̂  > 0.001 − 

min(W1n, n = 1, ..., N) is almost always binding. 

The mixed-variance scenario reported in Table 3 has the potential to provide additional 

information to aid in the identification of the structure of risk aversion.  This is true because 

decision makers differing in their risk preferences will generally change their input choices in 

different ways in response to changes in risks.  However, comparison of the distributions of 0γ̂  

and 1̂γ  in Table 3 with the ones in Tables 1 and 2 shows that heteroskedasticity is of little help 

in the estimation of risk preferences.  Additional support for this conclusion is furnished by the 

fact that the estimates in Table 3 assume that the econometrician knows exactly the level of 

uncertainty embedded in the decision maker’s optimal choices, which is highly unrealistic.  

Therefore, it seems safe to conclude that in real-world applications, the structure of risk aversion 

is very unlikely to be rendered identifiable by the presence of heteroskedasticity. 

 

IV.1.  Estimation under Restricted Utility Specifications 

As noted earlier, Černý argues that decisions corresponding to utilities with the same value of 

R(W0) are very similar, unless random shocks are very skewed and have substantial variances.  

If such argument applies to agricultural production under uncertainty, observed input choices 

would be consistent with an infinite number of γ parameterizations yielding the same R(W0).  

Since the econometrician must infer γ0 and γ1 from the observed input choices, this means that 

attempting to simultaneously estimate both γ0 and γ1 is likely to encounter difficulties due to lack 

of identification. 

A simple solution to the identification problem is to perform estimation under a restricted 

utility specification, by fixing either γ0 or γ1 at a reasonable value, and estimate the remaining 



 

 

21

utility parameter.  An appealing specification consists of setting γ0 = 0 and estimating only γ1, in 

fact approximating the true DRRA and IRRA utilities with CRRA preferences.  The nice feature 

of such specification is that the resulting 1̂γ  provides an approximate estimate of both the 

coefficients of “baseline” and “local” relative risk aversion, where the latter is the key 

determinant of decisions under uncertainty.  Given the calibration used here, restricted 

estimation assuming CRRA preferences should yield 1̂γ  ≅ 3. 

Results from the restricted utility specification are provided in Tables 4, 5, and 6, which 

correspond respectively to Tables 1, 2, and 3 under unrestricted estimation.  Compared to the 

latter, the former exhibit substantial differences regarding the estimates of both technology and 

utility parameters.  Regarding α0, αA, and αB, the most noticeably impact of the restricted 

estimation is the substantially narrower 95% CIs.  In addition, in the instances where the 

medians tend to be most different from the true values (e.g., for α0), such differences are 

typically smaller for the restricted estimates than for the unrestricted ones. 

Inspection of the estimates of the coefficient of relative risk aversion shown in Tables 4 

through 6 uncovers a number of interesting outcomes.  First, estimates of γ1 obtained using 

samples with 100 observations appear to be very poor, as the associated 95% CIs are very wide.  

The 2.5% quantiles under large variance are negative (i.e., indicating risk affinity rather than risk 

aversion), and the 97.5% quantiles under small variance are unreasonably large.  These findings 

cast doubt on the ability of being able to accurately estimate risk preferences (even if restricted) 

from small samples. 

A second interesting feature of the 1̂γ  distributions is that the means and medians seem 

to systematically overestimate the true value of the coefficient of local relative risk aversion (i.e., 

3).  The magnitude of the positive bias in 1̂γ  declines with the number of observations in the 

sample, but for DRRA preferences it is still substantial even when samples have as many as 1000 

observations.   

Third, the quality of the γ1 estimates is noticeably worse in the small variance scenario 

than in the large variance scenario.  Greater variance increases the overall noise in the  
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Table 4.  Parameter estimates for restricted utility estimation specification (γ0 = 0), small 

variance scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 115.3c (65.1) 3.01c (3.01) 0.20c (0.20) 0.60c (0.60) 
  [12.6, 1560.0] [2.70, 3.35] [0.11, 0.30] [0.51, 0.69]       

DRRAb 500 34.7 (32.8) 2.97 (2.97) 0.20 (0.20) 0.61 (0.61) 
  [15.4, 72.7] [2.86, 3.06] [0.20, 0.21] [0.60, 0.62]       

DRRAb 1,000 31.9 (31.1) 2.96 (2.96) 0.20 (0.20) 0.61 (0.61) 
  [17.0, 56.2] [2.88, 3.03] [0.20, 0.21] [0.60, 0.62]       

CRRAb 100 25.7c (10.2) 3.01c (3.01) 0.20c (0.20) 0.60c (0.60) 
  [1.2, 313.2] [2.79, 3.26] [0.13, 0.29] [0.53, 0.67]       

CRRAb 500 4.9 (4.6) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [2.2, 8.8] [2.94, 3.07] [0.20, 0.20] [0.59, 0.61]       

CRRAb 1,000 4.3 (4.2) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [2.5, 6.3] [2.96, 3.04] [0.20, 0.20] [0.60, 0.61]       

IRRAb 100 22.2c (9.6) 3.00c (3.00) 0.20c (0.20) 0.60c (0.60) 
  [0.6, 277.8] [2.78, 3.24] [0.12, 0.28] [0.54, 0.67]       

IRRAb 500 4.5 (4.2) 3.00 (3.00) 0.20 (0.20) 0.60 (0.60) 
  [1.5, 8.4] [2.95, 3.06] [0.20, 0.20] [0.59, 0.61]       

IRRAb 1,000 3.7 (3.7) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [1.7, 6.0] [2.96, 3.05] [0.20, 0.20] [0.60, 0.61]       
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
cMean is calculated using only observations falling between the 2.5% and 97.5% quantiles, to avoid influence of 
extreme observations. 
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Table 5.  Parameter estimates for restricted utility estimation specification (γ0 = 0), large 

variance scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 5.8 (5.8) 2.95 (2.93) 0.21 (0.21) 0.63 (0.63) 
  [−0.6, 12.1] [2.34, 3.64] [0.17, 0.24] [0.50, 0.72] 
      

DRRAb 500 4.7 (4.8) 2.90 (2.88) 0.21 (0.21) 0.62 (0.63) 
  [1.8, 7.2] [2.67, 3.16] [0.19, 0.22] [0.57, 0.66]       

DRRAb 1,000 4.6 (4.7) 2.90 (2.89) 0.21 (0.21) 0.62 (0.62) 
  [2.5, 6.7] [2.72, 3.09] [0.20, 0.22] [0.59, 0.65]       

CRRAb 100 5.4 (5.1) 3.05 (3.05) 0.20 (0.20) 0.61 (0.61) 
  [−0.6, 12.8] [2.54, 3.63] [0.17, 0.23] [0.50, 0.69] 
      

CRRAb 500 3.4 (3.4) 3.02 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [1.3, 5.9] [2.84, 3.19] [0.19, 0.21] [0.57, 0.63]       

CRRAb 1,000 3.2 (3.2) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [1.8, 4.6] [2.89, 3.13] [0.19, 0.21] [0.58, 0.62]       

IRRAb 100 5.2 (5.0) 3.06 (3.06) 0.20 (0.20) 0.61 (0.61) 
  [−0.6, 12.2] [2.43, 3.69] [0.17, 0.23] [0.50, 0.70] 
      

IRRAb 500 3.4 (3.3) 3.03 (3.03) 0.20 (0.20) 0.60 (0.60) 
  [1.0, 5.7] [2.86, 3.21] [0.19, 0.21] [0.57, 0.63]       

IRRAb 1,000 3.0 (3.0) 3.03 (3.03) 0.20 (0.20) 0.60 (0.60) 
  [1.6, 4.4] [2.92, 3.14] [0.19, 0.20] [0.58, 0.62]       
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
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Table 6.  Parameter estimates for restricted utility estimation specification (γ0 = 0), mixed 

variance scenario. 

Risk Sample Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 7.8 (7.0) 3.01 (3.00) 0.20 (0.20) 0.61 (0.61) 
  [0.8, 18.5] [2.65, 3.34] [0.19, 0.22] [0.56, 0.65]       

DRRAb 500 5.4 (5.4) 2.93 (2.94) 0.20 (0.20) 0.61 (0.61) 
  [2.7, 8.7] [2.72, 3.09] [0.20, 0.21] [0.59, 0.63]       

DRRAb 1,000 5.1 (5.0) 2.90 (2.90) 0.20 (0.20) 0.61 (0.61) 
  [3.1, 7.5] [2.75, 3.04] [0.20, 0.21] [0.59, 0.63]       

CRRAb 100 5.5 (4.8) 3.04 (3.05) 0.20 (0.20) 0.60 (0.60) 
  [0.7, 13.9] [2.78, 3.31] [0.19, 0.22] [0.57, 0.64]       

CRRAb 500 3.5 (3.4) 3.02 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [2.0, 5.2] [2.94, 3.08] [0.20, 0.20] [0.59, 0.61]       

CRRAb 1,000 3.3 (3.2) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [2.3, 4.4] [2.94, 3.08] [0.20, 0.20] [0.59, 0.61]       

IRRAb 100 5.6 (5.2) 3.05 (3.04) 0.20 (0.20) 0.60 (0.60) 
  [0.4, 13.0] [2.77, 3.33] [0.19, 0.22] [0.56, 0.64]       

IRRAb 500 3.6 (3.6) 3.02 (3.02) 0.20 (0.20) 0.60 (0.60) 
  [2.0, 5.5] [2.92, 3.11] [0.20, 0.20] [0.59, 0.61]       

IRRAb 1,000 3.3 (3.3) 3.01 (3.01) 0.20 (0.20) 0.60 (0.60) 
  [2.2, 4.7] [2.95, 3.08] [0.20, 0.20] [0.59, 0.61]       
aFor each parameter, the table reports the average, the median (within parentheses), and the 2.5% and 97.5% 
quantiles (within brackets). 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3], and [43, 6], respectively. 
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estimation system.  However, at reasonable levels it enhances the ability to recover the 

coefficient of risk aversion because the larger the latter, the greater the impact of the variance on 

the optimal decisions.  (Note that in the limit when there is no uncertainty, optimal decisions for 

risk-averse and risk-neutral agents are the same.) 

Finally, the distributions for 1̂γ s under CRRA are much more similar to the distributions 

under IRRA than under DRRA.  Further, the CRRA and IRRA estimates are more consistent 

with the true coefficient of local risk aversion than the DRRA estimates.  The main explanation 

for this result is the constraint that costs (rA,n
*

,nAx + rB,n
*

,nBx ) do not exceed γ0 + W0,n, imposed at 

the optimization stage to calculate optimal input choices.  Such constraint is binding in 

approximately 20%, 5%, and 0% of the observations under DRRA, CRRA, and IRRA, 

respectively.  The effect of the constraint is to yield input choices smaller than they would be 

otherwise.  Since the constrained optimization is not modeled for estimation purposes, the 

smaller input levels are in effect translated into a greater coefficient of relative risk aversion at 

the estimation stage. 

As in the unrestricted utility estimation case, restricted utility estimates do not seem to be 

improved by heteroskedasticity (compare 1̂γ s in Table 6 with 1̂γ s in Tables 4 and 5).  This 

finding lends additional support for the conclusion that heteroskedasticty is highly unlikely to be 

provide the information needed to identify the structure of risk aversion. 

 

V.  Concluding Remarks 

Numerous studies have focused on the simultaneous estimation of technology and risk 

preferences from actual production data.  Importantly, many of them have specifically aimed at 

uncovering the structure of risk aversion (i.e., the changes in absolute or relative risk aversion 

associated with changes in wealth) by estimating flexible utility functions.  However, some 

works in finance argue that the structure of risk aversion significantly affects choices under 

uncertainty only when risks are very large and skewed.  This means that, unless production 

risks are very large and skewed, recovering the structure of risk aversion from production data 
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should be difficult. 

The present study explores the apparent disconnect between the production and finance 

literatures, by setting up a thought experiment calibrated to match the characteristics of risks 

faced by decision makers in a high-risk production activity (farming), and investigating whether 

the structure of risk aversion can be estimated with reasonable precision.  Farming data are used 

for calibration not only because most of the studies concerned have employed data pertaining to 

production agriculture, but also because the high and skewed risks involved provide the most 

potential for the structure of risk aversion to considerably affect optimal decisions.  The thought 

experiment is designed to facilitate estimation of the structure of risk aversion.  Failure to 

reasonably estimate the structure of risk aversion under such “ideal” conditions can then be 

construed as strong evidence against the hypothesis that the risk aversion structure can be 

recovered from actual production data. 

The study demonstrates that the simultaneous estimation of the two parameters of a 

standard hyperbolic absolute risk aversion (HARA) utility function and a three-parameter Cobb-

Douglas production function yields extremely poor estimates of the utility parameters, even 

when samples comprise as many as 1000 observations.  The 95% confidence intervals (CIs) for 

the utility parameters are very wide and usually fail to include the true values.  Further, under 

certain parameterizations the 95% CIs lie entirely in the range corresponding to risk-loving (as 

opposed to risk-averse) attitudes. 

When estimation is performed under a restricted utility specification, consisting of a one-

parameter constant-relative risk aversion (CRRA) utility function, both utility and technology 

parameter estimates exhibit substantial improvements.  Importantly, this is true even for the 

scenarios where CRRA utility only provides an approximation of the true two-parameter HARA 

utility originating the data.  It is worth pointing out, however, that when samples have 100 

observations, estimates of the single CRRA parameter are very poor (even if the true utility is 

CRRA).  This finding is relevant for the literature, as studies that have simultaneously estimated 

technology and the structure of risk aversion often relied on real-world samples comprising 
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fewer than 100 observations. 

In summary, the findings of the present study call into question the wisdom of attempting 

to estimate the structure of risk aversion simultaneously with technology using production data.  

In the purposely simple set up postulated here, allowing for a flexible utility specification yields 

utility estimates that bear no resemblance to the true parameters.  Further, the resulting 

technology estimates are worse than those obtained under a restricted utility specification (even 

if the restricted utility is only an approximation of the actual utility generating the data).  The 

findings also suggest that even in the restricted utility specification case, the quality of the utility 

parameters estimated from small samples (a common practice in econometric studies of 

production under risk) is very poor. 

Overall, the results suggest that the emphasis on the estimation of flexible risk 

preferences in production studies has been misplaced, and that future efforts are likely to be more 

fruitfully employed elsewhere.  Of course, the results from the present thought experiment need 

not apply to some real-world scenarios.  Indeed, it may be the case that in specific situations 

there are gains to be made by estimating the structure of risk aversion simultaneously with 

technology.  However, our findings strongly suggest that such gains are likely to be 

unwarranted in most instances, and that the burden of proof should fall on those claiming the 

contrary. 

More generally, the method employed here can be applied in other circumstances where 

there is the suspicion that the data may provide too little information to successfully identify 

parameters and/or models of interest.  This is important because assessing ex ante whether a 

particular estimation project is worth pursuing may prevent the waste of scarce resources 

gathering and analyzing data that are highly unlikely to yield the information researchers are 

looking for. 
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Appendix A:  Estimation of the Probability Density Function of Initial Wealth 

The initial wealth pdf (2.1) is estimated using the balanced panel employed by Hart and Lence, 

which contain annual initial wealth observations for 317 Iowa farms over the period 1991-1998.  

Since monetary data in the simulation model are standardized by setting unconditional mean 

prices equal to unity, the 2350 strictly positive initial wealth observations in the panel are 

multiplied by the ratio 7/73788 to obtain standardized initial wealth values.  In the 

standardizing ratio, the numerator 7 equals the approximate median costs (i.e., median(r x*)) for 

the CRRA simulations (which do not depend on initial wealth data), whereas the denominator 

73788 is the median operating expense (i.e., the real-world data analog of median(r x*)) for the 

strictly positive initial wealth observations. 

A strictly positive lower bound W0 is necessary to conduct DRRA simulations, as HARA 

utility (1.3) requires γ0 + W0 > 0, and DRRA entails γ0 < 0.  For the DRRA scenario, we fix γ1 = 

1 to clearly differentiate it from its CRRA counterpart and to provide a useful benchmark (see 

“Calibration” subsection), and set γ0 at the value that yields a mean value of R(W0) equal to 3 for 

the estimated Beta(⋅) pdf for W0.  Since such γ0 value must satisfy the restriction W0 > −γ0, we 

simultaneously calculate W0 and γ0 by means of the following iterative procedure: 

Step 1. Set iteration counter at j = 1. 

Step 2. Obtain a sample of 2350 − 2 j observations with lower bound )(
0

jW  and upper bound 
)(

0
jW , by discarding the smallest j and the largest j observations on standardized initial 

wealth (so that the sample median stays constant). 

Step 3. Use the sample from Step 2 to estimate the standard beta pdf Beta(⋅)(j) via maximum 

likelihood, by means of the “betafit” function in MATLAB version 7.0.4.365. 

Step 4. Given Beta(⋅)(j), )(
0

jW , and )(
0

jW , calculate R(j) = mean[R(W0)|γ0
(j) = 0.5 − )(

0
jW , γ1 = 1]. 

Step 5. If R(j) > 3 (note that R(j) < R(j−1) ∀ j), stop and fix W0 = )(
0

jW , 0W  = )(
0

jW , Beta(⋅) = 

Beta(⋅)(j), and γ0 = γ0
(j).  Otherwise, set j = j + 1 and go back to Step 2. 

In the present sample, iterations stop at j = 720.  It should be clear that the only way to stop at a 

smaller j while having a mean value of R(W0) = 3 is by adopting a DRRA parameterization more 
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similar to the CRRA scenario (i.e., by setting the DRRA [γ0, γ1] closer to [0, 3]). 

 

Appendix B:  Estimation of the Probability Density Function of Output Shocks 

The probability distribution of ye~  is derived from Hart and Lence’s balanced panel, which has 

annual corn yields for 407 Iowa farms from 1991 through 1998.  For each farm, standardized 

yields are calculated by dividing actual yields by the farm’s average yield.  Standardized yields 

are then pooled across all farms to obtain a sample of 3256 observations used to obtain the vector 

[ey,0.5, ey,1.5, ..., ey,98.5, ey,99.5], where ey,q is the qth quantile of standardized yields.  The 

probability distribution of ye~  for the medium-variance scenario consists of [ey,0.5, ey,1.5, ..., ey,98.5, 

ey,99.5] with probabilities [ M
y 5.0,π , M

y 5.1,π , ..., M
y 5.98,π , M

y 5.99,π ] = [0.01, 0.01, ..., 0.01, 0.01]. 

For the low- and high-variance scenarios, Prelec’s probability weighting function (Prelec) 

is used to assign the probabilities L
qy ,π  and H

qy ,π  corresponding to ey,q.  For the low-variance 

case, the distribution of ye~  is given by ey,q with probability L
qy ,π  ≡ π(q + 0.5; L

1φ , L
2φ ) − π(q − 

0.5; L
1φ , L

2φ ) for π(q; φ1, φ2) ≡ exp{−[−ln(q/100)/ }] 2/1
1

φφ , [ L
1φ , L

2φ ] = [1.02, 0.51], and q = 0.5, 

1.5, ..., 98.5, 99.5.  Values for L
1φ  and L

2φ  are derived by trial-and-error so as to yield the 

same mean but a standard deviation 50% smaller than the standard deviation under the medium-

variance scenario.  Analogously, the distribution of ye~  under the high-variance scenario is ey,q 

with probabilities H
qy ,π  ≡ π(q + 0.5; H

1φ , H
2φ ) − π(q − 0.5; H

1φ , H
2φ ) for [ H

1φ , H
2φ ] = [0.93, 1.73].  

Compared to the medium-variance probabilities M
qy ,π , the low-variance (high-variance) 

probabilities shift weight from the extremes (middle) of vector [ey,0.5, ey,1.5, ..., ey,98.5, ey,99.5] to its 

middle (extremes), so as to reduce (increase) the standard deviation by 50% while maintaining 

the mean unchanged at 1.10 

 

Appendix C:  Estimation of the Probability Density Function of Output Prices 

Expression (2.2) is an approximation based on the regression estimates reported in tables A.1 and 

                                                           
10Note that M

qy ,φ = π(q + 0.5; M
1φ , M

2φ ) − π(q − 0.5; M
1φ , M

2φ ) for [ M
1φ , M

2φ ] = [1, 1]. 
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A.2.  The former table shows results for regressions employing U.S. aggregate yield shocks, 

whereas the latter displays analogous results but for yield shocks corresponding to the Hart and 

Lence farm-level data. 
       
Table A1.  Price regressions for U.S. aggregate data, 1970-2005. 

Crop Regression Regression

Std. Error

R2 

Corn ln(pt) = 47 − 0.0248 t + 0.48 ln(pt−1) − 0.85 lney,t + ep,t 0.156 0.914
                         (11)  (0.0061)     (0.13)                 (0.26)       

Wheat ln(pt) = 42 − 0.0219 t + 0.47 ln(pt−1) − 1.09 lney,t + ep,t 0.178 0.870
                        (11)  (0.0058)     (0.13)                (0.46)       

Soybeans ln(pt) = 48 − 0.0248 t + 0.45 ln(pt−1) − 1.06 lney,t + ep,t 0.146 0.919
                         (11)  (0.0058)     (0.12)                 (0.31)       
Note:  Variable pt is the U.S. season-average price received by farmers in marketing year t based on monthly prices 
weighted by monthly marketings (source:  U.S. Department of Agriculture), deflated by the corresponding U.S. 
Consumer Price Index, all items, U.S. city average, not seasonally adjusted (1982-84 = 100) (source:  Bureau of 
Labor Statistics).  Variable lney,t is the ordinary least-squares residual of the regression of ln(yieldt) on a constant 
and t, where yieldt is the U.S. yield per acre in marketing year t (source:  U.S. Department of Agriculture).  Each 
regression comprises 35 observations.  Standard errors are shown within parentheses below the respective 
coefficients. 
 
 
 
Table A2.  Price regressions for Iowa farm-level yield data, 1991-1998. 

Crop Regression Regression

Std. Error

R2 

Corn ln(pt) = 36.4 − 0.0197 t + 0.303 ln(pt−1) − 0.248 ln(ey,f,t) + ep,f,t 0.135 0.266
                   (2.1)   (0.0011)      (0.024)                (0.011)       

Soybeans ln(pt) = 30.3 − 0.01657 t + 0.145 ln(pt−1) − 0.1532 ln(ey,f,t) + ep,f,t 0.114 0.199
                 (1.8)   (0.00091)      (0.029)                (0.0093)       
Note:  Variable pt is the U.S. season-average price received by farmers in marketing year t based on monthly prices 
weighted by monthly marketings (source:  U.S. Department of Agriculture), deflated by the corresponding U.S. 
Consumer Price Index, all items, U.S. city average, not seasonally adjusted (1982-84 = 100) (source:  Bureau of 
Labor Statistics).  Variable ey,f,t is farm f’s crop yield in marketing year t divided by farm f’s average crop yield over 
1991-1998 (source:  Hart and Lence dataset).  Each regression comprises 3,200 observations.  Standard errors are 
shown within parentheses below the respective coefficients. 
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