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Abstract 
This study develops a dynamic multi-output model of farmers’ crop allocation decisions that allows 
estimation of both short-run and long-run adjustments to a wide array of economic incentives.  The 
method can be used to inform decision makers on a number of issues including agricultural policy 
reform and environmental regulation.  The model allows estimation of dynamic effects relating to 
price expectations adjustment, investment lags, and crop rotation constraints.  Estimation is based 
on micro-panel data from Danish farmers that includes acreage, output, and variable input 
utilization at the crop level.  Results indicate that there are substantial differences between the short- 
and long-run land allocation behavior of Danish farmers and that there are substantial differences in 
the time lags associated with different crops. Since similar farming conditions are found in northern 
Europe and parts of the USA and Canada this result may have more general interest. 
 
Key words: land allocation, crop rotation, system of dynamic equations, micro panel data, GMM. 
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1. Introduction 
Multi-crop farming involves managing cross-crop effects in a number of dimensions. Farmers often 
practice crop rotation reflecting positive and negative nutrient and disease/pest effects from 
previous year’s production decisions. In the Danish context, one example is that farmers typically 
take account of first year nitrogen carry-over effects in crop rotation schemes. Another example is 
that potatoes are usually not grown on the same plot for more than two consecutive years in order to 
reduce disease risks (e.g. potato blight) and pest attacks (e.g. potato stem borers).   Following potato 
production, other ‘cleaning’ crops like rape are produced for 3-4 years.  Changing land allocation 
often involves shifts between plots being cultivated with different crop rotation schemes, and the 
time delay before full implementation may be longer than a single rotation span.  

Peak capacity constraints often generate other types of cross-crop effects. For example, Danish 
farmers typically prefer a mix of spring and winter crops of different types in order to spread 
sowing and harvesting seasons to reduce peak capacity utilization of labor and equipment.  Such 
cross-crop effects may in turn generate long and complex land allocation reaction delays if optimal 
cropping requires investment in new equipment.  Rotation effects are made more complex since 
investments in machinery are often not made immediately, but at the time when it is optimal to 
scrap old depreciated equipment. Finally, harvest yields and output prices cannot be predicted 
exactly at the beginning of the growth season when the land allocation decision is made and must 
therefore be based on the farmer’s expectations.  Since expectations adjust to changes in underlying 
economic conditions further delays in land allocation reactions may result. 

Incorporating cross-crop linkages and dynamic adjustments makes for a challenging empirical 
problem when the crop acreage allocation behavior of farmers is to be estimated.  Ideally estimation 
should utilize a farm level dynamic setup allowing for adjustment in land allocation that 
incorporates cross-crop and equipment utilization restrictions. However, in practice the data 
required for such a model to be estimated (a long micro panel with detailed information on crop 
level inputs, outputs and land allocation) are seldom available and other estimation strategies have 
typically been applied. 

Although it is well known that the micro-economic theory describing farmer behavior only 
survives aggregation under very restrictive assumptions and that aggregation generally leads to 
misspecification (e.g. Chambers, 1988) 1, empirical applications using duality theory in connection 
with aggregate data are common and may give a reasonable indication of parameter magnitudes.  
For example, Guyomard, Baudry and Carpentier (1996) estimate crop acreage allocation response 
using aggregate annual time series while Plantnga et al. (2002), Coyle (1993a), Coyle (1993b), 
Moore and Negri (1992), and Lichtenberg (1989) estimate land allocation using aggregate panel 
data. Thus, some indication of the importance of land allocation time lags might well be found in 
this literature. However, the primary focus of these studies has been on estimation of either short or 
medium-term elasticities; little work has been done that can shed light on the adjustment lags 
associated with land allocation reactions2. 
                                                
1 One problem specifically relevant when applying aggregate data in land allocation studies is that this sort of data does 
not allow for identification of corner solutions. Corner solutions arise when it is optimal for the farmer not to grow a 
crop. In aggregate data on land allocation we observe positive values for all crops, but this does not imply that all the 
farmers grow all the crops. Often some farmers choose not to grow some crops which in turn causes biased estimates 
when account is not taken of this as it cannot when data are aggregated (see e.g. Weaver and Lass (1989)).  
2 Coyle (1993b) does include lagged values of total acreage in the estimation and so sheds light on the dynamics of 
adapting the total cultivated area – but not on the dynamics of cross crop effects as such.  



 2 

Other studies use micro cross-section data at the farm level (e.g. Moore, Gollehon and Carey 
(1994); Mythili (1992); and Weaver and Lass (1989)) and estimation results are often interpreted as 
long run effects.  Short-run adjustment effects have been estimated using micro panels in a number 
of studies (e.g. Coxhead and Demeke (2004); Moro and Sckokai (1999); Lence and Hart (1997); 
and Lansink and Peerlings (1996)). However, these models do not attempt to estimate dynamic 
adjustment/inter-temporal effects. An exception is Thomas (2003) where crop production functions 
and nitrogen carry-over coefficients of different crops are estimated assuming that farmers take 
account of nitrogen carry over and the potential for reducing future fertilization costs this entails. 
The estimated structural model allows for crop rotation schemes under the assumption that these are 
driven by farmers taking the dynamics of nitrogen carry over into account when profit maximizing.  
The resulting structural model makes it possible to simulate the dynamic effects of various policies 
like environmental policy aimed at reducing nitrogen loss where nitrogen carry-over is the dynamic 
effect of primary concern. 

In this study we develop and estimate a dynamic model of land allocation that takes account of a 
number of major causes of land allocation lags: expectations, adjustment costs, investment lags, and 
crop rotations. Our model is based on farmers’ dynamic optimization behavior and allows 
estimation of land allocation conditional on expected crop gross margins. Our empirical estimation 
is based on a long micro panel with up to 11 annual observations per farm and with detailed crop 
level data on acreage, output, and variable input use, making it possible to calculate crop level gross 
margins. The ambition of addressing all major dynamic effects rules out structural modeling of land 
allocation dynamics because of the unrealistic requirements to data and model complexity this 
would imply.  Instead we estimate a reduced form of relationship among crop rotation, peak 
capacity effects and land allocation.  Our empirical estimates are based on GMM methods (Arellano 
and Bond (1991) and Arellano and Bover (1995)) applied to a system of dynamic land allocation 
equations taking account of the uncertain environment.  To our knowledge this is the first dynamic 
micro model of land allocation under uncertainty estimated on data from the temperate climate zone 
that allows for crop rotation and other crop allocation lags. 

We find substantial differences between short and long-run land allocation effects and also 
substantial variation in the adjustment speeds associated with different crops. For rape and pea we 
find short-run land allocation elasticity with respect to its own per hectare gross margin on the order 
of 0.25 while the corresponding long run elasticity is on the order of 1.37. For winter crops like 
barley and wheat the corresponding elasticities are 1.00 and 2.08, respectively, and for spring barley 
0.97 and 2.49, respectively. Time lags vary substantially between crops with first year effects 
ranging from about 20% (for rape) to 50% (for winter barley and wheat) of long run effects.  Since 
such estimates are lacking in the literature our results may be of interest in other European countries 
and parts of North America that produce under similar climate and economic conditions3. 
 In the next section we present the economic model for the farmer’s optimization problem. In 
section 3 we describe the panel data set used in estimation.  In section 4 we derive the estimable 
equations and discuss the GMM estimators that we apply. In section 5 we present results. 
Conclusions are presented in section 6. 

                                                
3 When comparing studies of farm land allocation across countries and continents it is important to be aware that there 
in addition to differences in climate and basic economic conditions may be important difference in the applied 
agricultural policies and environmental regulations. 
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2. An Economic Model of Land Allocation 
There is a large literature on agricultural multi-crop production where there is an important line of 
division between models that assume input jointness across outputs and models that assume non-
jointness. The standard dual modelling approach is to model agricultural production as a multi-
output production process, where input jointness is assumed across outputs, and to estimate a 
derived system of input demand and output supply functions (see e.g. Heshmati and Kumbhakar 
(1994), Fontein et al. (1994) for applications to micro panel data). Another line of work proposes a 
non-joint production function with fixed but allocatable resources (e.g. land) providing the only 
form of jointness (see e.g. Shumway (1988) and Moore, Gollehon and Carey (1994)). 

Although the argument of non-jointness seems convincing for some inputs (e.g. fertilizer, 
pesticides, sowing seed, tractor fuel etc.), true jointness seems probable for others (e.g. labour and 
capital). In a short run model one might argue that it is reasonable to treat capital and possibly 
labour as fixed but allocatable inputs. However, because there typically are important peak 
utilisation capacity constraints around sowing and harvesting, true jointness seems probable (i.e. 
increasing production of crop 1 will require capital and labour in a peak period when combined with 
crop 2, but in an off peak period when combined with crop 3). 

In the following we assume true jointness for the vector Z  of quasi-fixed labour and capital 
inputs like machinery while inputs like fertilizer, pesticides, sowing seed and tractor fuel are 
assumed to be non-joint. The vector 1 2( , ,..., ,... )j JΩ = Ω Ω Ω Ω is composed of J vectors with vector 

jΩ  indicating the amount of the different non-joint inputs allocated to production of crop j. In the 

short run (within one growing season) land is also assumed to be a non-joint (fixed but allocable) 
input and so the vector 1 2( , ,..., ,... )j JL L L L L= indicates the amount of land allocated to each of the J 

crops while totL  is the total amount of land available. However, positive and negative nutrient and 
disease/pest effects cause interdependence between land allocations in different growing seasons 
manifested through the crop rotation rules practiced by farmers, i.e. the land allocated to crop 1 in 
period 1 affects the amount of land that can be allocated to crop 2 in period 24. In order to capture 
this we must therefore consider crop production over several seasons covering the applied crop 
rotation constraints. Let Τ  indicate this number of growing seasons (years) and τ  an index 
indicating the growing season. Let 1 2( , ,..., ,... )j JY Y Y Y Y=  denote the vector of crop outputs and Θ  a 

vector of stochastic variables capturing random variations in climate and disease/ pest attacks. 
Using these definitions the multi-crop production relationship and profit maximisation problem 
covering a complete crop rotation cycle become:  
 

                                                
4 Note that crop rotation constraints reflect the operational way that a farmer takes account of the multitude of external 
effects generated over time between crops grown on the same plot. Clearly such crop rotation constraints may be 
changed if economic (or climate) conditions change substantially. Here we assume that crop rotation rules and 
constraints applied by the farmer remain unchanged over the price variations covered by our data. 
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where YP , PΩ and ZP  are the input-output prices, and expectations are taken over the joint distribu-

tion of Θ , YP , PΩ and ZP  held by the farmer. The production frontier (.)F is assumed to be quasi-

concave to ensure uniqueness and captures the expected external effects between crops grown at 
different times on the same plot (crop rotation) and between crops grown on different plots during 
the same period (peak capacity constraints) in a steady state where the cycle over Τ  periods is 
repeated continually. Thus (.)F  captures jointness caused by nutrient and disease/pest carry over, 

capital/labour capacity utilisation etc. in long run equilibrium. The (.)F -frontier implies a 

corresponding relationship between mean values of inputs and outputs over the cycle, i.e. 
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since total expected profit Π  is maximised when mean expected profit over the cycle 
Y ZE P Y P P ZΩ⎡ ⎤Π = − Ω −⎣ ⎦ is maximised the long run maximisation problem can be written as:  
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The solution to (2) gives the mean optimal values taken over the crop cycle of the solution to (1)5. 
This is the general formulation of the farmer’s optimisation problem. Three key assumptions are 
introduced to identify a model of land allocation based on crop specific gross margins. Specific 
structure is added to allow us to separation of the farmer’s land allocation problem (capturing all 
dynamic effects) from the short run cultivation intensity problem (intensity of fertilisation, pesticide 
application etc.). Then by conditioning on observed gross margins (that reflect the farmers solution 
to the cultivation intensity problem) it becomes possible to estimate a tractable dynamic model of 
land allocation behaviour. 
 Assumption (i) is that ( )F •  is characterised by weak separability of the partition ( , )Z L  so that  

 

 ( , , , , ) ( , , , ( , ))F Y L Z f Y L L ZΩ Θ = Ω Θ   (3) 
 

                                                
5 When we disregard discounting and price variations in steady state the farmer is also indifferent as to the distribution 
of mean inputs and outputs over the cycle and so in effect (2) solves the farmer’s optimisation problem. (i.e. the farmer 
is indifferent between the various specific solutions to (1) whose mean corresponds to the solution to (2)). 



 5 

Assumption (i) means that labour, capital and uncultivated land combine to produce an intermediate 
input that we could call cultivated land (L). Clearly, cultivating a given land area for different crops 
requires different levels and timings of capital and labour utilisation over the growing season 
depending on when and how crops are sown, fertilised, sprayed with pesticides, harvested and 
stubbles ploughed. Dependencies among crops are captured in the (.)L function, for example 

combining winter and spring crops may require a lower level of available capital and labour 
capacity than only growing spring crops. The implication of the assumed separability is that labour 
and capital capacity requirements are independent of yield and variable input (e.g. fertilisation and 
pesticide) levels applied in the relevant range covered by our data, i.e. that: 
  

 

/ /
0 for all , , ,

/ /
i i

k j g j

dL dZ dL dZd d
i j g k

dY dL dZ d dL dZ
= =

Ω   (4) 
 

and conversely that  and 
k g

df df

dY dΩ
are independent of the specific combination of Z-vector inputs 

producing a given vector of cultivated land (L). Though restrictive the assumed independence does 
not seem blatantly unreasonable, i.e. the labour, combine and tractor capacity needed to sow, 
harvest and fertilise depend primarily on the amount and quality of land to be covered and not on 
the specific yield to be harvested or the amount of fertilizer applied.  

Assumption (ii) is that cultivated land is a non-joint input in the ( , , , ) f Y LΩ Θ  relationship 

so that also utilizing non-jointness of Ω - inputs makes it possible to specify the general relationship 
0 ( , , , )f Y L= Θ Ω in (4) as: 

 

 
( , , )  for all jj j j jY f L= Ω Θ

  (5) 
 
This assumption is more restrictive. It amounts to assuming that the crop rotation rules and con-
straints applied by the farmer ensure the same expected relationship between output and Ω -inputs 
irrespective of land allocation to other crops. Thus, these rules and constraints restrict the farmers 
land allocation possibilities (captured by the (.)L ), but when the farmer respects these restrictions 

expected yields of a given crop are not affected by land reallocation between other crops. These 
restrictions capture the basic idea behind farmers following crop rotation rules, but some crops may 
be used in two or more rotation systems resulting in different mean yields for the given crop. If land 
reallocation implies shifts between such rotation systems mean yields may be affected. However, 
this effect is probably and the fact that our model allows for crop rotation induced jointness through 
the (.)L  function relaxes the usual straight non-jointness assumption used in many other studied.  

 Assumption (iii) is that crop production functions ( , , )j j jf LΩ Θ  are homogenous of degree one 

in jL  and jΩ . This implies constant returns to scale in land and Ω -inputs. This assumption seems 

reasonable off hand and a study using the same data set (Hansen and Jensen, 1998) supports it.  
Assumption (iii) allows us to normalise so that equation (5) can be rewritten as a per hectare 

production function: 

 
( , )  for all jj j jy f ω= Θ

 (6) 
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where jy j
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=  and we have dropped land in the functional expression. After inserting (6), 

(3) and L L=  into (2) and normalising with totL  the farmer=s maximisation problem becomes: 
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This maximisation problem can be solved in two separate steps. The cultivation intensity problem is 
solved by deriving first order conditions for each non-joint input separately by differentiating the 
Lagrangian with respect to jω . Given the optimal combination of the non-joint inputs *

jω  we define 

the optimal per hectare expected gross margin * * *
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allocation problem become:  
 

 1 1

J-1
* * * *

,...,
j=1

( ) ( , )
J

Z tot
J j J j

l l
Max P P P l P A l Lπ

−

= + − −∑
 (8) 

 
Let *l denote the solution vector to (8) where crop J is not included in l  but residually given by the 
land constraint. Farmers are able to adjust to *ω  immediately from growth season to growth season 

whereas adjustment toward *l  may only be possible with a lag covering several growth seasons. 

 Though the gross margins ( *
jP ) and the capital/labour costs ( *ZP ) that the farmer expects will 

apply in optimum are not observed in our data we do observe realised land allocations, crop specific 
realised gross margins and indicators of realised capital/labour costs. This formulation of the 
farmer’s problem therefore allows us to utilize the available data efficiently by focusing on the 
farmer’s second stage land allocation problem. Empirical implementation requires assuming non-
jointness of cultivated land. This implies that when we allow for jointness caused by crop rotation 
we have to assume that if a farmer chooses to use a given crop in two or more different rotation 
systems in optimum the resulting gross margins for this crop are the same. This is a restrictive 
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assumption but, much less so than the straight land non-jointness assumption that rules out jointness 
caused by crop rotation altogether used in many other studies.  

   
3. The data 
The estimations are based on a panel data set provided by Landbrugets Rådgivningscenter (The 
Danish Agricultural Advisory Centre). The panel data set is unbalanced covering twelve years 
(1980 to 1991) with, on average, 1350 farms represented each year. 

Data are gathered through a voluntary programme involving intensive consultations, which is run 
by the Danish Farm Associations Extension Service. While not a random sample participating 
farmers a priori are motivated and have an incentive to provide data of high quality.  

For each farm data include detailed annual accounts of variable costs for each crop (and for each 
branch of animal husbandry) along with corresponding accounts of quantitative flows of most 
relevant inputs and outputs (e.g. fertilizer, pesticides, seed, crop yield, etc.). This allows us to 
calculate realized gross margins defined as income net of variable non-joint costs at the crop level. 
To avoid estimation intricacies of handling of corner solutions (see e.g. Weaver and Lass (1989)) 
we selected farms that produced all modeled crops for at least five consecutive years. To sustain a 
reasonable number of farms in the long panel, we base our model on three crop aggregates: (i) 
winter wheat, winter rye, and winter barley; (ii) spring rape and pea; (iii) spring barley. The 
aggregates are chosen so that crops in the same aggregate hold the same position in the crop 
rotation systems typically used by Danish farmers. In addition to the required production, some of 
the selected farms also produce crops not included in the three groups while others also produce 
pigs.  For swine producers, pig production typically dominates value added and does not depend on 
growth of fodder crops. Hence, the optimal level of pig production is probably not influenced 
substantially by land allocation decisions.  Further, a substantial part of land allocated to ‘other 
crops’ is used to grow sugar beets, potatoes and specialty crops typically on more lucrative long-
range contracts. Existence of such contracts makes it less likely that optimal land allocation to 
‘other crops’ will be influenced substantially by changes in gross margins of the crops on which we 
focus. Thus, these production lines are not modeled, but included as conditioning variables. We 
dropped dairy farms from the selected sample because of endogeneity problems generated when the 
estimated model is conditioned on this ‘extra’ output. 

Given these criteria, the data contain 226 farms in the selected panels covering 1980-1991 with 
1379 observations in all. Farms in the panel are observed for at least 5 and up to 11 years with more 
than half of the farms observed for 6 years or more (the structure of the panel is reported in table 1). 
Per hectare gross margins are calculated for each crop for each farm for each year as income from 
crops minus the following variable cost elements: pesticides, fertilizer, manure, phosphorus, 
calcium, sowing seed, energy for crop drying, tying string, machine station services and tractor fuel. 
We calculate single price indices for capital and labor services for each farm using the costs for 
labor and capital for each farm as well as average farmhand wages and list prices for capital for 
Denmark. 

Table 2 presents means and standard deviations for land shares gross margins and other key 
variables. Note that total land on average amounts to 115.4 hectares, while less than 25 hectares are 
allocated to the other crops. Thus farms included in estimation utilize about 80 percent of the total 
land for crop covered by our model. Pig production averages 7.8 tons per farm. Figure 1 reports the 
average land shares, gross margins and capital and labor price index across time. Note that the 
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average spring barley land share decreased until the mid-1980s while winter crop average land 
share increased. During this period profitability of winter crops increased because of new pesticides 
which were more effective against pest/disease attacks in winter crops. However, gross margins are 
also affected by variations in climate/weather conditions, in particular the large decreases in gross 
margins between 1985 and 1987 were primarily caused by low yields due to bad weather conditions 
in the growth and harvest seasons. 
 
4. Estimation  
We estimate the farmers’ second stage land allocation problem as formulated in (8). The model 
includes farms that in addition to the three modelled crop aggregates also grow other crops (mainly 
potatoes and sugar beats on long term contracts) or have pig production. For these farms land 
allocation is conditional on the level of these additional outputs. Thus, from (8) we have a single 
valued *(.) ( , , )totA A L= l c where *c  is a vector of the two conditioning variables (pig production in 

tons and land cultivated with other crops in hectares) that the farmer expects will apply in long run 
optimum.6 This formulation also applies for core crop farms only growing the three crop groups 
(conditioning variables in this case have the value zero).  

We assumed the quadratic functional form for * *( , , ) ' ' ' ' ' 'tot totA L= + + +l l c l a l A l l a l A c  so that 

the J-1 first order conditions of the constrained maximisation problem then become:  
 

 
* * *totL= + + +l b Bp b Bc  (9) 

 

where 1 1 1 1, , , '− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − = − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦b A a B A b A a B A A  and 
* * *

* 1 3
* * *

2 3

( ) /

( ) /

Z

Z

P P P

P P P

⎡ ⎤−
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p  all 

vectors being 2x1 and matrices 2x2. Like *l the *p -vector does not have an element corresponding 

to crop 37. B is symmetric (by the standard differentiability properties of the profit function and 
derived demands), homogeneity is maintained by normalisation so the eliminated crop 3 equation is 
obtained residual calculation.   
 Equation (9) defines long run optimal land allocation as a function of adjusted gross margins and 
conditioning variables expected by the farmer to apply in the long run. To allow for slow 
adjustment to the optimal land allocation *l defined in (9) we assume a partial adjustment process, 
i.e.: 

 
*

1 1( )t t t t tV− −= + − +l l l l e  (10) 
 

                                                
6 In the following we use standard convensions for matrices, vectors and scalars, i.e. matrix names are always in bold 
capitals, vectors in bold noncapitals and scalars in nonbold. 
7 Differentiating (8) after inserting the quadratic functional form gives: 

* *
*1 3

* *
2 3

( )
( ' ' )

( )
Z totP P

L
P P

⎡ ⎤−
+ + + + = ⇔⎢ ⎥−⎣ ⎦

P a A l a A C 0

1 1 * 1 1 'totL− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦l A a A p A a A A C   
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where te  is a 2x1 vector of stochastic error terms and V  is a 2x2 diagonal matrix of adjustment 

speed parameters with values between zero and 1. 
 At time t the farmer holds an expectation of the vector of adjusted gross margins that will apply 
in long run optimum ( *

tp  where t indicates that this is the expectation held by the farmer at time t). 

We assume that current and previous year realised adjusted gross margins in a linear combination is 
an unbiased (though uncertain) indicator of this expectation, i.e. that  
 

 
*

1t t t t−= + +p Dp Dp q  (11) 
  
where tp  is the vector of adjusted gross margins realised at time t, D and D  are 2x2 diagonal 

matrices of parameters where = −D I D and tq  is a 2x1 vector of stochastic error terms. 1t−p  is the 

latest observed adjusted gross margin when period t land allocations are decided at the beginning of 
the growing season and so the indicator allows for static expectations. Inclusion of tp  allows for 

some element of quasi-rational expectations or predictive ability (see e.g. Burton and Love, 1996) 
since tp  is not observed at the time of land allocation (note that the D parameters are estimated and 

so D  may be zero). Given our data constraints the assumed expectations model does not seem 
unduly restrictive.  
 At time t the farmer also knows or predicts the vector of conditioning variables that will apply in 
long run optimum. Here we again assume that current and previous year realised values in a linear 
combination is an unbiased (though uncertain) indicator of this prediction/expectation, i.e. that  
 

 
*

1t t t t−= + +c Gc Gc w  (12) 
 

 where tc  is the vector of conditioning variables realised at time t, G andG  are 2x2 diagonal 

matrices of parameters and tw  is a 2x1 vector stochastic error term. Equation (12) allows for 

sluggish adjustment of optimal values of conditioning variables by letting the indicator depend on 
both their current level and growth rate. 
 Inserting (9), (11) and (12) in (10) gives the equation system to be estimated for each farm: 

 

 
[ ] [ ]1 1 1

tot
t t t t t t t tL− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= + + + + + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦l VBD p VBD p Vb VBG c VBG c I V l u

 (13) 
 
where [ ]t t t t= + − −u Vb e VBq VBw  is a 2x1 vector of error terms and the square parentheses 

indicate the parameters to be estimated.  
 In estimation there is a set of equations (13) for each farm in the panel. We allow the vector of 
constants [ ]Vb  to be farm specific while all other parameters are assumed to be common for all 

farms in the sample. However, a number of potential bias problems must be taken into account: 
First, since we condition on interior solutions for at least 5 consecutive years one might be 

concerned that this sample selection causes estimation bias. This does present a potential bias 
problem since e.g. small farms (with only a few plots that it is efficient to farm separately) and 
farms with a small optimal average land allocation to certain crops more often will have years with 
zero crop growth because of crop rotation rules. We see this type of effect of the selection criteria 
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since mainly big farms are selected. Addressing this problem through a standard sample selection 
approach such as Heckman (1979) would imply estimation of a vector of time invariant but farm 
and crop specific Mills Ratios that should be added to the equations of (13). Controlling for 
unobserved time invariant heterogeneity in this way would ensure consistent estimates for the 
selected sample. Of course, the model would then only apply to the selected panel farms not to the 
whole population of Danish farmers. 
 Second, the gross margin covariates tp  and 1t−p  and conditioning variables tc  and 1t−c  are 

components of errored indicators and therefore correlated with tu  requiring instrumentation.  

 Third, inclusion of the lagged dependant in (13) may also cause estimation bias if error terms are 
serially correlated also requiring instrumentation.  

 
To take account of these three potential bias problems efficiently the unrestricted system (13) is 
estimated using the GMM-diflev estimators suggested by Arellano and Bover (1995) and Blundell 
and Bond (1998).  

Although, derived for single equation models the GMM-diflev estimator is easily generalised to 
handle multiple equations models exploiting the cross equation correlation to gain more efficiency. 
The standard econometric approach for linear dynamic panel data models is to first difference the 
equations to remove the unobserved permanent heterogeneity. This solves the first potential bias 
problem. Lagged levels of the covariates as instruments for the predetermined or endogenous 
covariates  solves in the second and third potential bias problems. 

The first and second lag may be correlated with the error components in first differences so we 
use earlier lags. Each instrument, t sm − , for the covariates in the equations of (13) must satisfy the 

following two moment restrictions for the equation system in first differences of each farm: 
 

 
( )1 0        3;     4,5,...,t s t tE for s t T− −− = ≥ =⎡ ⎤⎣ ⎦m u u

 (14) 
 

In a conventional 2SLS framework the instrument t s−m  can be the lagged levels of the covariates or 

the lagged differences of the covariates similar to an approach suggested by Anderson and Hsiao 
(1982). However, we can increase efficiency by exploiting the additional moment restrictions that 
are given in equation (13), i.e. by also using lags earlier than the third as instruments and by using a 
weight matrix that takes into account that t∆u  follow MA(1)-processes, if tu  are i.i.d. or that tu  

might be heteroscedastic. This is what the GMM estimator for single equations suggested by 
Arellano and Bover (1995) does and so this estimator may be viewed as a system of equations, one 
for each year, where the number of instruments increases for each year. Thus, in the equation for t-
=4, observations for t=1 may be used as instruments, while for t=5, observations for both t=1 and 
t=2 may be used.  

More efficiency is to be gained by also using the equations in levels with lagged differences as 
instruments with the following two moment restrictions for the equation system in levels of each 
farm: 

 

 [ ] 0   2;     4,5,...,t s tE for s t T−∆ = ≥ =m u
 (15) 
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where t s−∆m is the lagged first differences of a covariate, which may be used as an instrument. Note 

that since we only use instruments in first differences with the levels equations we do not 
reintroduce selection bias caused by the omitted mills ratios. 

We use two types of weight matrices for the GMM estimators. One weight matrix takes account 
of the MA(1) structure of the first differenced disturbances and assumes no cross equation 
correlation and homoscedasticity. This estimator can be estimated in one step and thus is denoted 
the one-step GMM estimator. The other weight matrix is consistent under heteroscedasticity and 
exploits all the cross equation correlation both between disturbances of the same lag and between 
different lagged disturbances. This estimator uses the residuals from the one-step estimator to 
calculate the heteroscedasticity and cross equation correlation consistent weight matrix after the 
same principle as in White (1980). The estimator is calculated in two steps and thus is denoted the 
two-step GMM estimator. Even though the two-step GMM estimator in theory is more efficient, 
Monte Carlo studies by Arellano and Bond (1991) indicate that the one step estimate of the 
covariance matrix and thus statistical inference is more reliable so we report results from both 
estimators.  

As instruments for the equations in differences we use the gross margins and the conditioning 
variables in third and higher lagged levels. Also, we use the land shares in third and higher lagged 
levels. For the equations in levels we use these variables in second and higher lagged differences. 
Total land is instrumented with itself in both types of equations. As a general test of the validity 
(exogeneity) of the chosen set of instruments and lags we apply the two step Sargan test of over-
identifying restrictions for correlation between the residuals and the instruments (Arellano and 
Bond (1991)). We also test for second order serial correlation as a specific indicator of the validity 
of the chosen instrument lag structure. If the M2 test provides evidence of second order serial 
correlation in the first differenced residuals, this would indicate endogeneity of the third lag level in 
the difference equations and so e.g. indicate that farmer expectations are based on earlier lags than 
assumed in our model. Finally, a specific check of the modelled dynamics (the important lagged 
dependent variable parameters) is possible by estimating indicators of the upper and lower bounds 
on the true parameter values. An indicator of the lower bounds emits from the within groups 
transformed model using the seemingly unrelated regression estimator while treating all right-hand 
side variables as exogenous. This estimator is downwards biased because the lagged dependent 
variable is negatively correlated with the error term. The lagged dependent variable parameters 
estimated in the dynamic model in levels is an indicator of the upper bound. This estimator is 
upwards biased because the lagged dependent variable is positively correlated with unobserved 
permanent heterogeneity that is dumped into the error term. However, in our case the estimated 
bounds may also be affected by bias ‘the wrong way’ because of the measurement error 
components in the error term and so should not be interpreted rigorously. 
 A number of other tests and checks of the estimated model can be derived. We expect parameters 
to the crops own gross margin to be positive 

( [ ] [ ]1,1 2,21,1 2,2
0 ,0 ,0 ,0⎡ ⎤ ⎡ ⎤≤ ≤ ≤ ≤⎣ ⎦ ⎣ ⎦VBD VBD VBD VBD  and that the parameters to the lagged land 

shares are between 0 and 1 (i.e. [ ] [ ]1,1 2,2
0 1,0 1≤ − ≤ ≤ − ≤I V I V  ). It is also clear from (13) that 

two common factor restrictions: 
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[ ] [ ]1, 2,1, 2,

/ /
i ii i
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦VBD VBD VBD VBD

for i=1,2  (16) 
 
should apply to the estimated system. Finally the theoretical model implies symmetry of B which 
combined with the = −D I D  constraint emits the following restriction on the estimated 
parameters: 
 

 
[ ] [ ] [ ] [ ]1,2 1,1 2,1 2,21,2 2,1

( ) / ( ) /⎡ ⎤ ⎡ ⎤+ − = + −⎣ ⎦ ⎣ ⎦VBD VBD I V VBD VBD I V
 (17) 

 
which also should apply. The parameter restrictions (16) and (17) are implemented and tested using 
the Minimum Distance Estimator (E.g. Greene (2000)). 
 
5. Results 
In the first and second columns of table 3 we report parameters, standard errors, Sargan and M2 
correlation tests of system (13) estimated without restrictions (16) and (17) using the one and two-
step GMM-estimator. The Sargan test of overidentifying restrictions is accepted and the M2 test 
statistic indicates no evidence of second order serial correlation and so the specification tests do not 
indicate endogeneity problems with the chosen set of instrument variables and lags. We see that the 
estimated parameters are almost equal for the two estimators and that many are significant. 
Specifically parameters to the crops own gross margin are typically significant and with the 
expected sign. Some of the conditioning variable parameters are significant indicating that the 
estimated system is not separable from other farm production and that conditioning is necessary. 
Finally, both parameters to the lagged land shares (indicating the size of the adjustment time lag) 
are highly significant and within the required [0,1] bound. The winter crop parameter is also well 
within the estimated upper and lower bound indicators while corresponding rape parameter exceeds 
the upper bound slightly. However, as noted above, the bound indicators are known to be inaccurate 
in models with measurement errors and so this does not seem worrying8.  

Since parameters emitted by the two estimators are almost identical, but inference from the one 
step estimator is more reliable (as noted above) we base our tests of restrictions on this model. 
Parameter estimates and restriction test when imposing common factor restrictions (16) and when 
imposing both the common factor and the combined expectation and symmetry restriction (17) are 
reported in column 3 and 4 of table 4, respectively. We see that both the common factor restrictions 
and the joint common factors and expectation and symmetry restrictions are accepted. Consistent 
with this most of the significant estimates of the restricted models are similar to the corresponding 
estimates of the unrestricted model. In conclusion, the model seems well specified, soundly 
estimated and consistent with the underlying theory. 
 In table 4 column 1 to 3 we present short and long run land allocation elasticities derived from 
the estimated parameters of the three models. Adjustment proportions ( [ ] ,

1
i i

− −I V ) indicate the 

proportion of the long run land allocation effect implemented each year (e.g. if the adjustment 
proportion is 1 we have immediate adjustment to optimum). The short run elasticities are defined as 

                                                
8 The estimated bounds on the parameter for the lagged winter crop land shares is [0.21;84] and the bounds on the rape 
and pea land shares is [1.6E-3;0.79]. 



 13 

[ ] , ,
13 3

/ /
( ) ( )

( / ) ( / )
jt qt zt jt qt ztit it

i j i j
jt jt qt zt it qt zt itj j

dp P P dp P Pdl dl

dp dp d P P l d P P l−< <
⎡ ⎤+ = + ⎣ ⎦∑ ∑ VBD VBD  for i=1,2 and 

q=1,2,3 reflecting the first year effect on land share i of a permanent increase in the gross margin of 
crop q9. The long run elasticity is found by dividing the short run elasticity by the adjustment 
proportion and this elasticity reflects the land allocation effect after full adjustment10. Elasticities 
are evaluated at the sample mean gross margins and land shares and the asymptotic standard errors 
are derived using the delta method. 

 First we note that the estimated adjustment proportions vary substantially between crops from 
0.48 for winter crops to 0.18 for spring rape and peas. The difference between these estimates is 
highly significant with the constant time lags restriction [ ] [ ]1,1 2,2

− = −I V I V being rejected 

strongly. The corresponding adjustment proportion for spring barley is 0.39.11 Thus the adjustments 
for winter crops and spring barley are slow and very slow for rape and pea. Overall this indicates 
that crop rotation and other restrictions make fast adjustment to changes in the current gross 
margins difficult.  
 The elasticities are almost equal across the models. All the own gross margin elasticities are 
significant across all the models with the exception of the long run own gross margin elasticity for 
rape and pea in the model with all restrictions imposed. For all models the long run own gross 
margin winter crops elasticity is about 2 and the short run elasticity is about 1 and for spring barley 
of about same magnitude (about 2.4 and 1.0). For rape and pea the long run and short run 
elasticities exceeds 2.3 and 0.4 in the unrestricted and common factor restricted models while 
drooping by about 40% in the most restricted model. Thus, short run elasticities vary substantially 
between crops, while long run elasticities end to be more aligned.  
 Turning to the cross gross margin results we see that most crops are substitutes. However, winter 
crops and rape and pea may be complements. Thus, the long run rape and pea elasticity with respect 
to the winter crops gross margin is 0.49 and the winter crops elasticity with respect to the rape and 
pea gross margin is 0.21 – both significant in the model with all restrictions imposed. 

 Figure 2 reports the development in the cumulated land share elasticity with respect to a 
permanent rise in the own gross margin at year 1. We see that already at year 2 the cumulated 

                                                
9 Note that by the definition of *p  below equation (8) / ( / )jt qt ztdp d P P  equals 1 for (j,q)=(1,1) and (2,2), equals 0 
for (j,q)=(1,2) and (2,1), and equals -1 for (j,q)=(1,3) and (2,3).   
10 For the numeraire crop 3 short run elasticities with respect to gross margin q are calculated residually (using the land 
share adding up condition) as: 

1 33 3

/
( )

( / )
jt qt ztit it

jt jt qt zt ti j

dp P Pdl dl

dp dp d P P l−< <
− + ⇔∑∑ [ ] , ,

33 3

/
( )

( / )
jt qt zt

i j i j
qt zt ti j

dp P P

d P P l< <
⎡ ⎤− + ⎣ ⎦∑∑ VBD VBD  

  

while the corresponding long run elasticity is 
[ ]

[ ]
, ,

33 3 ,

/

1 ( / )

i j i j jt qt zt

qt zt ti j i i

dp P P

d P P l< <

⎡ ⎤+ ⎣ ⎦
−

− −∑∑
VBD VBD

I V
. The average 

adjustment proportion for the numeraire crop can then be found by dividing the derived short run elasticity by the 
derived long run elasticity. 
11 The estimate is derived from the short run and long run spring barley gross margin effects on the spring barley land 
share. 
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elasticities deviate a lot from short run elasticities. At year 6 winter crops have almost fully 
adjusted. Adjustment for rape and pea takes on the order of 15-20 years.  

Since data limitations in some cases rule out estimation of dynamic models it may be of interest 
to compare results from the dynamic model estimated here with a corresponding static model esti-
mated on the same data set. We have estimated a static version of the model with instant adjustment 
to the optimal land allocation system (i.e. setting [ ] [ ]1,1 2,2

0, 0− = − =I V I V ). The estimated 

elasticities are reported in table 4 column 4 to 6 and the parameter estimates in the appendix (table 
A1). As expected specification tests indicate misspecification (see column 2 of table A1). It is, 
however, notable that the gross margin short run elasticities in the static model are similar to the 
corresponding short run elasticities derived from the dynamic model (see table 4). Thus, even 
though misspecified it seems that a static model is able to recover elasticity estimates that are close 
to the ‘true’ short run elasticities in our data set. In particular this applies to the own gross margin 
elasticities. However, without knowledge of the adjustment lags that characterise the farmers in 
question it may still be difficult to use these estimates for evaluation of policy or price scenarios. 
This is illustrated in figure 2 where we see that cumulative land allocation elasticities after just 2-3 
years differ by a factor 2 from the first year short run elasticities that may be recovered by a static 
model. Further, it is notable that because of difference in adjustment speeds short run elasticities do 
not even give an accurate picture of ratios between crop elasticities after a few years. After 3 years 
some ratios have changed by about a factor 2.  
 
6. Conclusion 
Using a long micro panel with crop level data on acreage and gross margins we estimate a dynamic 
model of land allocation that takes account of all the major causes of land allocation lags (expecta-
tions adjustment, investment lags and crop rotation because of pest/disease considerations and 
nutrient carry over). The identifying assumptions do not seem overly restrictive and the empirical 
model seems soundly estimated and consistent with the underlying theory. 

We find substantial differences between short and long run land allocation effects and also 
substantial differences in the adjustment speeds estimated for different crops. For rape and pea we 
find a short run land allocation elasticity with respect to its own gross margin on the order of 0.25 
while the corresponding long run elasticity is on the order of 1.4. For winter crops like barley and 
wheat the corresponding elasticities are 1.0 and 2.1, respectively, and for spring barley 1.0 and 2.5, 
respectively. Time lags vary substantially between crop with first year effects ranging from 18% 
(for rape) to 48% (for winter barley and wheat) of long run effects.  

This implies that even if a static model is able to recover short run (first year) elasticity 
estimates (as is the case on our data set – to some extent) use of these for policy and price scenario 
evaluations should be done with great caution since cumulative elasticity levels and ratios have 
changed substantially after just 2-3 years.  
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Table 1. Panel Structure 
Years Number of firms Number of observations 
5         
6         
7               
8         
9         
10         
11 

103 
53 
38 
15 
11 
5 
1 

515 
318 
266 
120 
99 
50 
11 

 226 1379 
 



Table 2: Means and Standard deviations 
 Mean std min max 
Year 
Winter crop land share 
Spring barley land share 
Rape and pea land share 
Winter crop gross margin 
Spring barley gross margin 
Rape and pea gross margin 
Cultivated land with other crops (hectares) 
Pigs 
Total land (hectares) 
Capital and labour index 

1985.26 
      0.42 
      0.39    
      0.19 
6714.04 
5433.12 
5977.28  
    24.03 
      7.82 
    91.38 
  148.91 

      2.77 
      0.18 
      0.17    
      0.08 
2069.36 
1649.79 
2396.00 
    30.72 
      9.90 
    77.99 
    22.21 

 1980.00 
       0.01 
       0.04     
       0.02 
    -27.14 
   279.59 
-2476.00 
       0.00 
       0.00 
     11.20 
   100.00 

  1991.00 
        0.87 
        0.92    
        0.63 
12784.17 
11457.22 
16962.76 
    195.40 
      81.80 
    427.00 
    193.67 
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Figure 1: AVERAGE LAND SHARES, GROSS MARGINS AND 
CAPITAL AND LABOUR INDEX ACROSS TIME 



Table 3. Parameter Estimates Dynamic Model 
 Unrestricted model Common 

Factor 
Restriction1 

Combined 
Restriction1 

Winter Crops Equation: Estimated 
Parameter to: 

One step Two step One step One step 

Relative winter crop gross margin 
 
Relative winter crop gross margin (lagged) 
 
Relative rape & pea gross margin 
 
Relative rape & pea gross margin (lagged) 
 
Cultivated land with other crops  
 
Cultivated land with other crops (lagged) 
 
Pigs 
 
Pigs (lagged) 
 
Total land 
 
Lagged winter crop land share 
 

 1.8 E-5** 
(8.7 E-6) 
 6.9 E-5*** 
(8.7 E-6) 
-1.2 E-5 
(8.8 E-6) 
 1.8 E-5** 
(8.7 E-6) 
 3.9 E-3*** 
(1.0 E-3) 
-1.8 E-4 
(1.2 E-3) 
-6.2 E-4 
(2.3 E-3) 
 7.4 E-3*** 
(2.4 E-3) 
-2.3 E-4 
(2.7 E-4) 
 5.3 E-1*** 
(5.5 E-2) 

1.7 E-5*** 
(6.3 E-6) 
 7.1 E-5*** 
(2.8 E-6) 
-1.5 E-5*** 
(2.6 E-6) 
 1.7 E-5*** 
(2.2 E-6) 
 3.9 E-3*** 
(1.8 E-3) 
-3.7 E-4 
(2.7 E-4) 
-1.2 E-3* 
(6.7 E-4) 
 8.0 E-3*** 
(7.6 E-4) 
-1.8 E-4*** 
(5.9 E-5) 
 5.3 E-1*** 
(1.5 E-2) 

1.7 E-5**  
(8.6 E-6) 
 6.6 E-5*** 
(7.9 E-6)2 
-4.7 E-6    
(4.4 E-6)   
 2.2 E-5*** 
(7.8 E-6)  
 4.0 E-3*** 
(1.0 E-3)  
-2.9 E-3    
(1.2 E-3)   
-2.9 E-3    
(2.3 E-3)   
 7.2 E-3*** 
(2.4 E-3)  
-2.2 E-4    
(2.7 E-3)   
 5.1 E-1*** 
(5.4 E-2)  

1.7 E-5**   
(8.4 E-5) 
 6.9 E-5*** 
(7.4 E-6) 2 
-9.3 E-6**   
(4.4 E-6)    
1.9 E-5***  
(6.5 E-6)   
 4.0 E-3***  
(1.0 E-3)   
-2.9 E-4     
(1.2 E-3)    
-3.9 E-4     
(2.2 E-3)    
 6.9 E-3***  
(2.4 E-3)   
-2.0 E-4     
(2.7 E-4)    
 5.2 E-1***  
(5.4 E-2)   

Rape and Pea Equation: Estimated 
Parameter to: 

    

Relative winter crop gross margin 
 
Relative winter crop gross margin (lagged) 
 
Relative rape & pea gross margin 
 
Relative rape & pea gross margin (lagged) 
 
Cultivated land with other crops  
 
Cultivated land with other crops (lagged) 
 
Pigs 
 
Pigs (lagged) 
 
Total land 
 
Lagged rape & pea land share 
 

-1.5 E-6 
(4.2 E-6) 
-6.9 E-6 
(5.6 E-6) 
-3.0 E-6 
(5.5 E-6) 
 2.6 E-5*** 
(4.8 E-6) 
-4.3 E-4 
(6.6 E-4) 
-5.3 E-4 
(6.4 E-4) 
 3.2 E-4 
(1.0 E-3) 
-9.3 E-5 
(1.3 E-3) 
 4.8 E-4*** 
(1.4 E-4) 
 8.1 E-1*** 
(7.3 E-2) 

-1.3 E-6 
(1.4 E-6) 
-7.4 E-6*** 
(1.6 E-6) 
-1.9 E-6 
(1.4 E-6) 
 2.4 E-5*** 
(1.2 E-6) 
-5.1 E-4*** 
(1.4 E-4) 
-3.0 E-4* 
(1.8 E-4) 
 3.1 E-4 
(2.8 E-4) 
-2.8 E-4 
(3.1 E-4) 
 4.3 E-4*** 
(3.2 E-5) 
 8.4 E-1*** 
(1.6 E-2) 

-1.5 E-6    
(1.6 E-6)   
-5.9 E-6    
(5.1 E-6)   
-5.3 E-6    
(4.8 E-6)   
 2.5 E-5*** 
(4.5 E-6) 2 
-4.4 E-4    
(6.4 E-4)   
-5.6 E-4    
(6.3 E-4)   
 2.4 E-5    
(9.8 E-4)  
 7.9 E-5    
(1.3 E-3)  
 4.9 E-4*** 
(1.4 E-4)  
 8.2 E-1*** 
(7.3 E-2) 

 7.1 E-7     
(5.4 E-7)   
 3.0 E-6*    
(1.6 E-6)   
-1.1 E-5***  
(3.7 E-6)    
 2.3 E-5*** 
(4.2 E-6) 2 
-5.2 E-4     
(6.4 E-4)    
-4.4 E-4     
(6.3 E-4)    
-9.8 E-5     
(9.8 E-4)    
 2.1 E-5     
(1.3 E-3)   
 4.3 E-4***  
(1.3 E-4) 
 8.2 E-1*** 
(7.3 E-2) 2 

Sarg 
M2 

2Min χ  

 
1.4 p=0.16 
 

188 (178) p=0.29 
1,4 p=0.15 

 
 
 
0.9 (2) p=0.62 

 
 
 
4.2 (3) p=0.34 

1 Minimum Chi Square Estimates. 
2 Asymptotic standard error derived using the delta method. 
* indicates that the parameter is significant at a 10% level.  
** indicates that the parameter is significant at a 5% level.  
*** indicates that the parameter is significant at a 1% level. 
 



Table 4: Elasticities Dynamic/Static Model 
Winter 
Crops 

Rape and 
Pea 

Spring 
Barley 

Winter 
Crops 

Rape and 
Pea 

Spring 
Barley 

 Mean Gross Margin 

 

Dynamic Model Static Model 
Short Run 
Winter Crops 
 
 
 
 
 
 
Rape and Pea 
 
 
 
 
 
 
Spring Barley 
 
 
 
 
 
 
Long Run 
Winter Crops 
 
 
 
 
 
 
Rape and Pea 
 
 
 
 
 
 
Spring Barley 
 
 
 
 
 
 
Adjustment proportion1 

 
 1.020*** 

(0.122) 
 0.964*** 
(0.118) 
 0.998*** 
 (0.118) 
 
-0.204 
(0.166) 
-0.180 
(0.158) 
 0.089* 
(0.045) 
 
-0.858*** 
(0.146) 
-0.817*** 
(0.132) 
-0.970*** 
(0.113) 
 
 
 2.136*** 
(0.386) 
1.980*** 
(0.341) 
2.084*** 
(0.346) 
 
-1.079 
(1.023) 
-0.988    
(1.009) 
0.489**  
(0.228) 
 
-1.505** 
(0.622) 
-1.400** 
(0.587) 
-2.161*** 
(0.375) 
 
0.479 

 
 0.065 
 (0.146) 
 0.181** 
(0.082) 
 0.101**  
(0.046) 
  
 0.498*** 
(0.157) 
0.425*** 
(0.141) 
 0.248**  
(0.104) 
 
-0.284* 
(0.146) 
-0.359*** 
(0.126) 
-0.205*** 
(0.079) 
  
 
 0.137 
(0.302) 
 0.371**  
(0.163) 
 0.210**  
(0.093) 
 
 2.637** 
(1.350) 
 2.330* 
(1.272) 
 1.367    
(0.922) 
 
-1.311* 
(0.694) 
-1.392** 
(0.668) 
-0.810  
(0.627) 
 
0.182   

 
-0.885*** 
(0.124) 
-0.946*** 
(0.111) 
-0.901*** 
(0.101) 
 
-0.288** 
(0.130) 
-0.241** 
(0.115) 
-0.298*** 
(0.110) 
 
 0.954*** 
(0.128) 
 0.989*** 
(0.121) 
 0.972*** 
(0.117) 
 
 
-1.855*** 
(0.309) 
-1.942*** 
(0.297) 
-1.880*** 
(0.290) 
 
-1.523* 
(0.866) 
-1.318* 
(0.793) 
-1.640 
(1.326) 
 
 2.411*** 
(0.513) 
 2.400*** 
(0.494) 
 2.487*** 
(0.493) 
 
0.391 

 
0.964*** 
(0.196) 
 0.855*** 
(0.170) 
 0.962*** 
(0.177) 
 
 0.038    
(0.191) 
-0.128    
(0.157) 
0.090    
(0.077) 
 
-0.915*** 
(0.240) 
-0.739*** 
(0.173) 
-0.936*** 
(0.169) 
 
 
 
 
 
 
 
 
 
 

 
 0.359*  
(0.203) 
 0.209*  
(0.115) 
 0.039 
(0.034) 
 
 0.435** 
(0.197) 
 0.387** 
(0.198) 
0.075 
(0.064) 
 
-0.530** 
(0.249) 
-0.369* 
(0.200) 
-0.070 
(0.060) 

 
-1.108*** 
(0.210) 
-0.883*** 
(0.153) 
-0.815*** 
(0.153) 
 
-0.427** 
(0.177) 
-0.248* 
(0.133) 
-0.141 
(0.120) 
 
 1.223*** 
(0.256) 
 0.934*** 
(0.188) 
 0.822*** 
(0.169) 

Note: Asymptotic standard errors in brackets are derived using the delta method. Common factor restricted 
estimates in italics. In bold, restricted estimates derived from the common factor and the combined, 

D I D= −  and symmetry restriction. 
1 Model with all restrictions imposed  
* indicates that the parameter is significant at a 10% level.  
** indicates that the parameter is significant at a 5% level.  
*** indicates that the parameter is significant at a 1% level. 



 

 
Note: Each graph shows the adjustment of a land share to a change in its own gross margin across 
time. E.g. the spring barley graph shows the percentage change in the spring barley land share 
induced by a one percent change in the spring barley gross margin. 
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Appendix 

Table A1. Parameter Estimates Static Model 
 Unrestricted model Common Fac-

tor Restriction1 
Combined 
Restriction1 

Winter Crops Equation: Estimated 
Parameter to: 

One step two step One step one step 

Relative winter crop gross margin 
 
Relative winter crop gross margin (lagged) 
 
Relative rape & pea gross margin 
 
Relative wape & pea gross margin (lagged) 
 
Cultivated land with other crops  
 
Pigs 
 
Total land 
 

 1.1 E-5    
(1.8 E-5)  
 7.1 E-5*** 
(1.6 E-5)  
-6.8 E-7    
(1.2 E-5)   
 3.5 E-5*** 
(1.1 E-5)  
 5.8 E-3*** 
(1.1 E-3)  
 1.4 E-2*** 
(2.1 E-3)  
 2.4 E-4    
(3.0 E-3)  

 3.6 E-6    
(4.9 E-6)  
 8.0 E-5*** 
(6.1 E-6)  
-5.1 E-6    
(4.2 E-6)   
 3.3 E-5*** 
(4.3 E-6)  
 6.3 E-3*** 
(4.2 E-4)  
 1.6 E-2*** 
(8.6 E-4)  
 1.7 E-4*** 
(1.0 E-4)  

-1.0 E-5    
(1.2 E-5)   
 8.4 E-5*** 
(1.3 E-5) 2 
-9.5 E-6    
(6.6 E-6)   
 3.0 E-5*** 
(9.3 E-6)  
 5.8 E-3*** 
(1.1 E-3)  
 1.6 E-2*** 
(1.8 E-3)  
 2.5 E-4    
(2.9 E-4)  

-1.4 E-5    
(1.4 E-5)   
 9.7 E-5*** 
(1.0 E-5) 2 
-1.8 E-5*** 
(5.8 E-6)   
 2.1 E-5*** 
(6.6 E-6) 2 
 5.6 E-3*** 
(1.1 E-3)  
 1.6 E-2*** 
(1.8 E-3)  
 3.0 E-4    
(2.9 E-4)  

Rape and Pea Equation: Estimated 
Parameter to: 

    

Relative winter crop gross margin 
 
Relative winter crop gross margin (lagged) 
 
Relative rape & pea gross margin 
 
Relative rape & pea gross margin (lagged) 
 
Cultivated land with other crops  
 
Pigs 
 
Total land 
 

1.2 E-5*   
(7.0 E-5)  
-1.0 E-5    
(7.6 E-6)   
-7.5 E-6    
(5.8 E-6)   
 2.8 E-5*** 
(5.6 E-6)  
 1.3 E-3**  
(5.9 E-4)  
 7.4 E-3*** 
(1.1 E-3)  
 5.0 E-4*** 
(1.5 E-4) 

7.2 E-6*** 
(2.4 E-6)  
-8.3 E-6*** 
(2.8 E-6)   
-5.8 E-6*** 
(2.0 E-6)   
 2.5 E-5*** 
(2.4 E-6)  
 1.7 E-3*** 
(2.3 E-4)  
 8.3 E-3*** 
(4.4 E-4)  
 4.7 E-4*** 
(6.2 E-5) 

7.6 E-7    
(1.1 E-6)  
-6 0 E-6    
(7.1 E-6)   
-8.5 E-6    
(5.7 E-6)   
2.6 E-5*** 
(5.5 E-6) 2 
 1.3 E-3**  
(5.8 E-4)  
 8.4 E-3*** 
(9.4 E-4)  
 5.3 E-4*** 
(1.5 E-4) 

-6.4 E-7    
(8.1 E-7)   
 4.4 E-6    
(3.7 E-6)  
-1.6 E-5*** 
(3.3 E-6)   
 2.0 E-5*** 
(3.9 E-6) 2 
 1.2 E-3**  
(5.8 E-4)  
 8.2 E-3*** 
(9.6 E-4) 
5.4 E-4*** 
(1.5 E-49) 

Sarg 
M2 

2Min χ  

 
-1.3  p=0.21 
 

164 (132)  p=0.03 
-1.2  p=0.24 

 
 
 
2.8 (2)  p=0.25 

 
 
 
5.8 (3)  p=0.12 

See notes for table 3. 
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