
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1

 
 
 
 
 
 
 
 

Productive efficiency of specialty and conventional coffee farmers 
in Costa Rica: accounting for the use of different technologies and 

self-selection. 
 
 
 
 
 
 

Meike Wollni 
Department of Applied Economics and Management, Cornell University 

mw323@cornell.edu 
 
 
 
 

Selected paper prepared for presentation at the American Agricultural 
Economics Association Annual Meeting, Portland, OR, July 29-August 1, 2007 

 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2007 by Meike Wollni. All rights reserved. Readers may make verbatim copies 
of this document for non-commercial purposes by any means, provided that this copyright 
notice appears on all such copies. 



 2

As a result of considerable oversupply of green coffee in international markets, world 

coffee prices dropped to their lowest levels in 30 years giving rise to the most severe 

crisis experienced by the coffee sector (Ponte 2002). In many countries, coffee prices fell 

below average production costs causing widespread financial and social hardships among 

producers (Varangis, Siegel et al. 2003, Flores, Bratescu et al. 2002). Economic losses 

and the lack of viable income alternatives forced many farmers to abandon their coffee 

plantations and migrate to urban areas in search of employment. Overall, the effects of 

the crisis pose serious threats to the prospects for sustainable rural development 

(Chaveriat 2001, Damiani 2005, International Coffee Organization 2004).  

In the face of this situation, policymakers and development agencies have shown their 

willingness to assist farmers in improving their production performance and thus their 

ability to cope with the crisis. To avoid wasting scarce resources, policy actions must be 

tailored to the needs of farmers. On this account, the paper seeks to identify the factors 

that determine farmers’ technical efficiency in coffee production. As inefficiency in 

production results in a failure to maximize profits at the farm level, increases in 

productive efficiency enhance farmers’ competitiveness and could help them to confront 

the adverse economic conditions caused by the coffee crisis. An empirical evaluation of 

the factors determining efficiency is critical to identify the constraints faced by farmers 

and to derive adequate policy measures.  

Coffee has traditionally been marketed through a commodity system, in which the lowest 

cost production of a standardized product is typically rewarded (Lewin, Giovannucci et 

al. 2004). Farmers have no incentive to increase the quality of their produce as long as 

they do not receive price premiums for the added value of the product. During past years, 

an increasing number of specialty marketing channels has emerged satisfying 
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increasingly diversified consumer demand patterns (Ponte 2002). Coffee marketed 

through specialty channels is subjected to various grades and standards aiming to ensure 

different aspects of sustainability and/or product quality. Farmers have to comply with 

these standards, if they wish to access specialty segments often requiring the adoption of 

sustainable and/or quality-enhancing production technologies (Muradian and Pelupessy 

2005). Compared to other coffee producing countries, Costa Rica has favorable natural 

conditions for the production of high-quality coffee as well as a strong organizational 

structure throughout the production and marketing stages of the coffee sector. In the face 

of the crisis, the country has put emphasis on exploring this competitive advantage, 

motivating farmers to adjust their production to the requirements of specialty markets. 

Taking this important development into account, the household sample selected for the 

empirical analysis includes both farmers producing in the specialty segment as well as in 

the conventional segment. Farmers’ efficiency levels and their determinants are then 

assessed respective to the technology applied on the farm.  

The next two sections present the methods employed for the empirical analysis. Section 

four and five describe the data, empirical model specification and the explanatory 

variables included in the model. Results are presented and discussed in section six. 

Section seven summarizes findings and policy implications. 

 

Measuring productive efficiency 

Following Meeusen and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977), 

the present study employs stochastic frontier analysis to estimate a production function1 

and to obtain farm-level technical efficiency estimates. By means of a composed error 

structure, the stochastic frontier model distinguishes technical inefficiency from the 
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effects of random shocks. The basic stochastic frontier model for panel data can be 

expressed as 

 (1)   )exp();( ititit XfY εβ=  

where Yit is scalar output of farmer i at time t, Xit is a vector of input quantities, β is a 

vector of unknown parameters that define the production technology, and εit is a random 

error term composed of two independent components such that εit ≡ Vit – Uit. The V’s are 

assumed to be identical and independently distributed as N(0, σv²) and reflect 

measurement error, omitted variables and statistical noise. The U’s are a one-sided 

random variable independent of the V’s and truncated at zero such that Uit ≥ 0. Uit is 

assumed to represent technical inefficiency.  

The farmer-specific technical inefficiency is the ratio of the observed output and the 

farmer-specific stochastic frontier output (Battese 1992). Accordingly, technical 

efficiency of farmer i at time t can be expressed as (Battese 1992): 

(2)   
∗= ititit YYTE /  

         )exp();(/)exp();( ititititit VXfUVXf ββ −=     

         )exp( itU−=  

In order to identify the factors that explain differences in efficiency levels among 

farmers, the U’s obtained from the stochastic frontier have to be related to farm-specific 

variables. Early approaches to the analysis of technical inefficiency effects have applied a 

two-step procedure. In the first step, a production frontier is estimated to obtain 

inefficiency estimates, and in the second step, these estimates are regressed on a range of 

exogenous farm-specific variables (e.g. Larson, Palaskas et al. 1999). However, this 

widely applied two-step procedure suffers from a serious bias. In the first step the U’s are 
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assumed to be identical and independently distributed, in the second step they are 

expected to depend on a number of farm-specific variables (Kumbhakar and Lovell 2000: 

264). Wang and Schmidt (2002) prove that the two-step approach leads to inconsistent 

results. Kumbhakar, Gosh and McGuckin (1991) and Reifschneider and Stevenson 

(1991) were the first to incorporate the estimation of technical inefficiency effects into 

the estimation of a stochastic production frontier. Huang and Liu (1994) derived a non-

neutral frontier model in which the technical inefficiency effects are allowed to interact 

with the inputs. Battese and Coelli (1993, 1995) expanded these models to panel data. For 

the present analysis the model proposed by Battese and Coelli (1993, 1995) is used, 

which allows Uit to be a function of several exogenous variables. The basic stochastic 

frontier model is the same as in (1). The U’s are defined as a non-negative truncated 

normal distribution with mean µit and variance σu². Basically, the model allows µit to vary 

among farms by specifying that 

(3)   ititit WZ += δµ   

where Zit is a vector of farm-specific variables that are expected to influence efficiency, δ 

is a vector of parameters to be estimated, and Wit is an i.i.d. random error term. 

Maximizing the log likelihood function for the model in (1) and (3) yields estimates of 

the slope parameters and the variance parameter γ. The variance parameters are defined in 

terms of γ ≡ σu² / σ² and σ² ≡ σu² + σv².  

 

Controlling for self-selection 

When estimating a production frontier the underlying assumption is that all farmers in the 

sample use the same production technology. In the present study, a sub-sample of farmers 

produces for specialty markets. This requires the adoption of quality-enhancing 
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production techniques to increase the quality of the output and to meet specific product 

standards required by specialty marketing channels. To account for differences in the 

underlying technology separate production frontiers are estimated for each sub-sample of 

farmers. These sub-samples, however, are unlikely to represent unbiased representations 

of the population. If farmers choose to participate in one group or the other based on their 

expected performance under the chosen technology, the two sub-samples will 

systematically differ with respect to certain farm and household characteristics. 

Consequently, if self-selection is ignored in the estimation of separate production 

frontiers, coefficient estimates will be biased (Greene 1997: 975, Heckman 1979). 

Heckman (1979) shows that self-selectivity bias can be controlled for by including an 

error correction term. Heckman proposes a two-step procedure to obtain the inverse 

Mill’s ratio, which is then inserted as a regressor in the second-stage model. Similarly, 

Lee (1978) controls for selection bias in the framework of an endogenous switching 

regression model.  

Following Heckman (1979) and Lee (1978), the probability that a household chooses to 

produce in the specialty segment is estimated by means of a probit model. The inverse 

Mill’s ratio (IMR) is obtained from the linear prediction of the probit model. According 

to Heckman (1979), it is defined as: 

(4)  

( )
( )i

i
Sit x

x
IMR

'
'

β
βφ

Φ
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 if the quality-enhancing technology is adopted, and 

(5)  
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where φ and Φ denote the normal density and the cumulative normal distributions, 

respectively. In the second step, the inverse Mill’s ratio is included among the exogenous 

variables of the production frontiers to correct for possible selection bias. 

In the context of efficiency studies, selection bias has often been neglected when 

estimating separate production frontiers for farmers using different technology sets. 

Exemptions can be found in Sipiläinen and Lansink (2005) and Curtiss, Brümmer et al. 

(2006). A shortcoming of these papers is that they do not report adjusting standard errors, 

which is required in the context of two-step models (Greene 1997, Heckman 1979, Lee 

1978). 

 

Data and model specification 

The empirical analysis is based on a sample of 216 coffee farming households that were 

randomly chosen from within two of the main coffee regions in Costa Rica, namely the 

Western Central Valley and the Brunca region in the South. A standardized questionnaire 

was used to collect data on coffee production as well as on the socio-economic 

characteristics of household members. The information collected covers the production 

periods 2003/04 and 2002/03 partly including recall data. The percentage of farmers in 

the sample participating in the specialty segment increased from 31% in 2002/03 to 49% 

in 2003/04.  

 

In the first step of the analysis, data from both production periods is pooled to estimate 

the probability of participation in the specialty segment and to derive the inverse Mill’s 

ratio. A farmer will choose whether to adopt the quality-enhancing technology subject to 

the specific attributes of the available production technologies and household-specific 
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factors. Following a random utility framework, it is assumed that the unobservable 

indirect utility (U) that farmer i at time t derives from the technology choice is a sum of 

observable (V) and unobservable (u) portions: 

Uit = Vit(β’Xit) + uit.   

In this framework, E(Uit) = Vit(β’Xit), which can be estimated as a function of exogenous 

farmer and technology-specific variables X and a vector of unknown parameters ß. The 

unobservable portion of the utility is represented by a random error term u, which is 

assumed to be independently and identically distributed with mean zero. The household 

will choose to adopt the quality-enhancing technology if the utility gained from 

participation in the specialty segment (Uit
S) is greater than the utility of producing in the 

conventional segment (Uit
C). Formally, the probability that farmer i at time t chooses to 

adopt the quality-enhancing technology can be expressed as: 

Prob(Sit = 1 |X) = prob(Uit
S > Uit

C) =Prob(βS’Xit + uit
S - βC’Xit - uit

C > 0 |X) 

          = Prob(βS -  βC)’Xit + uit
S - uit

C > 0 |X) = Prob(β’Xi + ui > 0 |X), for i = 1,...N  

A standard normal distribution is assumed for the random error term u giving rise to the 

probit model, which will be used to obtain parameter estimates. To account for serial 

correlation in the scores across t, a robust variance estimator is used in the pooled probit 

model2 (Wooldridge 2002: 482). 

 

In the second step, two different functional forms are considered for the production 

frontier given in equation (1). The Cobb-Douglas form for the i-th farmer (i=1,…,n; 

n=216) and the t-th year (t=1, 2) can be specified as: 

(8)  
∑ ∑
= =

−++++=
4

1

6

1
0 lnln

j
itit

m
mitmtjitjit UVDtXY βααα
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where Y is the amount of coffee cherries harvested in fanegas, X is a j*n matrix of input 

quantities, t is a time dummy controlling for unobserved factors that differ between the 

two years, such as technical change or weather conditions3, D is a m*n matrix of dummy 

variables characterizing the production process, the α’s and β’s are unknown parameters 

to be estimated, V is a N(0, σv²) distributed random error term, and U is a non-negative 

random variable representing technical inefficiency. 

The Cobb-Douglas functional form imposes constant production elasticities and a 

constant rate of substitution on the data. This often proves too restrictive in empirical 

applications (e.g. Villano and Fleming 2004). The translog functional form includes 

second order terms and interactions between the input variables and is therefore more 

flexible. The translog model is specified as: 

(9) 
∑ ∑∑∑
= =≤

−+++++=
4

1

6

1

3 3

0 lnln5.0lnln
j m

ititmitmt
j k

kitjitjkjitjit UVDtXXXY βαααα
 

where the variables are as previously defined.  

To account for the use of different production technologies, separate models will be 

estimated for specialty coffee farmers (denoted by subscript S) and conventional coffee 

farmers (denoted by subscript C). Potential selectivity bias will be controlled for by the 

inclusion of the inverse Mill’s ratio that is obtained from the first-stage pooled probit 

model. Here, the example of the Cobb-Douglas functional form is given, however, the 

same applies to the translog form. 

(10) 
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if SPECit = 1, where E(ωSit|SPECit = 1) = 0, and 
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(11) 
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if SPECit = 0, where E(ωCit|SPECit = 0) = 0.4 

 

Given the functional specifications presented above, the technical inefficiency effects 

model for farmer i, time t, and production technology p (p=S,C) is defined as: 

(12)  
pitpt

j
pjitpjppit WtZ +++= ∑

=

δδδµ
11

1
0

 

where Z is a vector of farm-specific variables that are expected to determine technical 

efficiency levels, t is a time dummy that accounts for changes in mean technical 

efficiency, the δ’s are unknown parameters5, and W is a normally distributed random 

error term with mean zero and variance σu² , where σu² is defined such that Uit ≥ 0.  

In the second step, the usual procedure to obtain standard errors is incorrect, if selection 

bias is present (Heckman 1979). Therefore, standard errors of the production frontier are 

adjusted using the Murphy-Topel estimate of variance (Murphy and Topel 1985)6. 

 

Explaining variables in the production frontier and inefficiency effects model 

Given the technology choice of the farmer, output is a function of land, labor, and other 

input factors as well as farmers’ management capabilities. The input vector X in the 

production frontier model includes the classical production factors land, labor, and 

capital. Land refers to the area planted with coffee trees and is measured in hectares. 

Labor is measured in hours and includes all maintenance activities realized on the coffee 

plantation7. Capital is measured as the value of materials including chemical and organic 

fertilizers, pesticides and herbicides in Costa Rican Colones. Due to different 
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concentrations of nutrients and active components, quantity is not a meaningful indicator, 

but the value of material inputs is assumed to reflect concentration and quality of the 

input. Furthermore, the age of the coffee trees8 is included to reflect the farmer’s 

investment in the renovation of the plantation9. To yield a more accurate specification of 

the model, a range of dummy variables are included that characterize the production 

system. According to Battese (1997) zero values in input variables can lead to biased 

estimates. The author suggests the inclusion of a dummy variable that assumes one if the 

input variable equals zero. In the present data set, there are 40 cases that do not apply any 

material input and seven cases that do not use any maintenance labor. A dummy variable 

is included that assumes one if labor or capital equal zero. Including separate dummies 

for each of the input variables leads to multicollinearity as the non-use of labor is highly 

correlated with the non-use of material. The second dummy variable included in the 

model assumes one if the farmer uses motorized equipment to perform the maintenance 

tasks on her plantation. This variable acts as a technology shifter moving the frontier up if 

a higher level of mechanization is achieved on the farm. Therefore, the expected sign of 

this variable is positive. Furthermore, a dummy that assumes one if the coffee varieties 

Caturra or Catuai are planted on the farm is included. Due to higher performance levels 

and suitability for local agro-ecological conditions, the use of these superior plant 

varieties should result in higher output levels. The pruning of coffee trees, while 

necessary to maintain plant productivity in the long run, is expected to reduce output 

levels in the following years. Two dummy variables – one for pruning in the current and 

one for pruning in the previous year – are included in the model. Furthermore, a regional 

dummy that assumes one if the farm is located in the Western Valley is used to reflect 

regional differences in production systems and natural conditions.  
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Productive efficiency is commonly associated with the management skills of the farmer 

(Coelli, Rao et al. 1998). The efficient organization of the production process depends on 

the availability of relevant technical knowledge as well as on the access to productive 

resources. If access to resources is constrained, optimal production choices are limited 

(Sadoulet and de Janvry 1995). Therefore, the explanatory variables included in vector Z 

in the inefficiency effects equation reflect farmers’ management capabilities, their access 

to knowledge as well as to productive resources. The first two explanatory variables refer 

to education and experience in coffee farming. EDUCSEC is a dummy variable assuming 

one if the household head completed secondary school; EXPER reflects the farmer’s 

experience in coffee growing measured in years. Both education and experience are 

expected to have a positive effect on farmers’ management skills and thus on efficiency. 

The variable BOOK indicates whether the farmer keeps an account of the expenditures 

and labor activities related to the coffee plantation. Allowing for closer monitoring of 

input use and timing, this should increase the efficiency level of farmers. Similarly, the 

number of extension visits received by the farmer (ASSIST) is expected to positively 

contribute to productive efficiency. The variables AGE, FEMALE and FAMILY reflect 

the structure of the household. The number of children10 and adults available for working 

on the coffee plantation reflect the household’s access to family labor, which, if labor 

markets are imperfect, is expected to have an efficiency-enhancing effect (Eswaran and 

Kotwal 1986). Female-headed households are expected to face more difficulties in 

accessing markets and as a result display lower levels of efficiency. Similarly, the age of 

the household head, is expected to negatively influence efficiency levels. Reflecting 

households’ endowments, total farm size in hectares is included in the inefficiency effects 
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model. The hypothesized effect of farm size on efficiency is ambiguous. If labor market 

imperfections are severe, farm size is likely to be negatively related to efficiency. On the 

other hand, if financial markets are constrained, farm size as a proxy for overall wealth 

and credit access (Binswanger and Sillers 1983) is expected to have a positive influence 

on efficiency. Similarly, the variable ACT indicating whether a household pursues other 

income-generating activities than coffee does not have an unambiguous effect on 

efficiency. The effect is likely to be negative, if the diversion of labor from coffee 

cultivation to other activities results in maintenance activities being delayed or ignored. 

On the other hand, farmers working off-farm often have better access to information. 

Furthermore, additional income can help farmers to overcome liquidity constraints and 

thus to buy inputs in a timely manner, even if income from coffee is low. Finally, a 

variable that assumes one if the farmer is a member of a coffee cooperative is included. It 

is hypothesized that cooperatives help farmers to reduce transaction costs, thereby 

increasing their access to resources and improving their productive efficiency (Shaffer 

1987, Deininger 1995). The last variable included in vector Z is a regional dummy that 

accounts for regional heterogeneity that might influence the achievement of technical 

efficiency. These factors include differences in the agro-ecological environment, 

institutional setting and level of competitive pressure. The ultimate effect of the regional 

dummy depends on which factors predominate. Summary statistics for the dependent and 

independent variables included in the stochastic frontier and in the inefficiency effects 

models are given in table one. 

 

[Table 1] 
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Results of the efficiency model 

The results of the probit model indicate that the probability of participation in specialty 

markets increases with farmers’ experience in coffee cultivation, education, farm size, 

and membership in coffee cooperatives (see table 5 in the annex). Furthermore, farmers 

who have received extension in quality-enhancing cultivation practices are more likely to 

produce in the specialty segment. In contrast, if farmers dedicate their time to other 

income-generating activities, the probability of participation decreases. It is apparent that 

some significant differences exist in terms of farm and household characteristics between 

specialty and conventional farmers11. In the following sections, the results of the 

efficiency analysis are presented for each sub-group of farmers, while controlling for 

potential selection bias.  

Model specification tests 

In order to select the best model specifications, a number of null hypotheses were tested 

using the one-sided likelihood ratio test. Coelli (1995) showed that this test performs 

superior to a range of other tests when investigating the existence of inefficiency effects. 

Test results for the two separate models are presented in table two. The first null-

hypothesis assumes that the Cobb-Douglas functional form is an adequate representation 

of the data. In the case of specialty coffee farmers, the null-hypothesis is accepted. In 

contrast, for the conventional coffee farmers the null-hypothesis is rejected at the 1% 

probability of error and the more flexible translog form is adopted. The next three tests 

refer to the inefficiency effects (Battese and Coelli 1995). The first test assesses the null-

hypothesis that the inefficiency effects are absent from the model. If this was true, an 

average response function would fit the model. However, the null-hypothesis is rejected 

for both models at the 1% probability of error indicating that the stochastic frontier model 
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is a more appropriate representation of the data than OLS. The second null-hypothesis 

assumes that the inefficiency effects are not stochastic, which would imply that they 

should be included in the frontier model and gamma would equal zero. This null-

hypothesis is also rejected in both cases at the 1% probability of error. Finally, a test is 

run on whether the inefficiency estimates are indeed a linear combination of the 

exogenous variables included in the inefficiency effects model. The null-hypothesis that 

they are not related is rejected at the 1% probability of error in the case of the 

conventional coffee farmers and at the 5% probability of error in the case of the specialty 

coffee farmers. 

 

[Table 2] 

 

The translog functional form that is used in the case of conventional coffee farmers 

achieves greater flexibility by including second order terms and interactions between the 

inputs. Unlike the Cobb-Douglas functional form, it does not a priori impose a restrictive 

structure on the data. Hence, monotonicity is not necessarily fulfilled and has to be a 

posteriori tested for. In order for monotonicity to be fulfilled marginal products have to 

be positive with respect to all inputs (Sauer and Hockmann 2005). Production elasticities 

of land, labor and capital inputs are calculated for every farm household and t-tests are 

conducted to test whether these elasticities differ significantly from zero. Results indicate 

that partial production elasticities for land and labor are non-negative for all farmers in 

the sample. Of those farmers that use fertilizers or other agro-chemicals, one farmer 

displays negative production elasticities with respect to this input variable. Although it is 

inconsistent with theory that a farmer uses additional inputs if these reduce output, 



 16

Chambers (1988) points out that this behavior may be observed in practice as a result of 

uncertainties faced in agricultural decision-making. 

Results of the stochastic production frontiers 

Table 3 presents parameter estimates from the two production frontier models. The 

inverse Mill’s ratio (IMR) is significant in both models indicating that selection bias is 

indeed present. The negative sign of the IMR in the specialty coffee model indicates that 

the average output of specialty farmers is larger than it would be if all farmers cultivated 

specialty coffee. In contrast, the negative sign of the IMR in the model for conventional 

farmers indicates that average output of conventional farmers is smaller than it would be 

if all farmers were using that technology. This can result from specialty coffee farmers 

having larger plantations, using inputs more intensively, or achieving higher levels of 

efficiency.  

A range of dummy variables was included in the models to characterize the production 

process. In the case of specialty coffee farmers, the variable MOTOR is positive and 

significant at the 1% probability of error. As expected, output is higher for farmers who 

use motorized equipment. The variable SUPERIOR is significant at the 10% probability 

of error indicating that farmers who have superior plant varieties on their farm achieve 

higher output levels. According to the time dummy, which is significant at the 1% 

probability of error and has a negative sign, output is lower in 2003. As regards the model 

of conventional coffee farmers, the variables MOTOR, L_PRUNE, and the time dummy 

are significant at an error probability of 5%. As in the model of specialty coffee farmers, 

farmers who use motorized equipment achieve higher output levels. Also, output 

decreased in 2003 as compared to the previous year. Furthermore, if farmers pruned their 
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coffee trees in the previous year, they achieve lower output levels. Pruning in the same 

year also has a negative effect on output, but is not significant. 

In the case of the Cobb-Douglas form, the coefficients of land, labor, and capital reveal 

the partial production elasticities of these inputs. For specialty coffee farmers, partial 

production elasticities of land and capital are 0.593 and 0.262, respectively. Partial 

production elasticities of labor are 0.089, but according to the t-statistic not significantly 

different from zero. This may result from the fact that quality of output is not accounted 

for in the analysis. As specialty coffee farmers have to invest additional effort to increase 

the quality of their produce, they might be using additional units of labor even though this 

is not reflected in an increase in output quantity. 

 

[Table 3] 

 

In the case of the translog functional form, production elasticities cannot be directly 

obtained from the model. They are derived from the first order and second order terms of 

the inputs. The following formula can be used to calculate the partial production 

elasticities at the sample mean (Greene 2000: 286): 

(13)  
∑
≠

++=
3

lnlnln/ln
kj

jkjkkkkk XXXY βββδδ
 

The respective standard errors can be obtained from the variance-covariance matrix. For 

example in the case of land, standard errors are calculated as the square root of: 

(14)  wbVarEstwLYVarEst L ])[.(']ln/ln[. =δδ  

where w = (1, lnL, lnA, lnC) is a vector of mean values and bL = (βL, βLL, βLA, βLC) is the 

relevant partition of the maximum likelihood coefficient vector (Greene 2000: 286).  
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The production elasticities computed at the sample mean and their approximate standard 

errors can be found at the bottom of table 3. Partial production elasticities of land, labor 

and materials are positive and significant.  

Results of the inefficiency effects models 

Results of the two inefficiency effects models are presented in table 4. Mean technical 

efficiency of specialty farmers is estimated to be 81% and of conventional coffee farmers 

61%. These percentages represent relative measures of technical efficiency referring to 

the most efficient farmers in the respective sub-sample as a benchmark to which all other 

farmers are compared. Accordingly, specialty farmers achieve higher levels of efficiency 

relative to the best-practice farmers using the technology. In contrast, there are more 

conventional coffee farmers that operate with low efficiency levels compared to their 

technology-specific standard. Intuitively, one would expect to find lower efficiency levels 

in the new market segment, where farmers are in a process of learning about the new 

technology. Yet, the probit analysis revealed that farmers with higher levels of education 

and more experience in coffee cultivation are more likely to participate in the specialty 

segment. This correlation between education and experience and the adoption of the new 

technology would likely explain at least to some extent the higher efficiency levels 

observed in the sub-sample of specialty coffee farmers. 

Several factors were identified to have an influence on farm-specific technical efficiency 

levels in the case of specialty and conventional coffee farmers, respectively. It is 

important to note that a negative sign on a coefficient means that the predicted effect on 

inefficiency is negative, i.e. the variable has a positive effect on technical efficiency.  

In the case of specialty coffee, the experience and age of the household head are 

significant. As expected, efficiency increases with experience in coffee cultivation and 
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decreases with age. Unlike expected, the number of household members available for 

work on the coffee plantation has a significantly negative effect. This may indicate that 

family labor is used on the plantation beyond optimal levels, but it can also mean that 

family labor is used to increase the quality of the coffee, which is not reflected in the 

analysis. Furthermore, book keeping has an efficiency-enhancing effect, as hypothesized. 

With respect to households’ endowments, total farm size is significant at the 5% 

probability of error having a negative effect on efficiency. Hence, larger farms are less 

efficient, which may be due to labor supervision problems. Finally, households pursuing 

other income-generating activities besides coffee display higher efficiency levels. This 

indicates that the positive liquidity effect outweighs the negative effect of labor diversion 

on efficiency. Apparently, in times of low coffee prices income from other activities is 

used to subsidize coffee cultivation and contributes to guarantee the timely and adequate 

application of inputs. Additionally, farmers working off-farm may have better access to 

relevant information (Mathijs and Vranken 2001). 

With respect to conventional coffee farmers, the number of family members available for 

work on the coffee plantation as well as the availability of other income-generating 

activities are also significant at the 5% probability of error and have the same sign as in 

the specialty coffee model. Unlike in the case of specialty coffee farmers, conventional 

coffee farmers display higher levels of efficiency if they are member of a coffee 

cooperative and if they are located in the Brunca region. Experience, book keeping, and 

total farm size are not found to be significant in the model of conventional coffee 

cultivation.  

 

[Table 4] 
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Conclusions and policy implications 

This paper analyzes the determinants of farm-level technical efficiency in coffee 

production for a sample of 216 conventional and specialty coffee farmers in Costa Rica. 

This is done by simultaneously estimating a stochastic frontier model and the effects of a 

range of farm-specific variables on technical efficiency levels. Given that farmers in the 

sample use different sets of technologies, two separate production frontiers are estimated 

for farmers in each sub-sample. Unlike previous efficiency studies, the present approach 

controls for potential selectivity bias when estimating separate production frontiers. The 

results indicate that self-selection is present emphasizing the importance of taking 

selectivity bias into account when estimating different production functions for sample 

subsets. 

The paper presents an empirical investigation of the factors that determine productive 

efficiency in coffee cultivation. The results allow for the derivation of adequate policy 

measures that can help farmers to improve their competitiveness in coffee production and 

to confront the adverse economic conditions caused by the coffee crisis. 

In the case of specialty coffee farmers, it has been shown that efficiency decreases with 

farm size. This might be interpreted as an advantage of small-scale farms in the 

cultivation of specialty coffee, although it has to be kept in mind that, overall, small-scale 

farmers are less likely to participate in the specialty segment. Average farm size of 

specialty farmers is 17.9 ha compared to an average farm size of 8.6 ha in the case of 

conventional farmers. Within the sub-sample of specialty farmers, however, small-scale 

farmers are more efficient suggesting that larger farms experience labor supervision 

problems. Labor supervision is especially important in the case of quality-enhancing 

production techniques as the careful execution of labor tasks is critical for coffee quality, 
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but less easily observed. Therefore, product differentiation may be well suited for small-

scale producers, once the entry barriers they face can be overcome (Lewin, Giovannucci 

et al. 2004). Furthermore, efficiency increases in the specialty sub-sample, if farmers 

keep book of their activities and expenditures. This indicates that especially in the context 

of more sophisticated production techniques accounting methods are promising tools to 

increase farmers’ efficiency. 

In the case of conventional farmers, model results reveal that membership in cooperatives 

significantly contributes to the achievement of technical efficiency at the farm level. This 

is not the case for specialty farmers, which may be a result of low variability of that 

indicator, as most specialty farmers are members of cooperatives (92% as opposed to 

79% in the sub-sample of conventional farmers). The analysis has revealed that multiple 

objectives can be accomplished by fostering coffee cooperatives. They play an important 

role in connecting farmers with specialty markets and in helping farmers (at least in the 

conventional segment) to organize their production process more efficiently.  

In both models, the effect of other income-generating activities on efficiency is positive, 

which is likely to be a result of better access to liquidity and information of those farmers 

who have additional income sources. This underscores the need for alternative income 

opportunities in rural areas that can provide farmers with additional income in periods of 

low coffee prices and also give them the possibility to diversify out of coffee. The 

creation of feasible income opportunities should be fostered by conducting market 

research and facilitating the development of small and medium enterprises in rural areas. 
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Figures and Tables 

Table 1: Summary statistics for the variables included in the efficiency analysis 
Variable Description Specialty coffee Conventional coffee 
  N Mean Std. Dev. N Mean Std. Dev. 
Dependent variable 

Coffee Total amount of coffee cherries harvested 
(in fan) 173 203.6 319.1 258 89.3 107.6

Input variables 
Land Total area cultivated with coffee (in ha) 173 7.7 9.2 258 4.0 4.1

Labor Total labor hours used for the maintenance 
of coffee plantations 173 926.8 1823.9 258 478.9 543.9

Capital Total value of fertilizers and agro-
chemicals (in Costa Rican Colones) 173 763220 1232442 258 287667 475736

Agetree Average age of the coffee trees 171 11.7 7.9 258 13.2 7.4
Dummy variables  

Inp_d Dummy that assumes 1 if capital = 0 or 
labor = 0 173 0.04 0.2 258 0.07 0.3

Motor  Dummy that assumes 1 if hh uses 
motorized equipment  173 0.8 0.4 258 0.6 0.5

Prune Dummy that assumes 1 if hh pruned in 
current year 173 0.2 0.4 258 0.3 0.5

L_prune Dummy that assumes 1 if hh pruned in 
previous year 173 0.3 0.4 258 0.2 0.4

Superior Dummy that assumes 1 if hh has superior 
coffee varieties 173 0.9 0.3 258 0.9 0.3

Region Dummy that assumes 1 if hh is located in 
Western Valley (0 = Brunca) 173 0.98 0.1 258 0.45 0.5

Time Time dummy (1 = 2003) 173 0.6 0.5 258 0.4 0.5
IMR Inverse Mill’s Ratio 173 0.6 0.4 258 0.4 0.4
Inefficiency effects 

Educsec  Hh head completed secondary school (1 = 
yes) 173 0.2 0.4 258 0.1 0.2

Exper Experience in coffee cultivation (in years) 173 39.6 14.1 258 34.3 15.5
Age Age of the hh head 173 56.1 12.5 258 54.9 14.0
Female Hh is female-headed (1 = yes) 173 0.1 0.2 258 0.1 0.3

Family No of family members available to work 
in coffee (children weighted by 0.5) 173 1.5 0.9 258 1.7 1.1

Book Hh keeps book about the coffee activity (1 
= yes) 170 0.4 0.5 257 0.2 0.4

Comem Hh is member of coffee cooperative (1 = 
yes) 173 0.9 0.3 258 0.8 0.4

Act Hh has income from other activities (1 = 
yes) 173 0.8 0.4 258 0.8 0.4

Size Total farm size (in ha) 173 17.9 34.5 258 8.6 16.8

Assist No. of extension visits received during the 
last year 173 1.3 0.9 258 0.9 1.2

Notes: hh = household, no. = number, fan = fanegas 
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Table 2: Hypotheses tests for the efficiency model specification 
  Specialty coffee  Conventional coffee 
Null hypothesis Restric-

tions 
Critical 
χ² value

Test 
value λ 

 Critical 
χ² value

Test 
value λ 

 

H0: βij = 0, 
i ≤ j = 1...3 

6 10.64
4.20

 
16.81 17.52 

*** 

H0: γ = δ0 =…= δs = 0 14 28.49a 52.36 *** 28.49 52.22 *** 
H0: γ = 0 4 12.48a 22.96 *** 12.48 17.28 *** 
H0: δ1 =…= δs = 0 12 21.03 23.36 ** 26.22 27.24 *** 
**(***) The null-hypothesis is rejected at a level of significance of p=0.95 (0.99). 
a) Critical values are obtained from the mixed χ² distribution (see Kodde and Palm 1986) 

 
 
Table 3: Parameter estimates from the production frontier 

  Specialty coffee Conventional coffee 
Variable Parameter ML estimate  ML estimate  

Constant β0 0.382 (.5680)  7.957 (2.0878) *** 
Linp_d β1 2.938 (.4990) *** -5.079 (2.1295) ** 
Agetree β2 0.007 (.0654)  -0.020  (.0633)  
Motor β3 0.315 (.0949) *** 0.171  (.0713) ** 
Prune β4 -0.077 (.0860)  -0.093  (.0676)  
Lag_prune β5 -0.007 (.0784)  -0.152  (.0776) ** 
Superior β6 0.249 (.1316) * -0.004  (.1076)  
Time β7 -0.254 (.0913) *** -0.171  (.0859) ** 
Region β8 -0.493 (.3717)  -0.033  (.0957)  
IVM β9 -0.246 (.0982) ** -0.219  (.0929) ** 
Land βL 0.593 (.0722) *** 1.217  (.3066) *** 
Labor βA 0.089 (.0585)  0.015  (.1651)  
Capital βC 0.262 (.0384) *** -1.081  (.3747) *** 
0.5*Land² βLL   0.281  (.1228) ** 
0.5*Labor² βAA  0.089  (.0670)  
0.5*Capital² βCC  0.128  (.0343) *** 
Land*Labor βLA  -0.167  (.0753) ** 
Land*Capital βLC    -0.007  (.0318)  
Labor*Capital βAC    -0.021  (.0180)  
Production elasticities      
Land     0.480  (.0774) *** 
Labor     0.126  (.0489) *** 
Capital     0.197  (.0352) *** 
*(**)[***] The null-hypothesis is rejected at a level of significance of p=0.90 (0.95) [0.99]. 
Note: Standard errors are adjusted using the Murphy-Topel variance estimate (Murphy and Topel 
1985). 
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Table 4: Results of the inefficiency effects model  
  Specialty coffee Conventional coffee 

Variable Parameter ML estimate  ML estimate  
Constant δ0 0.452 (0.999)  -0.860 (1.080)  
Educsec δ1 1.304 (0.868)  0.796 (0.574)  
Exper δ2 -0.085 (0.039) ** -0.004 (0.012)  
Age δ3 0.058 (0.030) * 0.024 (0.015)  
Female δ4 0.121 (0.906)  0.237 (0.476)  
Family δ5 0.825 (0.325) ** 0.282 (0.132) ** 
Book δ6 -2.133 (1.063) ** -0.492 (0.420)  
Comem δ7 -0.906 (0.930)  -0.819 (0.385) ** 
Act δ10 -2.136 (0.882) ** -0.937 (0.426) ** 
Size δ11 0.012 (0.005) ** -0.013 (0.010)  
Assist δ12 -0.082 (0.242)  -0.133 (0.154)  
Region δ9 -1.549 (1.217)  0.797 (0.468) * 
Time δ8 -0.234 (0.430)  -0.382 (0.349)  
Variance parameter     
SIGMA² σ² 0.743 (0.171) *** 0.936 (0.361) *** 
GAMMA γ 0.825 (0.066) *** 0.942 (0.030) *** 
Log likelihood function -99.018   -184.174   
Mean efficiency 0.812   0.610   
*(**)[***] The null-hypothesis is rejected at a level of significance of p=0.90 (0.95) [0.99]. 
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Annex 

Table 5: Results of the pooled probit model on participation in specialty markets 

Variables Description 
Coeffi-
cient 

 Robust stan-
dard errors 

EXPER 
Experience in coffee cultivation  
(in years) 0.021 

*** 
0.006

EDUC 
Level of education of the household head (1=no 
formal education, 6= university degree) 0.319 

*** 
0.077

LAND 
Total area of land cultivated with coffee  
(in ha.) 0.045 

*** 
0.019

COMEM Household is member of coffee cooperative (0/1) 0.413 ** 0.206

ALT 
Altitude of the coffee plantation  
(in meters) 0.006 

*** 
0.001

QUAL 
Whether household received training in quality 
enhancing practices (0/1) 0.861 

*** 
0.263

NONAG 
Number of non-agricultural income-generating 
activities household members are engaged in -0.266 

*** 
0.085

MEN 
Number of male adults in the household 
(>= 14 years) -0.095 

 
0.089

WOMEN 
Number of female adults in the household 
(>= 14 years) 0.034 

 
0.083

CHILD 
Number of children in the household  
(age below 14) -0.081 

 
0.065

TIME time dummy (0 = 2002, 1 = 2003) 0.670 *** 0.149
CONST Constant -8.585 *** 0.863
N  431.000  
Log pseudo-
likelihood 

 
-193.851 

 

Wald chi² 
(11) 

 
122.590 

*** 

Pseudo R²  0.332  
**(***) significant at p=0.05 (0.01) 
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1 The direct estimation of a production frontier is criticized for its susceptibility to simultaneous equation 

bias that results if farmers select the levels of input and output that maximize profits for given prices 

(Coelli, Rao et al. 1998: 54). In this matter, it is referred to Zellner, Kmenta and Dreze (1966), who show 

that the estimation of a production function does not suffer from simultaneous equation bias, if expected 

rather than actual profit is maximized. 
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2 The random-effects probit model was disregarded because the Gauss-Hermite quadrature was not stable 

and there is no alternative method for calculating the random-effects model in Stata (StataCorp. 2001: 421) 

3 As the data for 2002 was obtained by recall, the dummy variable also reflects the measurement error that 

is likely to be higher for 2002 as compared to 2003. 

4 Technically, the selection bias results from the fact that E(VSit|Sit = 1) ≠ 0 and  E(VCit|Sit = 0) ≠ 0. The 

terms λS [φ(β’xi) / Φ(β’xi)] and λC [φ(β’xi) / (1-Φ(β’xi))] are in fact the means E(VSit|Sit = 1) and E(VCit|Sit = 

0), respectively (Lee 1978). 

5 According to Battese and Coelli (1995), restricting the model to not include an intercept parameter may 

lead to biased parameter estimates associated with the z-variables. 

6 Asymptotically, the Murphy-Topel estimate gives the same results as the Heckman correction (see Greene 

1997: 981). 

7 Labor input used for the application of fertilizers and agro-chemicals has been excluded as it is correlated 

with the amount of these materials applied. Harvesting is also excluded as workers are hired under a piece-

rate payment scheme, so that expenditures on harvest labor are highly correlated with total output.  

8 The squared term was excluded due to insignificance. 

9 Lagged labor input was also included as a proxy for investment in the plantation. Maintenance activities 

performed in one year are likely to have a positive effect on output in the following year as well. However, 

the indicator was not significant and therefore excluded from the model. 

10 Children below the age of 14 are weighted by 0.5 as they are usually assigned only the easier tasks on the 

plantation.  

11 For a more detailed discussion of the factors influencing participation in specialty markets see Wollni 

and Zeller 2007. 


