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Abstract 

We focus on determining the impacts of government programs on farms’ technical inefficiency levels. We 
use Kumbhakar’s (2002) stochastic frontier model that accounts for both production risks and risk 
preferences. Our theoretical framework shows that decoupled government transfers are likely to increase 
(decrease) DARA (IARA) farmers’ production inefficiencies if variable inputs are risk decreasing. However, 
the impacts of decoupled payments cannot be anticipated if variable inputs are risk increasing. We use 
farm-level data collected in Kansas to illustrate the model. 
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1. Introduction 

 

The analysis of technical efficiency involves the assessment of the degree to which production 

technologies are being utilized. Traditionally, technical efficiency has been measured as the ratio of 

observed output to maximum feasible output. Stochastic frontier models have been widely used to 

assess this issue. When studying producers’ technical inefficiencies, one needs to carefully integrate 

the stochastic component of production into the stochastic frontier models, in order to derive reliable 

information on input allocation decisions, agricultural production, production risks, and farmers’ 

attitudes towards these risks. However, with some exceptions, stochastic frontier frameworks have 

not adequately modeled production risks (Battese et al. 1997; O’Donnell et al. 2006).  

As explained by Just and Pope (1978), the usual stochastic specification used in the 

economic literature to estimate production functions can be too restrictive. Specifically, traditional 

approximations do not allow the effects of inputs on the deterministic component of production to 

differ from their effects on the stochastic element of output. Since agricultural inputs can either 

increase or decrease output variability, Just and Pope (1978) propose a stochastic specification of 

input-output response to correctly capture this matter. Battese et al. (1997) incorporate the structure 

of the stochastic frontier model into the Just and Pope (1978) flexible risk model. This yields a 

stochastic frontier with additive errors, as opposed to the conventional multiplicative framework. The 

additive stochastic frontier model has a heteroskedastic error structure and yields a measure of 

technical inefficiencies that does not only depend on the stochastic technical inefficiency effect, but 

that is also a function of input allocation since it depends on both the mean and standard deviation of 

production. Specifically, technical inefficiencies are found to have a positive relationship with the 

output risk and a negative association to the production mean. This implies that any change in input 
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use will also have an impact on technical inefficiency. Battese et al. (1997) argue that the additive 

model is likely to better represent production behavior of modern agricultural enterprises. An objective 

of our article is to test the multiplicative model versus the additive one for a sample of U.S. farms 

specialized in the production of cereals. As predicted by Battese et al. (1997), we find the additive 

model to outperform the multiplicative framework. We then study the impacts of government farm 

programs on a farm’s technical inefficiency. 

 Analyses of the effects of decoupling of agricultural policies have shown that apparently 

decoupled payments can affect farmers’ risk attitudes, which can have implications for input 

allocation (see Sandmo 1971; or Hennessy 1998). It is thus interesting to study whether these 

changes in input allocation will have any impact on farms’ technical inefficiencies. Previous literature 

on the effects of decoupling has mainly focused the attention towards determining the impacts of 

lump-sum transfers on input use and output levels (see, for example, Hennessy 1998; Oude Lansink 

and Peerlings 1996; Sckokai and Moro 2006; Serra et al. 2006). By assuming decreasingly absolute 

risk-averse (DARA) producers, Hennessy (1998) has shown that decoupled government transfers will 

have the effect of stimulating input use and production. Serra et al. (2006) have refined this 

conclusion by showing that, if input use has an impact on output variability, then these payments will 

only lead to an increase in production if inputs are risk increasing. If they are risk decreasing, the 

impacts of decoupled transfers are inconclusive. Nevertheless both analyses find decoupled payment 

effects to be of a rather small magnitude. 

  To our knowledge previous studies on decoupling have not accounted for production 

inefficiencies, nor assessed the impacts of policy instruments on technical inefficiencies. We present 

a theoretical model to analyze this issue. Our theoretical framework is based on the model developed 

by Kumbhakar (2002), which essentially includes risk preferences in the efficiency model by Battese 

et al. (1997). We use this framework, include policy instruments, and develop a comparative statics 
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analysis to study the impacts of decoupling on technical inefficiencies. Within the framework of the 

stochastic frontier with flexible risk properties, we show that the effects of decoupled government 

payments on technical inefficiencies can only be anticipated in a single-output and single risk-

decreasing input model. This makes the investigation of this issue essentially an empirical question. 

Our empirical analysis uses farm-level data collected in Kansas. Results show that an increase in 

decoupled transfers is likely to increase our sample farms’ technical inefficiencies albeit with a very 

small magnitude. 

It is important to note here that our paper focuses on “inside-farm” technical inefficiencies and 

that we do not assess the impacts of decoupled programs on the entry-exit decision and on the 

consequent changes in the distribution of the technical inefficiency parameter. We face important 

data limitations to assess the impacts of decoupling on the extensive margin, as we do not observe 

the entry-exit decision. While, with regards to the extensive margin, it may be reasonable to 

anticipate that a policy reform reducing government support to farmers would trigger the 

abandonment of the less efficient farms, anticipating the impacts of decoupled payments on “inside-

farm” technical inefficiencies becomes more complicated. As noted above, in the additive stochastic 

frontier specification, technical inefficiencies are found to be positively related to the output risk and 

negatively associated to production mean. From MacMinn and Holtmann (1983) and Serra et al. 

(2006), it can be inferred that decoupled payments are likely to increase the use of risk-increasing 

inputs. However, the question of whether marginal increases in output variability will be bigger or 

smaller than marginal increases in output mean remains unanswered. This makes this issue 

essentially an empirical one. It is also true that decoupled payments are government transfers not 

linked to production or yields. If income supports are based on these transfers, production is not 

receiving any premium, which may reduce incentives to produce the maximum attainable output and 

thus may increase inefficiencies.  
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 Our article is organized as follows. In the next section we present the conceptual framework. 

The theoretical model is specified for econometric estimation in the following section. The empirical 

implementation offers a discussion of the data used and the results derived. Concluding remarks are 

presented in the last section. 

 

 

2. Conceptual Framework 

 

A standard feature of conventional stochastic frontier models (Aigner et al. 1977) is that they do not 

allow the impacts of input use on output mean to differ from their effects on the output risk, yielding 

measures of technical inefficiency that are stochastic and that do not depend on input allocation 

decisions. In such a framework, a government program altering input use will not have a direct effect 

on a farm’s technical inefficiency.1 Battese et al. (1997) criticize conventional models on the grounds 

that they do not correctly capture production risks and propose an alternative formulation to properly 

predict producers’ technical inefficiencies. As opposed to conventional models, the formulation by 

Battese et al. (1997) has additive rather than multiplicative errors. The additive model is more flexible 

than the multiplicative one in that the marginal production risk of an input does not depend on its 

mean output elasticity. In the additive formulation, input use impacts on technical efficiency measures 

through its different effects on the mean and the variance of output.  

 To briefly explain the differences between the additive and the multiplicative models, consider 

a single-output firm that produces output y . A single input is also used in this theoretical model for 

                                                 
1 As an anonymous referee has pointed out, conventional stochastic frontier models can yield technical inefficiency 

measures that depend inversely on the output mean if production is measured in its original units instead of logarithms.  
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the sake of simplicity. However, in the empirical application the model is generalized. Under the 

additive hypothesis, the single-output production function can be represented by 

))(()( uxgxfy −+= ε , where x  is a variable input, )(xf  is the production frontier describing the 

maximum output that can be attained with a given input level, and )(xg  is a function that captures 

the relationship between inputs and output variability. Variable ε , representing production 

uncertainty, is assumed to be an independent and identically distributed standard normal random 

variable, with variance equal to 1 and mean equal to 0. The non-negative variable u  is assumed to 

be an independent and identically distributed truncation of the ),0( 2
uN σ  that is related to firms’ 

technical inefficiencies. Hence, ( ) 2σ
π uE u = a=  and ( ) 22π σ

π
−

uVar u = b= .  If 0=u , the 

producer is said to be fully efficient or to operate at the production frontier. Following Battese et al. 

(1997) and Kumbhakar (2002), the output mean and variability functions are defined at the frontier 

( 0=u ), hence )()(
0

xfyE
u

=
=

 and 2
0

)()( xgyVar
u

=
=

. An input will cause production risk to 

increase (stay constant) [decrease] if [ ]0
( )

( ) 0u
Var y

x
=

∂
> = <

∂
. If technical efficiency is defined as 

the ratio of observed output to maximum feasible output, the following measure of technical 

inefficiency can be derived under the additive hypothesis: 
( )
( )

,

, 0

( )1 1
( )

x u

x u

E y g xTI u
f xE y =

= − = ≤ . This 

measure depends on two factors: (1) the non-negative random variable u  and (2) the ratio ( )
( )
g x
f x

, 

which the firm can control through input use. Any increase in the standard deviation of output will 

increase inefficiency, while improving the output mean will reduce it. Essentially, the ratio ( )
( )
g x
f x

 

weights the technical inefficiency random parameter according to the firm’s ability to manage both the 
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stochastic and the deterministic components of production. In this regard, if a change in input use 

increases both ( )g x  and ( )f x  in the same proportion, technical efficiency estimates will be left 

unaltered. However, a firm will be considered less efficient, for example, if it follows a production 

strategy that increases output variability at a quicker path than output mean. 

Under the more restrictive multiplicative model, production can be represented as 

(Kumbhakar 2002): ( )(1 ) ( )y f x u g x ε= − + .2 Under such model, technical inefficiency can be 

expressed as: 
( )
( )

,

, 0

( )1 1
( )

x u

x u

E y f xTI u u
f xE y =

= − = = ≤ , i.e., the impact of inputs on the output variability 

is not allowed to differ from their impact on the deterministic component of production, which involves 

that technical inefficiencies do not depend on input use. Battese et al. (1997), argue that the additive 

model is likely to better represent production behavior of developed agricultural industries rather than 

traditional farming in developing countries. Since the measure of TI depends on the specification of 

the stochastic production frontier, it is very relevant to test the assumption of a linear model versus a 

multiplicative specification. As it will be discussed in the empirical application and according to 

Battese et al.’s (1997) expectations, the additive model is found to outperform the multiplicative 

alternative. The superiority of the additive model involves that technical efficiencies can, to a certain 

extent, be controlled by producers through input use.  

It is thus clear that under the multiplicative framework any government program altering input 

use will not have a direct impact on farms’ technical efficiencies. However, government programs will 

be relevant under the additive specification. We now focus on studying these impacts. Kumbhakar 

(2002) extends Battese et al.’s (1997) model to accommodate producers’ attitudes towards risk. We 

extend Kumbhakar’s (2002) additive framework to allow for policy instruments and develop a 
                                                 

2 In here we follow Kumbhakar (2002) and use (1 )u−  as an approximation of ue− . 
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comparative statics analysis to assess the effects of decoupling on technical inefficiency measures.  

In order to formulate the optimization problem, it is assumed that producers take their decisions with 

the aim of maximizing the expected utility of wealth 

[ ] [ ]0max ( ) max ( )
x x
E U W E U W y wx C= + − + , where W represents a farm’s total wealth, 0W  

stands for a farm’s initial wealth, w  is the input price normalized by the output price, and C  

represents decoupled government payments.3 In following the framework developed by Kumbhakar 

(2002), we assume that risk comes only from production, but not from market conditions. Omission of 

price risk can be relevant if analyzing the impacts of policy setups that influence price variability. This 

is certainly a very relevant topic that merits further research. The first-order condition of the expected 

utility maximization problem can be expressed as follows:  

 

 ( ) ( ) ( )( )( )x xE U' W f x +g x -u - wε⎡ ⎤ =⎣ ⎦ 0 , (1) 

 

where subscripts denote partial derivatives, )(xfx  represents the expected value of input x ’s 

marginal output, and ( )xg x  measures the marginal contribution of variable input x  to the output 

standard deviation. If we take expectations and divide throughout by [ ]'( )E U W , expression (1) 

changes to: 

 

 ( ) ( )( ) 0+x xf x g x θ - λ - w+η=  (2) 

 

                                                 
3 As an anonymous referee has noted, initial wealth could be omitted from the model.  
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where η  is a normally distributed error term that measures the departure from the optimality 

condition (allocative inefficiency), expression ( )( )=x xRP g x θ - λ  represents the marginal risk 

premium, which will be positive (zero) [negative] if variable input x  is risk decreasing (neutral) 

[increasing] and if producers are averse to risk, and ( )
( )

E U' W

E U' W

ε
θ

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

 and ( )
( )

E U' W u

E U' W
λ

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

 capture 

producers’ risk attitudes. In case producers are averse to risk, 0θ <  and 0>λ  (see Kumbhakar 

2002, for further detail). Risk-aversion functions have opposite signs because of the opposite effects 

on production of ε  and u .  

 If we approximate the utility of wealth using a second-order Taylor-series expansion at  

0ε = u= , the following forms of the risk preference functions can be derived: ( )
( )

θ = −
Rg x

1+Rg x a
 and 

( )( )
( )

2 2a+Rg x a b

1+Rg x a
λ

+
= , where R  represents the Arrow-Pratt coefficient of absolute risk aversion. 

Following Kumbhakar (2002), we assume R  to be a function of a farm’s expected wealth which can 

be represented by the following expression: 1
( )

( )
WW

0
W

UR= - =
U

µ
γ γ µ

µ
+ , where 0γ  and 1γ  are 

parameters, and 0 ( )µ = + − +W f x wx C  . If farmers are risk averse (risk neutral) [risk lovers], then 

( )[ ]< 0R> = . We assume farmers to be risk averse. If parameter ( )[ ]1 0γ < = >  then producers are 

characterized by decreasing (constant) [increasing] absolute risk aversion (DARA (CARA) [IARA]). A 

substantial number of previous analyses that have tested for risk preferences have provided 

evidence in favor of DARA (Isik and Khanna 2003; Saha 1997; Bar-Shira et al. 1997). 

 To assess the impacts of decoupled programs on farms’ technical inefficiencies, we carry out 

a comparative statics analysis. Agricultural policies in developed economies have traditionally 

involved the use of coupled measures of income support such as price supports that have kept 
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market prices at artificially high levels. Agricultural policy decoupling processes have usually involved 

a decline in output price supports in favor of more decoupled transfers. It is thus interesting to 

compare the effects of decoupled transfers with the impacts of market prices that have a coupled 

element of support. As a result, we extend our comparative statics analysis to a consideration of the 

impacts of a change in w , representing the input price normalized by the output price, on farms’ 

technical inefficiencies. The comparative statics results can be summarized in the following 

propositions (proofs are presented in the appendix).  

 

PROPOSITION 1. Within the framework of a stochastic frontier model with additive heteroskedastic 

error structure, under the assumption of positive expected marginal productivity and for a risk-averse 

producer and a risk-increasing input:  

a. 

( )( )( )0  ( ) , 
( ) ( )

( )( ) ( )  
( ) ( )

( )( )0                   
( ) ( )

x

x

x

x

x

x

f xTI f x
C g x g x

f xf x
g x g x

f xTI f x
C g x g x

∂
> < > <

∂

< >

∂
= =

∂

under  DARA preferences and as well  as under  IARA

risk  attitudes and  

under  CARA preferences or  if  

   

                          

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 b. 

TI
w

∂
∂

 is of indeterminate sign. 

 

PROPOSITION 2. Within the framework of a stochastic frontier model with additive heteroskedastic 

error structure, under the assumption of positive expected marginal productivity and for a risk-averse 

producer and a risk-decreasing input:  

a. ( )[ ]0TI
C

∂
> = <

∂
 under DARA (CARA) [IARA] preferences. 
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b. TI
w

∂
∂

 is of indeterminate sign. 

 

The comparative statics developed above provide evidence of the relevance of accounting 

for the influence of output risk, risk preferences, and technical inefficiencies when studying the effects 

of decoupling. We show that, within the framework of a stochastic frontier model with additive 

heteroskedastic error structure, an increase in decoupled government transfers will motivate an 

increase (decrease) in DARA (IARA) farmers’ technical inefficiencies if the input x  is risk decreasing. 

However, if the input is risk increasing, inefficiencies could both increase or decrease. Under DARA 

preferences, for example, they will decrease if ( )( )
( ) ( )

x

x

f xf x
g x g x

< , i.e., when an increase in input use 

causes an increase in the output mean relatively bigger than the increase in production risk, and will 

increase otherwise. This result is relevant and contrasts with the popular belief that decoupled 

government transfers are most likely to increase “inside-farm” inefficiencies. The comparative statics 

analysis also proves that the effects of a change in price supports on farms’ technical efficiencies 

cannot be predicted by theory, making it necessary to resolve the question empirically. In the next 

sections we carry out an empirical analysis. A parametric representation of the model is specified and 

estimated using farm-level data for a sample of Kansas farms. The results section presents the 

outcomes of this estimation.  

Before concluding this section, it is relevant to note that, according to Chambers and Quiggin 

(2000), conventional stochastic frontier models do not correctly capture the stochastic decision 

environment in which firms take their decisions. Following these authors, the stochastic random 

variable (ε ) in stochastic frontier models is primarily employed to capture measurement errors or 

missing variables, not representing the uncertain conditions under which production takes place. To 
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overcome this limitation, they propose an alternative model based on the state-contingent approach. 

O’Donnell et al. (2006) use simulation methods based on this approach to show that not accounting 

properly for the stochastic elements in production can yield biased measures of inefficiency and 

productivity. Specifically, they show that conventional estimators of efficiency will be biased, except 

when all producers choose to select riskless production plans. Unfortunately, data requirements to 

apply a state-contingent approach are usually unavailable4 (O’Donnell et al. 2006; Quiggin and 

Chambers 2006). We would also like to note, however, that according to Chambers and Quiggin 

(2002) and Quiggin and Chambers (2006), any estimated Just and Pope technology could be 

interpreted as arising from a state-contingent model with two states of nature. 

 

 

3. Model specification 

 

We generalize the model developed in the previous section to allow for two variable inputs, 1x  and 

2x , and a quasi-fixed input 1z , where 1x  represents the quantity used of pesticides and insecticides, 

2x  measures the fertilizer applied, and 1z  stands for a farm’s labor. Though our analysis focuses on 

the short run, scale effects are accounted for by expressing the variables used in the analysis on a 

per acre basis (see the next section for further detail). It is assumed that the deterministic component 

of production follows a quadratic specification and is defined as: 

                                                 
4 As an anonymous referee points out, input allocations across crops, which we do not observe, would be needed to 

estimate flexible state-contingent models. O’Donnell and Griffiths (2006) propose an estimation approach based on a 

finite mixtures framework that, in the words of O’Donnell et al. (2006) offers “some promise of being able to identify 

flexible stochastic technologies.”   
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2 2 2 22
1 2 1 0 3 1 33 1 3 11 1 1 1( , , ) i i ji ji i ii j i if x x z x z x z x zα α α α α α

= = = =
= + + + + +∑ ∑ ∑ ∑  where the alphas are 

parameters. The stochastic component of production is defined as a linear function: 

1 2 0 1 1 2 2( , )g x x x xβ β β= + + , being 0β , 1β , and 2β  parameters. The conclusions derived from our 

theoretical model are robust to any specification of the production function.  

 We estimate both the multiplicative and the additive models using maximum likelihood (ML) 

techniques (see next paragraph for more detail). Using Pollak and Wales (1991) likelihood 

dominance criterion for testing non-nested hypotheses and Akaike’s information criterion, we find the 

multiplicative model to clearly dominate the additive one (see table 1).5 This shows the importance of 

using flexible specifications when testing for farms’ technical inefficiencies.  

With the additive model, the system of first-order conditions can be expressed as follows: 

 

 
( ) ( )( )
( ) ( )( )

1 1

2 2

x 1 2 1 x 1 2 1 1

x 1 2 1 x 1 2 2 2

f x ,x z +g x ,x - - w + =0

f x ,x z +g x ,x - - w + =0

θ λ η

θ λ η

⎧⎪
⎨
⎪⎩

,
,

. (3) 

 

 The model is estimated using the two-stage ML procedure proposed by Kumbhakar (2002).6 

In the first stage, ML methods are applied to estimate the stochastic frontier model. After estimating 

production parameters, we derive estimates for u  and TI following Kumbhakar and Lovell (2000, 

chapter 3). In the second step, risk preference parameters are derived by estimating the system of 

                                                 
5 As Pollack and Wales (1991) explain, if the two models contain the same number of parameters, both the dominance 

ordering and the likelihood dominance criteria will always prefer the hypothesis with the higher likelihood. 

6 As Kumbhakar (2002) notes, the single-step ML approach is computationally demanding relative to the two-step 

method that he uses in his empirical implementation. Though we tried to estimate all parameters in a single step, the 

optimization process failed to converge. This is why we decided to estimate the model using the two-stage process. 
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first-order conditions in (3), conditional on the parameters obtained in the first step, by full information 

ML. In order to be able to determine the impacts of decoupling on farmers’ technical inefficiencies, we 

compute the elasticities of TI with respect to government payments and prices. The price elasticity is 

computed assuming that it is the output price (not the input price) that changes, thus yielding a single 

elasticity. To compute TI elasticities, we use formulas (4) and (5) in the appendix and generalize them 

to a two-variable and a semi-fixed input model.  

   

 

4. Empirical implementation 

 

In recent years, the world has witnessed important agricultural policy reforms that have been 

characterized by a certain degree of decoupling. Not being an exception to this reform trend, the 

United States’ overall farm policy underwent substantial alterations with the 1996 Federal Agriculture 

Improvement and Reform (FAIR) Act. These reforms involved a reduction in price support payments 

in favor of decoupled transfers, the Production Flexibility Contract (PFC) payments, and a deficiency 

payment program aimed at guaranteeing a minimum support price for program crops. According to 

USDA baseline policy variables (see USDA 2000), marketing assistance loan rates for the crops 

considered in our analysis were reduced around a 6.3 per cent over the period of analysis. PFC 

payments were continued with the 2002 Farm Bill under the name of Fixed Direct Payments, and 

crop loan rates were rebalanced with soybean rates falling while other commodity rates were 

increased slightly. 

Eligibility for the seven-year PFC payments required a farm operator to have a planting 

history of a contract commodity for at least one of the previous five years, or otherwise have land 

enrolled in the Conservation Reserve Program (CRP) with planting history of a contract commodity. 
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New entrants could become program participants on the basis that they purchased or share rented 

land already under PFC. The effects of government cash transfers on land values has been widely 

considered by the literature (see, for example, Barnard et al. 1997; Goodwin and Ortalo-Magné 1992; 

Weersink et al. 1999; Just and Miranowski 1993; Schertz and Johnston 1998) and there seems to be 

a general agreement that economic rents from policy are likely to influence land prices which in turn 

is likely to cause changes in relative input prices. In that we consider PFC payments as fully 

decoupled, our model does not capture these changes, which certainly constitute an interesting 

avenue for future research.  

 The aim of our empirical implementation is to assess the influence of government payments 

on production inefficiencies of a sample of Kansas farmers. Serra et al. (2006) examined the effects 

of decoupling on both the output mean and variability using the same dataset. Our article extends 

their work in several ways. While Serra et al. (2006) estimate a stochastic production function, we use 

a stochastic production frontier that is more consistent with economic theory (Aigner et al. 1977). As 

noted above, the literature on decoupling has not yet accounted for production inefficiencies, nor 

assessed the impacts of policy instruments on technical inefficiencies. In this regard, our model 

extends the work by Serra et al. (1996) along the lines suggested by Kumbhakar (2002), which 

essentially includes risk preferences in the efficiency model developed by Battese et al. (1997). In 

doing so, and contrary to the paper by Serra et al. (2006), our article allows assessing the impacts of 

decoupling on farms’ technical inefficiencies. Also, our paper better represents farmers’ behavior 

under risk, since it allows for the opposite effects on production of the purely stochastic random 

shocks and the stochastic technical inefficiencies. 

Farm-level data are taken from farm account records from the Kansas Farm Management 

Association dataset for the period comprised from 1998 to 2001. Retrospective data for these farms 
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are used to approximate farm-level PFC as described later in this section.7 The FAIR Act PFC 

payments correspond to our definition of fixed payments per farm. Means and standard deviations for 

the data used are offered in table 2. Other sources that contain aggregate data are also employed to 

define some variables unavailable from the Kansas dataset. These sources are the National 

Agricultural Statistics Service (NASS), the United States Department of Agriculture (USDA), and the 

BRIDGE database. From NASS, we derive country-level price indices and state-level output prices 

and quantities; state-level marketing assistance loan rates and PFC payment rates are obtained from 

USDA, while BRIDGE provided futures prices. 

 

Table 1    Model selection 

 Additive 
model 

Multiplicative 
model 

Log likelihood  11,524.44 11,072.86 
Akaike information criteria 0.20 1.54 

 

Our database does not provide information on the allocation of variable inputs across crops. 

Hence, we define a single output category ( y ) that aggregates the production of wheat, corn, grain 

sorghum, and soybeans—the predominant crops in Kansas. Davis et al. (2000), by extending the 

generalized composite commodity theorem, provide support for consistent aggregation of U.S. 

agricultural production into as few as two categories: crops and livestock. Variable y  is defined as 

an implicit quantity index and computed as the ratio of production in currency units to the output price 

index. Because our database does not contain information on market prices, we use price indices as 

a proxy. Specifically, we build an expected Paasche price index by defining expected unit prices for 

each crop and using state-level production data. Expected prices are approximated as the maximum 
                                                 

7 To be able to do so, a balanced panel of 523 farms was built out of our sample. 
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between the expected cash price and the assistance loan rate, thus explicitly taking into account 

price supports. The expected cash price is defined as the futures price adjusted by the basis, the 

latter being the five previous years’ average of the wedge between the cash price (state-level output 

price) and the futures price. The futures price is approximated as the daily average price registered 

during the planting season for the harvest month contract. As noted above, in order to account for 

scale effects, we express the variables in the model on a per acre basis, by dividing them by the 

acres planted to the crops considered. 

 

Table 2    Summary statistics for the variables of interest 

Variable Mean 
(Standard deviation) 

n= 2,094 
y  113,45 

(64,52) 
1x  16.95 

(14.18) 
w1  1.08 

(0.06) 
2x  24.51 

(25.92) 
w2  1.10 

(0.12) 
1z  0.53 

(1.24) 
C  14.37 

(11.43) 
0W  1,052.46 

(1,456.32) 
Note: all monetary values are expressed in constant 1998 currency units. 

 

Input 1x  includes the use of pesticides and insecticides, while 2x  represents fertilizer. Input 

prices are measured using national input price indices. Variables 1x  and 2x  are defined as implicit 
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quantity indices. Variable 1z , representing farms’ labor, is expressed in “productive work units” as a 

fraction of a 10-hour per day.  The Kansas database does not register PFC government payments. In 

its place, a single measure including all government payments received by each farm is available. We 

estimate farm-level PFC payments by approximating the acreage of the program crops (base 

acreage) and the base yield for each crop using farm-level data. The approximation uses the 1986-

1988 average acreage and yield for each program crop and farm. PFC payments per crop are 

computed by multiplying 0.85 by the base acreage, yield, and the PFC payment rate. PFC payments 

per crop are then added to get total direct payments per farm. This estimate is compared to actual 

government payments received by each farm. If estimated PFC payments exceed actual payments, 

the first measure is replaced by the second. This happens to 7per cent of our observations. A farm’s 

initial wealth is defined as the farm’s net worth. 

Production function parameter estimates are presented in table 3. Parameter estimates for 

the stochastic element of production provide evidence that variable inputs exert a positive and 

statistically significant influence on output variability. Hence, both variable inputs are risk increasing, 

i.e., 1 2( , ) 0
ix

g x x >  for 1,2i = , which is compatible with Serra et al. (2006). While fertilizers have 

traditionally been considered as risk-increasing inputs, pesticides have often been regarded as risk-

decreasing factors. Contrary to common belief, Horowitz and Lichtenberg (1994) show that pesticides 

can increase output variability in a number of situations. More specifically, they prove that pesticides 

will increase output risk whenever pest populations increase with favorable crop growth conditions. 

As explained above, first-stage parameter estimates allow deriving estimates for the technical 

inefficiency stochastic term, as well as for the technical inefficiency measure. The mean and standard 

deviation of the estimator of u  are, respectively, 0.50 and 0.11, yielding a mean TI equal to 0.21 with 

a standard deviation equal to 0.06. The frequency distribution of TI is presented in table 5. Our 
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technical inefficiency estimates are above Villano et al. (2005) who, using the Kumbhakar (2002) 

framework, derived mean TI levels of 0.12 for lowland rice farms in the Philippines, but are closer to 

other estimates by Giannakas et al. (2003) for a sample of Greek olive farms, Karagiannis and 

Tzouvelekas (2005) for a sample of Greek sheep holdings, or Kumbhakar et al. (1991) for a sample 

of U.S. dairy farms.  

 

Table 3    Parameter estimates and summary statistics for the production function 

Parameter 
(standard error) 

Deterministic component 
of production 

Stochastic component 
of production 

 α0  81.7414* 
(3.0470) 

 

 α1  2.8492* 
(0.2687) 

 

 α2  1.4560* 
(0.1197) 

 

3α  -34.5777* 
(4.2466) 

 

11α  0.1035E-01 
(0.7306E-02) 

 

22α  -0.1932E-02 
(0.1119E-02) 

 

33α  4.5840* 
(0.4440) 

 

12α  0.2724E-02* 
(0.5137E-02) 

 

13α  -0.9445* 
(0.1063) 

 

23α  -0.7380E-01 
(0.7373E-01) 

 

0β   
26.1909* 
(0.6312) 

1β   
1.6770* 

(0.6641E-01) 
2β   

0.1957* 
(0.2885E-01) 

2
uσ   

0.4141* 
(0.9598E-01) 

Wald Test 23,080.1400* 
Note: An asterisk (*) denotes statistical significance at the α = 0.05 level.  
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Parameter estimates for the system of first-order conditions (3), which are presented in table 4, are all 

statistically significant and provide evidence that farms in our sample exhibit DARA preferences. 

These parameters allow predicting the coefficient of absolute risk aversion whose mean is 0.008 (see 

table 4). The coefficient of relative risk aversion, which does not depend on the units of measure, 

takes the value of 7.4 at the data means, which is compatible with the findings of Saha et al. (1994) 

or Chavas and Holt (1990). Such coefficients yield mean values for θ  and λ  on the order of -0.37 

and 0.57, which are compatible with Villano et al. (2005). 

 

Table 4    Parameter estimates and summary statistics for the coefficients of risk aversion 

Parameter Mean predicted value 
(Standard deviation) 

0γ  0.0092* 
(0.0002) 

1γ  -9.6000-7* 
(1.5990E-8) 

θ  -0.3748 
(0.1036)* 

λ  0.5698 
(0.0156)* 

R  
Absolute risk aversion 

8.2240E-03 
(1.1510E-3)* 

Relative risk aversion 7.4619 
(8.8375) 

Wald test  249,932.000* 
Note: An asterisk (*) denotes statistical significance at the α = 0.05 level. 

 

 Frequency distributions of technical inefficiency elasticities with respect to decoupled 

payments and output prices are offered in tables 6 and 7. The effects of both decoupled and coupled 

payments cannot be predicted by our theoretical model and need to be empirically determined. The 

generalization of the model to a consideration of more than one input and the fact that all variable 
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inputs are found to be risk increasing preclude this prediction. Table 6 shows that a majority of farms 

(almost 90 per cent) will increase their production inefficiencies as a response to an increase in PFC 

payments. As explained in the theoretical section, this situation will occur whenever a change in input 

allocation causes an increase in the output mean smaller than the increase in output risk. The 

increase in TI is compatible with decoupled payments being government transfers not linked to 

production or yields. Because production is not receiving any reward, incentives to produce the 

maximum attainable output may be reduced. It is important to note however that elasticity values are 

very small, indicating that large changes in payments are required to generate substantial impacts. 

This result is consistent with previous research (Hennessy 1998). For an overwhelming majority of 

farmers, a decline in output price supports will result in an increase in TI (see table 7). It is important 

to recall here that our analysis does not assess the impacts of decoupled programs on the entry/exit 

decision and the consequent changes in the distribution of the technical inefficiency parameter. In a 

scenario where the number of farms is assumed to remain constant, our model shows that farmers 

may respond to a decline in price supports by reducing the efficiency with which they operate. This is 

compatible with reduced motivation to produce efficiently in light of the lower rents derived from 

producing. Further, this result reinforces the positive value of the payment elasticity for most of the 

farms in the sample. In light of the previous results, we can conclude that a policy-reform process 

consisting of a reduction in output price supports and an increase in decoupled government transfers 

may involve an increase in TI levels.  
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Table 5    Frequency distribution of technical efficiency ratings for Kansas farms, 1998-2001 

Inefficiency (%) 1998 1999 2000 2001 

<10 12 11 9 4 

10-20 306 265 231 221 

20-30 179 213 241 247 

30-40 15 25 28 33 

>40 5 8 9 4 

N 517 522 518 509 

mean 0.19 0.20 0.21 0.21 

 

Table 6    Frequency distribution of payment elasticities for Kansas farms, 1998-2001 

Payment elasticity 1998 1999 2000 2001 

_ 0.001TI CE < −  2 5 2 4 

_0.001 0TI CE− < <  61 52 37 54 

_0 0.0004TI CE< <  297 309 320 354 

_0.0004 0.0008TI CE< <  115 102 113 69 

_0.0008 0.003TI CE< <  39 48 42 24 

_ 0.003TI CE >  3 5 4 4 

N 517 521 518 509 

mean 0.0003 0.0003 0.0003 0.0003 
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Table 7    Frequency distribution of price elasticities for Kansas farms, 1998-2001 

Payment elasticity 1998 1999 2000 2001 

_ 5TI pE < −  0 2 0 0 

_5 2TI pE− < < −  8 34 26 74 

_2 1TI pE− < < −  270 318 296 341 

_1 0TI pE− < <  231 144 180 80 

_0 5TI pE< <  8 23 16 14 

_ 5TI pE >  0 0 0 0 

N 517 521 518 509 

mean -1.0382 -1.1955 -1.1239 -1.4398 

 

 

5. Concluding remarks 

 

Previous literature on the effects of decoupling has focused the attention towards determining the 

impact of decoupled government transfers on input use and output levels. However, to our 

knowledge, no analysis has attempted to assess the effects of decoupling on farms’ technical 

inefficiency levels. Late studies on technical efficiencies have combined the conventional stochastic 

frontier models and Just and Pope (1978) specification of production, yielding stochastic frontier 

models with additive heteroskedastic error structures (Battese et al. 1997). We find the additive 

model to better represent production behavior of our sample of Kansas farms than the more 

restrictive and widely used multiplicative framework. Additive models yield a measure of technical 

inefficiencies that does not only depend on the stochastic technical inefficiency effect, but that also 

depends on input use. Specifically, technical inefficiencies are found to have a positive relationship 
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with the variance of output and a negative relationship with production mean. Hence, a decoupling 

process that alters a farm’s input use will also impact on its technical inefficiency levels.  

 We present a theoretical model to assess the impacts of decoupling on production 

inefficiencies. Our paper focuses on “inside-farm” technical inefficiencies and does not enter into the 

question of the impacts of decoupled programs on the entry-exit decision and on the consequent 

changes in the distribution of the technical inefficiency parameter. Our model is based on the model 

developed by Kumbhakar (2002) who extends Battese et al.’s (1997) framework to a consideration of 

economic agents’ risk preferences. We extend this framework to include policy instruments and 

develop a comparative statics analysis to study the impacts of decoupling on TI. This analysis shows 

the relevance of accounting for the influence of output risk, risk preferences, and technical 

inefficiencies when studying the effects of decoupling. We show that an increase in decoupled 

transfers will motivate an increase (decrease) in DARA (IARA) farmers’ technical inefficiencies if input 

x  is risk decreasing. However, if the input is risk increasing, inefficiencies could both increase or 

decrease. This result is relevant and contrasts with the widespread belief that decoupled government 

transfers will increase “inside-farm” inefficiencies. Compatible with the findings of Just and Zilberman 

(1986), the effects of decoupled payments on TI cannot be predicted by theory. We use farm-level 

data collected in Kansas to illustrate the model. Our results show that, for an overwhelming majority 

of farms, an increase in decoupled payments will increase farms’ technical inefficiencies. This result 

is compatible with decoupled payments being government transfers not linked to production or yields. 

Because production is not receiving any premiums, incentives to produce the maximum attainable 

output may be reduced. Previous research has shown that decoupled government transfers may 

have only minor or no impact on input use. Consistently with this research, PFC payment elasticities 

are very small requiring relevant changes to these payments to generate substantial impacts. Our 

results also show that farmers may respond to a decline in price supports by reducing the efficiency 
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with which they operate. This result thus reinforces the positive value of payment elasticities, in that 

lower rents derived from producing are found to reduce the motivation to produce efficiently.  
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Appendix 

 

Proof of propositions 1 and 2. The effects of decoupled payments can be determined as follows: 
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 is the marginal input use effect of government payments and can be 

determined by totally differentiating the first-order condition in (2), and 
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marginal payment effect on θ  and is ( )[ ]0Cθ > = <  under DARA (CARA) [IARA] preferences. The 

marginal payment effect on λ  is captured by 
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condition of the optimization problem. Expression u
xf

xfxgxfxg
x
TI xx

2)(
)()()()( −

=
∂
∂  captures the 

marginal impact of a change in input use on the technical inefficiency measure. Formula (4) shows 

that a change in decoupled government transfers will induce a change in input consumption, which 

will in turn alter a farm’s measure of technical inefficiency. An increase in government transfers will 

increase (leave constant) [decrease] DARA (CARA) [IARA] farmers’ willingness to assume more risk, 

thus reducing (leaving constant) [increasing] the Arrow-Pratt coefficient of absolute risk aversion. This 

change in risk attitudes will cause θ  to increase (remain constant) [decrease] and λ  to decrease 
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(remain constant) [increase] under DARA (CARA) [IARA], involving a marginal risk premium of a 

smaller (equal) [bigger] magnitude in absolute terms. The sign of 
C
x

∂
∂  also depends on the sign of 

)(xgx . If [ ]0)()( <=>xgx , then [ ]0)( <=>
∂
∂
C
x  under DARA,  0x

C
∂

=
∂

 under CARA, and 

[ ]( ) 0x
C
∂

< = >
∂

 under IARA. Hence, our results show that under DARA preferences for example, an 

increase in decoupled government payments will increase the demand for risk-increasing inputs, 

while reducing the application of the risk-reducing ones. This result is compatible with the findings of 

MacMinn and Holtmann (1983) and represents an extension of their work. While the sign of 
C
x

∂
∂   can 

be predicted by theory, one cannot forecast the sign of 
x
TI
∂
∂ . Under the assumption that the 

expected marginal productivity is positive, this expression will be negative if x  is a risk-decreasing 

input. However, if the input is risk increasing, 
x
TI
∂
∂  could be either positive or negative. 

The impacts of coupled policies can be computed as follows:  
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(CARA) [IARA] risk attitudes is the marginal price effect on θ , and  
( )

2
1

2

( ) ( )[ ]0
1 ( )

w
xg x b
Rg x a

γλ −
= > = <

+
 

under DARA (CARA) [IARA] preferences is the marginal price effect on λ .   

Expression (5) shows that a change in price supports will induce a change in input allocation, 

which will in turn alter a farm’s technical inefficiency. A reduction in market output price supports will 

decrease (leave constant) [increase] DARA (CARA) [IARA] farmers’ willingness to assume more risk, 

which will cause an increase (no change) [a decrease] in the Arrow-Pratt coefficient of absolute risk 

aversion. This in turn will cause θ  to decrease (stay constant) [increase] and λ  to increase (stay 

constant) [decrease]. The absolute value of the marginal risk premium will increase (stay constant) 

[decrease]. The sign of 
w
x

∂
∂  also depends on the sign of ( )( ) 1θ λ⎡ ⎤− −⎣ ⎦w wx

g x , thus not being 

possible to anticipate whether input use and technical efficiencies will increase or decrease with a 

decline in output price supports. 

Just and Zilberman (1986), by introducing risk and risk preferences into production decision 

models, challenge the widely held conjecture of the law of supply. As the authors note, the law of 

supply is mainly based on the assumption of full certainty of production relationships and risk 

neutrality. They show that the law of supply may fail whenever an increase in output price causes an 

increase in profit risk above the increase in its mean (Leathers and Quiggin, 1991, as well as Serra et 

al., 2006 find results compatible with Just and Zilberman, 1986). The results in our comparative 

statics analysis are also compatible with Just and Zilberman (1986) and thus do not allow to 

unambiguously sign equation: TI
w

∂
∂

. 
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