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Spatial and non spatial approaches to agricultural 

convergence in Europe 

Gutierrez L., Sassi M.  
 

Abstract 
The paper starts from the critiques to the Barro-style methodology for convergence analysis 
with the aim of reviewing the econometric approaches for testing spatial effects in convergence 
process related to both cross sectional and panel data regressions, a framework that is applied 
to a sample of 80 regions of the EU-15 at NUTS-2 level over the time period from 1980 to 2007. 
The empirical analysis compares results from approaches and, at the same time, provides 
empirical evidence from techniques that are now widely recognised in the understanding of 
regional growth and the influence of space but never or rarely applied to the agricultural 
context. Results point out the complexity of the process of agricultural regional convergence in 
Europe that cannot be adequately captured by the non-spatial growth regression models that 
have dominated the research and policy debate in this field. Evidence for convergence and 
spatial dependence emerges especially when estimations refers to spatial panel models while 
the effects of spatial heterogeneity and the existence of convergence clubs come out from the 
geographically weighted regression approach. The paper represents a point of departure for 
further researches in this field whose most important directions are underlined.  
 
Keywords: Convergence, Spatial approaches, Non spatial approaches  
 
JEL classification: C21, C33, Q19.  

1. INTRODUCTION  

In the European Union, real convergence has a political and financial importance and, in 

this context, a renewed interest is deserved to agriculture for its possible contribution to the 

acceleration of growth and income (see, for example, Artis, Nixson, 2001) and for the recent 

emphasis on the role of the Common Agricultural Policy and of the Rural Development Policy 

in the process of reducing territorial disparities (European commission, 2010). However, only 

little attention is deserved by economic analysis to the agricultural issue and the number of 

studies that deal with the theoretical and empirical advancements are rather small. The 

prevailing contributions (see, for example, Sassi, 2008, 2006, Bernini Carri, Sassi 2003, 

Gutierrez, 2000) are referred to the one-sector economic growth model by Solow (1956) 

according to which, due to diminishing marginal returns of input factors in a production 

function with constant return to scale, economies converge towards a dynamic long-run steady 

state, a trend only driven by the rate of technological progress (Eckey, Türck, 2007; Paci, 

Pigliaru, 1997).  

Since the beginning of the 1990s the empirical research on convergence has proceeded in 

a number of directions. One of them is the investigation of spatial effects whose interest is 

partly related to the development of new growth theory and new economic geography. 

According to this perspective, as underlined by Dell’erba and Le Gallo (2008), some forces, 
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such as productivity (Lopez-Bazo et al., 1999), transportation infrastructures (Krugman and 

Venables, 1995, 1996) technology and knowledge spillovers (Martin and Ottaviano, 1999), 

factor mobility (Krugman 1991a, b; Puga, 1999), have a geographic component that can support 

different paths of regional growth and of coexistence of divergent and convergent groups of 

territorial units. Anselin (1988) provides an extensive review of the importance of taking into 

consideration the spatial issue and a wide body of the literature underlines the errors and 

misspecifications that can occur if spatial effects are not included in cross-section data analysis, 

among which there is testing regional per capita income convergence. 

Two spatial effects are included in the empirical investigation of economic convergence, 

the spatial autocorrelation and the spatial heterogeneity.  

The more appropriated approach for testing the former issue refers to the multivariate 

spatial data statistics among which spatial global regressions have been widely applied. These 

models introduce in the estimation equation an endogenous or exogenous spatial lag variable or 

assume that the spatial dependence works through omitted variables. First tested within cross-

sectional models by Rey and Monturi (1999) in the US context and by Fingleton (1999) in the 

European one, they find application in the European agricultural context only in the analysis of 

Bivand and Brunstad (2003, 2005). This approach produces parameter estimates that represent 

an average type of behaviour (Fotheringam et al., 2006). However, according to the principles 

of the regional science not only explanatory variables might differ across space but also their 

marginal responses (Ali et al., 2007). The GWR techniques, developed more recently, address 

the issue estimating locally different parameters and find some applications in testing the 

European agricultural convergence process (see, for example, Sassi, 2009a, b).  

A second line of research investigates regional convergence by panel data model. Due to 

omitted variables and heterogeneity in the steady state, the cross sectional regressions might 

generate bias (Islam, 2003) that can be corrected by this approach that more recently has been 

integrated with spatial leg and error variables. While some empirical studies apply panel 

approach to test agricultural convergence in Europe (see, for example, Esposti, 2010, Sassi, 

2010a), there is no evidence of analysis based on spatial panels.  

In the light of these observations, the paper aims at two central objectives. Fist, the Barro-

style methodology for convergence analysis is presented and then extended to a spatial 

econometric framework for spatial effects investigation related to both cross sectional and panel 

data regressions. 

Second, this framework is applied to a sample of 80 regions of the EU-15 at NUTS-2 

level over the time period from 1980 to 2007 in order to investigate the convergence issue in the 

agricultural sector. Despite the analysis is not focused on the understanding of the impact of 

convergence policy, the time span has been split into two sub-periods in order to compare 

results in two programming periods of the Structural Funds. 

The structure of the paper is as follows. In the following section, we present the cross-

sectional models and how they can rearranged in order to introduce spatial dependence while in 

the third section we discuss the spatial panel dynamic models. In the fourth section, we apply 
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the previous models to a sample of  80  European Union regions at NUTS-2 level during the full 

period 1980–2007 and two sub-periods 1980-1994 and 1995-2007. We find signs of 

convergence and spatial dependence especially when estimating spatial panel models and spatial 

heterogeneity with the geographically weighted regressions. Moreover, it emerges  strong 

differences between the two sub-periods. Specifically the European regions show a higher rate 

of convergence during the second sub-period. Section five concludes underlining the interesting 

points of departure for further researches in this field. 

2. CROSS-SECTIONAL MODELS AND SPATIAL DEPENDENCE  

The absolute β-convergence approach finds its roots in the neoclassical model of long-run 

exogenous growth of Solow (1956) and Swan (1956).  Assuming a set of spatial regions 

represented by closed economic systems with exogenous saving rates and production functions 

with a decreasing productivity and constant returns to scale, economies only differ by their 

initial conditions and tend towards the same steady state. For estimating this neoclassical 

hypothesis of unconditional β-convergence, the literature refers to a version of the model 

developed by Barro and Sala-i-Martin (1991, 1992) and Sala-i-Martin (1995) specified as 

follows: 

 

( ) ( )2
, 01 ln ,        0,  k

T i ig e y Nγα µ µ σ−= + − + ≈  (1) 

 

where the dependent variable, ,
,

0,

1
ln T i

T i
i

y
g

T y

 
=   

 

, is the annual average growth rate of y, the per 

capita income, over the time period form 0, the initial year, and T, the final year, of the i (i=1, 2, 

…, n) regions; the explanatory variable is the natural logarithm of  y at time 0 while iµ  is the 

error term that is assumed normally distributed, independently of the 0ln y  and with 

[ ]1,..., nµ µ  independent observations of the probability model. γ  is the coefficient of 

convergence expressing how fast regions converge towards the steady state and estimated 

through non-linear square. The empirical literature usually re-parametrises equation (1), setting 

( )1 ke γβ −= −  and estimating the parameter of convergence, β , by Ordinary Last Square 

(OLS). If β  is negative and statistically significant, the neoclassical hypothesis of convergence 

is verified: poor economic systems grow faster than rich ones and all converge to the same 

steady state, a process only driven by the rate of technological progress. From β  the speed of 

convergence is estimated on the basis of the following equation: 
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.

T

T
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The empirical literature also take into consideration the so called half life, that is the time 

necessary for the regions to fill half of the variation which separate them from their steady state. 

It is estimated as: 

( )
( )
ln 2

.
ˆln 1

τ
β

−
=

+
 (3) 

According to the neoclassical perspective to convergence, also shared by the neoclassical 

new growth theory, the role of technological diffusion in convergence refers to a perception of 

knowledge as entirely disembodied and understood as a pure public good. Knowledge spillover 

diffuses instantaneously across any regions that, imitating the more successful technology, 

catches-up immediately to the other economic systems. As a consequence, differentials of 

income and growth rate across economic systems cannot be explained in terms of different 

stocks of knowledge (Döring, Schnellenbach, 2006).    

This view represents an important point of disagreement with the economic geography 

theory according to which knowledge is a regional public good with limited spatial range 

(Abreu et al., 2005).  Under this assumption the regions might show different path of growth 

even in the opposite direction, with coexisting convergent and divergent groups of economies. 

Thus, geography matter for growth and convergence that might be affected by the spatial 

spillover effects and the agglomeration process.  Since the extensive review of the importance 

of considering spatial effects by Anselin (1988) a growing literature has shown the relevance of 

the problem and the errors and misspecifications that can occur if the issue is ignored in cross-

sectional data analysis involving geographic units.  

The spatial effects that can be included in the analysis are the spatial autocorrelation and 

the spatial heterogeneity. According to Anselin (1988) spatial autocorrelation refers to the 

coincidence of attribute similarity and location similarity, that translated in the field of 

convergence analysis means that rich regions tend to be geographically clustered as well as poor 

regions, or, in other wards, that the value of variables sampled at nearby location are not 

independent from each other (Tobler, 1970). As underlined by Dell’erba and Le Gallo (2003) at 

least three reasons suggest the integration of spatial autocorrelation into the β -convergence 

model. The first is econometric and regards the assumption of independent and identical 

distributed residuals that if violated may bias parameter estimates and increase the type I error 

rates. The second has to do with the possibility to take into account variations in the dependent 

variable determined by latent or unobservable variables differentiating the steady state. Finally, 

the inclusion of spatial autocorrelation captures geographic spillover effects. The cross-sectional 

models that allow to investigate the role of this spatial component on the convergence process 

are the spatial lag models (SLM), also called spatial autoregressive models, that handle spatial 

dependence by introducing an endogenous spatial lag variable and the spatial error models 

(SEM) in which spatial dependence works through omitted variables. More precisely, the 

former frameworks verify whether spatial dependence is caused by the impact of spatial 

spillovers on growth in neighbouring regions while the latter estimate the effect of possible 

spatially auto-correlated explanatory variables. This effect is of specific importance when 
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referred to the European agricultural sector growth where the common sectoral policy and 

legislation might have a similar impact on regions within the EU borders (Fingleton, 2003).  

SLM and SEM assume spatial stationarity, that is spatial autocorrelation is constant 

across the regions. However, if the main cause of spatial autocorrelation is dispersal, or the 

regression model shows structural instability or group-wise heteroskedasticity, stationarity is 

likely to be violated: behaviours are not stable over space and there is the possibility of multiple, 

locally stable, steady state equilibria. Very few methods deal with this issue. One of them is 

represented by the geographically weighted regressions (GWR) that, incorporating the spatial 

location of data, address the issue of locally different parameters of convergence, under the 

hypothesis that not only explanatory variables might differ across space but also their marginal 

response describing spatially varying relationships (Fotheringham et al., 2006).  

2.1. Global and local spatial regressions  

The spatial lag models introduce in equation (1) and endogenous spatial lag variable 

( ,T iWg ) assuming the following form: 

 

( )2
, 0, , ,       0,   T i i T i ig y Wg N Iα β ρ µ µ σ= + + + ≈  (4) 

 

where ρ  is the spatial autoregressive parameter that indicates the extent of interaction 

between observations according to a spatial pattern exogenously introduced by means of the 

standardized weight matrix W (Le Gallo et al., 2003). A positive and statistically significant ρ  

confirms the positive effect of spatial spill-over on regional convergence giving a measure of 

how the growth rate of per capita GDP in a region is affected by those of neighbouring regions. 

In this case, the estimated β  informs on the nature of convergence once spatial effects are 

controlled for. Equation (2) is estimated by the Maximum Likelihood Method (ML) or 

Instrumental Variables Methods (IV). In fact, the OLS approach produces inconsistent 

estimators due to the presence of a stochastic regressor TWg , which is always correlated with 

iµ ; in other words, the presence of Tg  as dependent and explanatory variable  means that there 

is a correlation-between-errors-and-regressors problem and the resulting estimates will be 

biased and inconsistent. 

In the spatial error models, spatial dependence works through omitted variables and this 

misspecification is handled by the error process: errors from different regions display spatial 

covariance. Assuming a first order spatial autoregressive process for the errors, the econometric 

model is specified as follows: 
 

( )2
0             0,Tg S y W N Iα β ε ε λ ε µ µ σ= + + = + ≈ (5) 

 

where λ  is the scalar parameter expressing the intensity of spatial correlation between 

regression residuals. 
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The model is estimated by ML of Generalised Methods of Moments (GMM). The OLS 

method yields insufficient estimators and a possible misleading interference due to biased 

estimates of the parameter of variance. This correction captures the effect of the omitted 

variables, different from factor migration, trade and spillover, which might have a negative or 

positive effect on growth (Arabia et al., 2005).  

In the spatial lag and error model the W matrix specifies the structure and the intensity of 

the spatial effects between two regions (Anselin, Bera, 1998). The most frequently adopted 

scheme is the binary: for a set of n regions, W is a n by n matrix whose elements ,i jw  are set 

nonzero if i and j are neighbours and zero if not. This scheme can be designed according to 

several algorithms; the simplest one is the First order Neighbour Weights where W is based only 

on adjacency of spatial units (for a review of the algorithms see, for example, Cliff, A.D. and 

Ord, J.K.,1981 and Griffith, D.A., 1987) referred to the Queen’s contiguity where neighbours 

are the regions that share borders and vertices (see Anselin and Bera (1998) for other contiguity 

weights). Further, the spatial weights are generally row-standardized, i.e. the row elements for 

each observation sum to 1 (for a discussion on stadardization see, for example, Manski, 1993; 

Lenders, 2002). 

Finally, with the GWR approach global OLS regression coefficients are replaced by local 

parameters i, so that equation (1) is rewritten as: 
 

( ) ( ) ,0, , ln ,T i i i j i i ij ij
g u v u v yα β µ= + +∑  (6) 

 

where ( ),i iu v  denotes the geographic coordinates of the ith region of the sample. 

( ),j i iu vβ  is a realization of the continuous function ( ),j u vβ  at point i. In the GWR each data 

point is a regression point that is weighted by the distance from the regression point itself; a 

spatial kernel adapts to the data and a kernel bandwidth indicate the distance beyond which the 

neighbour regions no longer have influence on local estimates (Sassi, 2010b, 2009a). This latter 

can be global when constant over space or local if threshold varies spatially. The weight 

assigned to observations is an inverse function of the distance from the economic system i 

according to the spatial weighting scheme selected (for further details see Fotheringham et al., 

2006).  

Algebraically, the GWR estimator is specified as follows: 
 

( ) 1ˆ ' ' ,i iX W X X W yβ −=  (7) 
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and the weight matrix is an n by n matrix in the form of: 
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 (8) 

 

where ijw  is the weight of the data at region j on the calibration of the model around 

regions i. A specific feature of the GWR is that these weights vary with i, contrary to the 

Weighted Least Squares where the weighting matrix is fixed. Using weighted regression it is 

also possible to overcome the problem of more unknown parameters than degree of freedom 

that characterises this approach. 

The spatially weighting scheme generally selected in convergence analysis (see, for 

example, Sassi, 2009a; 2009b, 2010b) is an adaptive bi-square function defined as: 
 

( )
22

1 /

0

ij ij

ij

d h if d h
w

otherwise

 −  = 



p

 (9) 

 

where h represents the different bandwidths and dij is the distance of the observation from 

the regression point. The number of regions to retain within the weighting Kernel window is 

irrespective of the geographic distance and is selected according to statistical tests referred to 

the alternative fixed-Gaussian or near-Gaussian schemes and minimising the Akaike 

Information Criterion (AIC) (for the choice of the spatial weighting functions see, Fotheringham 

et al., 2006). 

In addition to the standard performance measure of traditional regressions, GWR 

produces local parameter estimates and R2 values for each region. The possibility of mapping 

the local parameters estimated provides a visual inspection of a likely spatial autocorrelation, 

that is, the coincidence of attribute similarity and location similarity (Anselin, 1988). By this 

way, the hypothesis of convergence clubs is also investigated. GWR defines clubs  from the 

data  contrary to the traditional types of analysis referred to a priori hypothesis of groups of 

regions whose initial conditions are near enough to converge towards the same long-term 

equilibrium (for a survey of the model that generates clubs of convergence see, for example, 

Gallor, 1996). 

3. PANEL MODELS AND SPATIAL DEPENDENCE  

Due to omitted variables and heterogeneity in the steady state, the cross sectional 

regressions in the form of equation (1) might generate bias (Islam, 2003) that can be corrected 

by the panel approach that allows for technological differences across regions modelling the 
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specific regional effect (for the benefits of this approach see, for example Baltagi (2001) and 

Islam (2003)). The technology-gap approach and the empirical literature on convergence show 

that technological knowledge is not a public good, as in the neoclassical theory, but it is country 

related and a key determinant of growth rate differentials (Fagerberg, 1994). 

As underlined in the previous sections, two different approaches to addressing the issue 

of spatial dependence have been proposed in literature specifically the spatial error models and 

spatial lag models (Anselin, 2001). The design of both specifications relies on the spatial weight 

matrix nW  based on the euclidean distances among regions and that describes the spatial 

arrangement of the cross-section units and the elements of nW  are row-normalized so that each 

row sums to one. Spatial panel approach assumes that nW  remains constant over time.  

As is well known, the panel data may feature both time dependence (dependent variable 

autocorrelated over time) and spatial dependence (dependent variable autocorrelated in space). 

As suggested by Anselin et al. (2007), several specifications can be considered by introducing 

spatial, time-space and/or autoregressive terms. The starting point is the following general 

specification: 
 

( ), , 1 , , 1 ,

1,  1,  1         1,..., ;    1,...,

i t i t ij i t ij i t i i t
j i j i

y y w y w y v

i N t T

α ρ φ η

α β φ

− −
≠ ≠

= + + + +

< < < = =

∑ ∑
 (10) 

  
 

where ,i ty  is the observation of the dependent variable at time t  for the cross-section i . 

The coefficient α  captures the serial dependence of the dependent variable, the coefficient ρ  
represents the intensity of a contemporaneous spatial effect and φ  captures space-time 

autoregressive and space-time dependence.  

Following  Anselin et al. (2007),  specification (10)  nests various special cases of spatial 

lag models on panel data discussed in the literature. If  0α ρ= = , a so-called “pure-space 

recursive model” is obtained in which dependence results from the neighborhood locations in 

the previous time period (i.e. it only includes the lagged spatial lag , 1ij i t
j i

w y −
≠
∑ ); if 0ρ =  the 

model reduces to the “time-space recursive model”  in which dependence is connected to the 

location ,i ty
 and its neighbors in the previous time period , 1ij i t

j i

w y −
≠
∑ ; if 0φ = , equation (10) 

takes the form of a "time-space simultaneous model" which includes the time lag  , 1i ty −  and the 

spatial lag , 1ij i t
j i

w y −
≠
∑ ; finally, if  0α φ= = , the specification is that of  a spatial model on 

panel data, while if  0ρ φ= =  the model collapses to a "simple dynamic panel model". 
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Different estimation methods are developed to deal with dynamic panel issues or spatial 

dependence. For dynamic panel data without spatial interactions, Hsiao et al. (2002) develop a 

maximum likelihood estimator (MLE) with large number of regions (N) and large number of 

years (T). Another approach is to use a corrected least squares dummy variables model 

(CLSDV) (Kiviet, 1995; Hahn and Kuersteiner, 2002; Bun and Carree, 2005). Finally, dynamic 

panel data models are usually estimated using the GMM estimator of Arellano and Bond (1991) 

and Arellano and  Bover (1995) and Blundell and Bond’s system approach (1998). 

For static panel data, spatial interactions with fixed effects are usually estimated by MLE 

as suggested by Elhorst (2005) or by instrumental variables methods (Anselin, 2001). A 

relatively recent development in the literature on spatial dynamic panel data (SDPD) seems to 

cross these strategies. Elhorst (2005) suggests an unconditional maximum likelihood estimator 

for an SDPD model with either a spatial lag or a spatial error structure under a restrictive 

assumption of no additional explanatory variables. Lee and Yu (2010) and Yu et al. (2008) 

provide the asymptotic properties of a quasi-maximum likelihood for an SDPD model with 

exogenous explanatory variables. More recently, Korniotis (2010) has proposed a solution based 

on Hahn and Kuersteiner’s CLSDV (2002) and instrumental methods (Anderson and  Hsiao, 

1982) extended to allow for the spatial effect. Moreover, these various estimators may be 

complementary, depending on which specification is considered. For instance, Korniotis (2010) 

focuses on the ‘time-space recursive’ model whereas Yu and Lee (2009) work on a ‘time-space 

dynamic’ specification (10). 

GMM estimator presents several important advantages. First, it enables each special case 

of the general specification to be estimated with only a few modifications to moment 

restrictions. Moreover Kukenova and Monteiro (2009) demonstrated on Monte Carlo 

experiments that GMM extended to allow for spatial lags are, in several cases, more efficient 

than MLE and QMLE. In the following, the estimation issues of spatial dynamic panel using 

GMM methods are briefly illustrated. 

3.1. GMM methods  

The dynamic panel data specification has become increasingly common in many 

empirical studies, especially growth convergence empirical studies. As the inclusion of the 

time-lagged dependent variable in the equation might lead to biased and inconsistent estimates, 

instrumental variable estimators are required (Arellano, 2003). A commonly employed 

procedure to estimate the parameters in a dynamic panel data model with unobserved individual 

specific heterogeneity is to transform the model into first differences. Sequential moment 

conditions are then used where lagged levels of the variables are instruments for the endogenous 

differences and the parameters estimated by GMM (see Arellano and Bond, 1991). In the first 

stage the individual effects are eliminated by taking first differences (GMM-DIFF) or a forward 

orthogonal deviation (see, for example, Arellano and Bover, 1995). 

The efficiency of the estimates relies on the ‘proper’ choice of instruments, so the 

analysis refers to a common test of over-identification restrictions: the Difference-in Hansen test 
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checks the validity of a subset of instruments. As pointed out by Roodman (2009) a large 

number of instruments (due to increasing time periods) can overfit endogenous variables and 

lead to an incorrect inference, so that the Hansen test of instruments set must be carefully 

interpreted. These problems prove to be serious when T is too large for a given N. In empirical 

applications, the instrument number can be restricted by collapsing the instruments (combining 

the instruments in subsets) in order to avoid redundancy between different time periods. 

4. EMPIRICAL ANALYSIS  

The data adopted for the empirical analysis are taken from the EUROSTAT REGIO 

database available at http://epp.eurostat.ec.europa.eu and are based on the log-normal 

agricultural gross value added per labour working unit over the period 1980 to 2007. The recent 

empirical literature analyses convergence focusing on the recent years, generally, starting from 

1995. This is mainly due to lacking data for a large sample of observations. The dilemma 

between a wider time series and a larger sample is usually solved in favour of the latter.  

However, convergence has a long-term nature and for this reason the analysis has tried to 

extend the number of years taken into consideration as much as possible. The historical series 

has been created up-dating the time series prepared in two previous research programmes. This 

procedure has required some adjustment. Among them, before 2000, the values of agricultural 

output in ECU have been replaced by that in EURO at the 2000 exchange rate provided by 

EUROSTAT and the time series has been made homogeneous rescaling with values referred to 

common years. The sample includes 80 regions of the EU-15 at NUTS-2 level. 

Due to the specific impact of Structural Funds on convergence the empirical analysis has 

also been referred to two different sub-periods, 1980-1993 and 1994-2007, that represent the 

two different programming periods to which they are referred to.  However, the analysis is not 

aimed at assessing any impact of the policy intervention. 

4.1. Spatial autocorrelation  

The second column of Table 1, illustrates the OLS estimation of the model defined in 

equation (1) for the time period from 1980 to 2007. The estimated β  is statistically significant 

and negative, confirming the hypothesis of neoclassical convergence. Furthermore, the value of 

the parameter is 0.018, with a speed of convergence that, according to equation (2), is of 2.55% 

a year. This result confirms “the magic 2%” hypothesis of Quah (1997) that is the trend 

according to which not only the poorest economies will reach the richest, but also that it will 

happen within a few years1.  

                                                      
 
 
1 The literature shows that the uniformity of the rate of convergence night depend on the use of heterogenous units 
under the assumption that they are generated by an identical stocastic process rather than the operational of a 
convergence process (Canova, Marcet, 1995; Pesarant, Smith, 1995). 
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According to the Jarque-Brera test (1987), normality is not rejected (p-value 0.00005) 

and, for this reason, the testing procedure and the Maximum Likelihood estimation method 

adopted for the analysis of spatial effects are justified (Fingleton, 2003). The White test (1980) 

rejects homoskedasticity (p-value 0.005) and the Breush-Pagan test (1979) discards it versus 

0
y  at the 5 per cent significance level. 

 

Table 1: Estimation results β -convergence model without and with spatial effects (1980-2007) 

Model β -convergence Spatial error Spatial lag 

Estimation OLS – White 
Equation (1) 

ML 
Equation (3) 

ML 
Equation (2) 

α̂  0.0828    
(0.0000) 

0.0828 
(0.0000) 

0.0776 
(0.0000) 

β̂  
-0.0182    

(0.0000) 
-0.0181 

(0.0000) 
-0.0175    

(0.0000) 

λ̂  
 0.3246 

(0.0173) 
 

ρ̂    0.1047 
(0.2665) 

Speed of convergence 2.55 2.54 2.41 
Half-life 37.62 37.82 39.16 
R2  0.4213 0.4443   0.4298   
LIK 230.144 231.395961 230.694 
AIC -456.288 -458.792 -455.389 
BIC -451.524 -454.027 -448.243 

2σ̂  0.0002   0.0002 0.0002  

JB 19.777 
(0.0001) 

  

BP or BP-S  3.8271        
(0.0504) 

1.5212    
(0.2174) 

1.9733     
(0.1600) 

KB vs y0 1.749        
(0.1858) 

  

White 10.783        
(0.0045) 

  

MORAN-I 1.783      
(0.0745) 

  

LMerr 2.198     
(0.1381) 

 1.101     
(0.2940)  

R-LMerr 1.062      
(0.3025) 

  

LMlag 1.194      
(0.2744) 

2.503     
(0.1135) 

 

R-LMlag 0.058      
(0.8090) 

  

(…) p-values; OLS-White = use of the heterosedaticity consistent covariance matrix estimator of White in the OLS 
estimation; ML = Maximum Likelihood estimation; LIK = maximum likelihood function; AIC = Akaike information 
criterion; BIC = Schwars information criterion; JB = Jarque-Brera estimated residuals Normality test; BP = test for 
heteroskedasiticy, BP-S = spatially adjusted version of BP; KB = Koender-Basset test for heteroskedasticity; 
MORAN-I = Monan’s I test adapted to estimated residuals; LMerr = Lagrange multiplier test for residual spatial 
autocorrelation; R-LMerr = robust version of LMerr; LMlag = Lagrange multiplier test for spatially lagged 
endogenous variable; R-LMlag = robust version of LMlag. 
 

In order to investigate spatial autocorrelation, the approach suggested by Anselin et al. 

(1996) has been followed. Five tests are accounted for. First, the spatial error dependence has 

been tested applying the Moran’s I to the residuals of the OLS estimation of theβ -convergence 
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model2 (Cliff, Ord, 1973,1981). The test is very powerful against all forms of spatial 

dependence but it is not able to discriminate between spatial error dependence and omitted 

spatially lagged dependent variables (Anselin, Rey, 1991). This information is of specific 

important for investigating spatial autocorrelation that, Following Anselin and Florax (1995), 

has been detected through the Lagrange Multiplier (LM) tests and their robust version (R-LM). 

More precisely, the following four tests have been adopted: 

The Lagrange Multiplier test for spatially lagged endogenous variables (LMlag ), that 

take the form of:  

2

1ˆ '
ˆ ,

ˆ

Wg
LMlag

J

ε
σ=  

 

with  
 

( ) ( ) ( )2 2
2

1ˆ ˆ ˆ ˆ' ' ,
ˆ

J WY M WY tr W W Wρ ρ σ
σ

 = + +   

where ( )ˆWYρ  is a spatial lag for the predicted value ( )ˆYρ
, M is the projection matrix, tr is the 

sum of the main diagonal elements of the W matrix and 2σ̂ is the maximum likelihood 
estimator for the error variance. The test is chi-square distributed with one degree of freedom 

under the null hypothesis of no spatial dependence [ ]0 : 0H ρ = ; 

- The Lagrange Multiplier test for residual spatial autocorrelation (LMerr ), specified as  

( )
2

2

1ˆ ˆ'
ˆ

'

W
LMerr

tr W W W

ε ε
σ

 
 
 =

+
 

 

with notations as above; the test is chi-square distributed with one degree of freedom under the 

null hypothesis of no spatial dependence [ ]0 : 0H λ = ; 

- The robust form of (a) and (b), i.e. R-LMlag and R-LMerr and given by: 

( )

2

2 2

2

1 1ˆ ˆ ˆ' '
ˆ ˆ

,
ˆ '

Wg W
R LMlag

J tr W W W

ε ε ε
σ σ

 − 
 − =

− +
 

( )
( ) ( )

2
2 1

2 2

1
2 2

1 1ˆˆ ˆ ˆ' ' '
ˆ ˆ

.
ˆ' 1 '

W tr W W W J Wg
R LMerr

tr W W W tr W W W J

ε ε ε
σ σ

−

−

 − +  − =
 + − + 

 

                                                      
 
 
1. 2 The Moran’s I test, in matrix notation, takes the form of: 

2. 
ˆ ˆ'
ˆ ˆ'

W
I

ε ε
ε ε

=           (a) 

3. with ε̂  the vector of the OLS estimation residuals. 
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Table 1, column 2, shows that all the five tests introduced to investigate spatial 

autocorrelation are not significant. As a consequence, the LIK, AIC and SC indicate that both 

the SEM, estimated according to equation (5), and the SLM, estimated on the basis of equation 

(4) and the W matrix based only on adjacency of spatial units and referred to the Queen’s 

contiguity, do not achieve a significantly better likelihood than the OLS specification (Table 1, 

column 3 and 4). Only λ   is significant (p-value 0.01735) and positive, but it does not affect the 

parameter of convergence and adds very little to the explanatory capacity of the OLS model. 

Roughly speaking, a similar conclusion holds true over  the two sub-period 1980-1993 

and 1994-2007, as illustrated in Table 2 and 3.  
 

Table 2: Estimation results β -convergence model without and with spatial effects (1980-1993)  

Model β -convergence Spatial error Spatial lag 

Estimation 
OLS – White 
Equation (1) 

ML 
Equation (3) 

ML 
Equation (2) 

α̂  
0.0911        

(0.0000) 
0.1018     

(0.0000) 
0.0868  

(0.0000) 

β̂  
-0.0186        

(0.0000) 
-0.0232     

(0.0000) 
-0.0184   

(0.0000) 

λ̂   
0.4015      

(0.0017) 
 

ρ̂    
0.0980  

(0.3515) 
Speed of convergence 2.15 2.81 2.13 
Half-life 36.9 29.51 37.24 
R2 or Sq. Corr. 0.2825 0.3095   0.288194   
LIK 204.026 204.984 204.304 
AIC -404.052 -405.969 -402.608 
BIC -399.288 -401.205 -395.462 

2σ̂  0.0003    0.0003 0.000353946 

JB 
5.637        

(0.0596) 
  

BP or BP-S  
2.733        

(0.0982) 
0.944     

(0.3310) 
2.380     

(0.1228) 

KB vs y0 
2.001        

(0.1572) 
  

White 
3.131        

(0.2089) 
  

MORAN-I 
1.294      

(0.1956) 
  

LMerr 
1.029      

(0.3103) 
 

0.556     
(0.4556)  

R-LMerr 
0.558      

(0.4547) 
  

LMlag 
0.470      

(0.4927) 
1.917     

(0.1661) 
 

R-LMlag 
0.000005      
(0.9982) 

  

(…) p-values; OLS-White = use of the heterosedaticity consistent covariance matrix estimator of White in the OLS 
estimation; ML = Maximum Likelihood estimation; LIK = maximum likelihood function; AIC = Akaike information 
criterion; BIC = Schwars information criterion; JB = Jarque-Brera estimated residuals Normality test; BP = test for 
heteroskedasiticy, BP-S = spatially adjusted version of BP; KB = Koender-Basset test for heteroskedasticity; 
MORAN-I = Monan’s I test adapted to estimated residuals; LMerr = Lagrange multiplier test for residual spatial 
autocorrelation; R-LMerr = robust version of LMerr; LMlag = Lagrange multiplier test for spatially lagged 
endogenous variable; R-LMlag = robust version of LMlag. 
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Table 3: Estimation results β -convergence model without and with spatial effects (1994-2007)  

Model β -convergence Spatial error Spatial lag 

Estimation 
OLS – White 
Equation (1) 

ML 
Equation (3) 

ML 
Equation (2) 

α̂  
0.1284        

(0.0000) 
0.1250  

(0.0000) 
0.1123  

(0.0000) 

β̂  
-0.0313        

(0.0000) 
-0.0298  

(0.0000) 
-0.0281   

(0.0000) 

λ̂   
0.4502      

(0.0002) 
 

ρ̂    0.2294682 (0.0578522) 

Speed of convergence 4.12 3.86 3.57 
Half-life 21.78 22.88 24.30 
R2 or Sq. Corr. 0.273 0.3113 0.291184 
LIK 173.503 174.921 174.3 
AIC -343.007 -345.842 -342.599 
BIC -338.243 -341.077 -335.453 

2σ̂  0.0007      0.0007 0.0007 

JB 
223.8117        
(0.0000) 

  

BP or BP-S  
33.871        

(0.0000) 
26.210     

(0.0000) 
33.092    

 (0.0000) 

KB vs y0 
6.7852        

(0.0091) 
  

White 
13.482        

(0.0011) 
  

MORAN-I 
1.580      

(0.1140) 
  

LMerr 
1.647      

(0.1992) 
 

1.592     
(0.2070)  

R-LMerr 
0.4770      

(0.4897) 
  

LMlag 
1.1718      

(0.2790) 
2.835    

 (0.0922) 
 

R-LMlag 
0.001      

(0.9713) 
  

(…) p-values; OLS-White = use of the heterosedaticity consistent covariance matrix estimator of White in the OLS 
estimation; ML = Maximum Likelihood estimation; LIK = maximum likelihood function; AIC = Akaike information 
criterion; BIC = Schwars information criterion; JB = Jarque-Brera estimated residuals Normality test; BP = test for 
heteroskedasiticy, BP-S = spatially adjusted version of BP; KB = Koender-Basset test for heteroskedasticity; 
MORAN-I = Monan’s I test adapted to estimated residuals; LMerr = Lagrange multiplier test for residual spatial 
autocorrelation; R-LMerr = robust version of LMerr; LMlag = Lagrange multiplier test for spatially lagged 
endogenous variable; R-LMlag = robust version of LMlag. 
 

However, the OLS estimation, referred to the time period from 1994-2007, shows a 

strong increase in the speed of convergence to around 5 per cent a year (equation (2) with β̂ =-

0.0313) and the important new element in this period is the spatially adjusted BP test that in 

both the SEM and SLM estimates, based on equations 5 and 4 and on a W matrix referred only 

on adjacency of spatial units and to the Queen’s contiguity,  results strongly significant, 

indicating the presence of remaining heteroskedasticity. According to the GWR estimations, 

based on equation (6), this component is related to structural instability, an effect that, from 

1980-1993, is not significant as illustrated in Table 4 and 5.  
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Table 4: GWR estimations (1980-1993 and 1994-2007) 
 1980-1993 1994-2007 

Estimation OLS 
Equation (1)  

GWR 
Equation (4) 

OLS 
Equation (1)  

GWR 
Equation (4) 

Residual sum of squares 0.0286 0.0278 0.0612 0.0489 
Sigma 0.0191 0.0190 0.0280 0.0253 
Akaike Information 
Criterion 

-401.3348 -401.7012 -340.7041 -354.5726 

Coefficient of 
Determination 

0.2862 0.3067  0.2736 0.4195 

Adjusted r-square 0.2677 0.2804 0.2547 0.3900 

 
Table 5: GWR estimation: Monte Carlo test for spatial non stationarity (1980-1993 and 

1994-2007) 
 p-value 
 1980-1993 1994-2007 

α̂  0.9000 ns 0.0000 *** 

β̂  
0.9001 ns   0.0000 *** 

*** = significant at .1% level; **  = significant at 1% level; *   = significant at 5% level; ns = not significant 
 

Table 4 indicates that, from 1994-2007, there is a serious difference (greater than 3) in the 

AIC (Hurvich et al., 1998) of the OLS and GWR estimation whose values suggest that the latter 

is the best model. All the other GWR measures are preferable to those of the OLS. Further, the 

Monte Carlo test for spatial non-stationarity, illustrated in Table 5, indicates that there is a 

significant spatial variation in the local parameter estimates for α  and β , whose extent is 

provided by Table 6. 

 

Table 6: 5-number summary of the local parameter estimates (1994-2007) 
 Minimum LQ Median UQ Maximum 

α̂  0.0157 0.1228 0.1454 0.1632 0.1921 

β̂  
-0.0498 -0.0420 -0.0365 -0.0302 0.0018 

LQ = lower quartile; UQ = upper quartile. 
 

Following Fotheringham at al. (2006), a preliminary information on the degree of spatial 

non stationarity is given comparing the interquartile range of the local parameter estimates, 

where 50 per cent of the local parameters are concentrated, with the confidence interval around 

the global estimate of the equivalent parameters, where approximately 68 per cent of values in a 

normal distribution are within it. Table 7 provides this information showing that the former 

range is greater than the latter and, thus, suggesting that the relationships taken into 

consideration may be non stationary. This gap is greater with reference to the intercept of the 

estimation equation and contradict one of the most important component of the neoclassical 

approach to convergence, that is, the initial level of technology and its rate of growth identical 

for all countries. 
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Table 7: Range of 1SD± of global means and of local estimates between the interquartile 

range (1994-2007) 

 -1SD +1SD LQ UQ +1SD-(-1SD) UQ-LQ 

α̂  0.1102 0.1467 0.1229 0.1632 0.0365 0.0404 

β̂  -0.0371 -0.0255 -0.0420 -0.0302 0.0116 0.0118 
SD = standard deviation; LQ = lower quartile; UQ = upper quartile. 
 

The casewise statistics indicate that there are no unusual residuals, the Standardised 

Residuals is within 3± , and that there are no influential observations, the Cook’s Distance 

(Chatfield, 1995) never exceeds the value of 1. 

Figure 1 provides a more accurate information on the spatial variability of agricultural 

local parameters of convergence mapping their values pointing out the existence of convergence 

clubs. The parameter of convergence varies across the regions of the sample between a club of 

strongly convergent regions, geographically located in Italy, and four regions characterised by a 

weak convergence or divergence. The local t-value suggests a strong relationship between 

dependent and independent variable in nearly all the regions of the sample (Figure 2).  

 
Figure 1. Estimated local parameters of convergence 
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Figure 2.  Estimated local t-value for local parameters of convergence 
 

 

 

t-value -7.48 -7.12 -6.47 -5.24 -3.14 0.17 

p-value 0.00000 0.00000 0.00000 0.000001 0.001193 0.432725 

 
Further, there is a high degree of coincidence between attribute similarity and location 

similarity particularly between national borders. This result suggests the effect on the 

convergence process of specific characteristics that seem to be connected to the national or sub-

national level.   

4.2. Panel econometric analysis  

Tables 8-10 show the estimation results of equation (10) for the period 1980-2007.  

The second columns of Table 8 illustrates the estimated values for the pooled ordinary 

least squares method. The estimated autoregressive parameter is positive and strongly 

significant.  However, the implied convergence speed is very slow, 0.23%. Both the ρ̂   “time-

space” estimate and the φ̂  “time-space lag”  are significant which means that space-effects exert 

a role in determining the speed of the convergence process. The third column of Table 8 shows  

the LSDV estimates. In this case, the autoregressive estimates is lower than that provided by the 

pooled regression and still significant. As a consequence, the speed of convergence is higher, 

1.33%, than in the previous model. The spatial variables are significant.  
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As above mentioned, the pooled least squares estimator as well as the least square dummy 

variables estimator are biased and inconsistent when used to estimate dynamic panel models. 

The GMM method can help to overcame these  problems. 

 

Table  8: Estimation results for spatial dynamic model (1980 – 2007) (*) 
Estimation methods 

Variables 
POLS LSDV GMM-Diff 

α̂  0.940 (0.000) 0.702 (0.000) 0.730 (0.000) 

ρ̂  0.490 (0.000) 0.605(0.000) 0.933 (0.000) 

φ̂  -0.482 (0.000) -0.347(0.000) -0.688 (0.00) 

Speed of convergence 0.23 1.31 1.20 

Half –life 11.2 1.9 2.20 

Observations n. 2160 2160 2080 

2R  0.921 0.744  

AR(2)   1.310 (0.189) 
Sargan test   101.9 (0.296) 
Hansen test   78.41 (0.891) 
(*) In parentheses the p-values of the test statistics. Instrument used in GMM: lag-2 and -3 for the spatial lag and the 
dependent variable. 

 
Including the second and the third lags of both the spatial ( )∑ ≠ij t,iij ylnw   variable and of 

the dependent variable ( )t,iyln as instruments, the GMM estimated autoregressive parameter is 

closed to the LSDV estimate with an implied speed of convergence of 1.21% . Also in this case 

the spatial variables are strongly significant. It should be noticed that the test statistics reject the 

null hypothesis of autocorrelation of second order of residuals and both the Sargan and the 

Hansen tests confirm the overall validity of the instruments.  

Table 8  also reports the half-life a unit shock statistic computed as ( ) ( )α̂ln/5.0ln . This 

parameter measures  the number of years that it takes for deviations from the steady-state to 

subside permanently below 0.5 in response to a unit shock in the level of the series 3 .The half-

life is about two years for the GMM estimate. This means that  50% of a unit shock is absorbed 

in two years. In order to examine a possible change of the estimates during the period of 

investigation, Table 9 and 10 provide results for the two sub-periods 1980-1993 and 1994-2007.  

Focusing on GMM estimates, it first emerges that in the two sub-periods all the estimates 

remain significant and second, and more important, the implied speed of convergence changes 

dramatically.   

The speed of convergence rises from the value of 2.53% during the first sub-period to the 

value of  10.1% in the second sub-period. Naturally, also the half-life parameter shows a 
                                                      
 
 
3 Following the literature on convergence both the speed of convergence and the half-life parameters are based on 

α̂ . However also ρ̂  and φ̂  exert a role in determining the rate of convergence. Including these parameters will 

require the study of the impulse response function of the dynamic equation (10). This is left to further analysis. 
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reduction in the second period relatively to the first period. In conclusion, it seems that during 

the period 1994-2007 the agricultural labour productivity has shown a high rate of convergence 

toward the equilibrium than during the first period which covers the years 1980-1993.  This 

result might depend not only on the action of policy interventions but also on the alternative 

specifications and estimators adopted (see, for example Bond et al., 2001; Esposti, Bussoletti, 

2007) and introduces a future possible area of investigation. 

 

Table 9: Estimation results for spatial dynamic model (1980 – 1993) (*) 
Estimation methods 

Variables 
POLS LSDV GMM-Diff 

α̂  0.952 (0.000) 0.598 (0.000) 0.737 (0.000) 

ρ̂  0.496 (0.000) 0.618(0.000) 0.927 (0.000) 

φ̂  -0.493 (0.000) -0.281(0.000) -0.695 (0.00) 

Speed of convergence 0.37 3.95 2.53 

Half –life 14.1 1.3 2.3 

Observations n. 1040 1040 960 

2R  0.936 0.655  

AR(2)   1.80 (0.072) 
Sargan test   45.19 (0.229) 
Hansen test   53.90 (0.057) 
(*) In parentheses the p-values of the test statistics. Instrument used in GMM: lag -2 and -3 for the spatial lag and the 
dependent variable 
 

 

Table 10: Estimation results for spatial dynamic model (1994 – 2007) (*) 
Estimation methods 

Variables 
POLS LSDV GMM-Diff 

α̂  0.898 (0.000) 0.482 (0.000) 0.299 (0.012) 

ρ̂  0.468 (0.000) 0.563(0.000) 0.980 (0.000) 

φ̂  -0.456 (0.000) -0.165(0.000) -0.335 (0.035) 

Speed of convergence 0.82 5.60 10.07 

Half –life  6.4 0.9 0.5 

Observations n. 1040 1040 960 

2R  0.849 0.433  

AR(2)   -1.40 (0.161) 
Sargan test   25.8 (0.959) 
Hansen test   34.67 (0.891) 

(*) In parentheses the p-values of the test statistics. Instrument used in GMM: lag -2 and -3 for the spatial lag 
and the dependent variable. 
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5. CONCLUSIVE  REMARKS   

Two considerations are at the basis of this paper. On the one side, there is the renewed 

interest by the EU on the role of agriculture in the process of reduction of regional disparities, 

one of its key policy objectives, and, on the other side, there is the empirical literature on the 

issue that is mainly based on the neoclassical model of long-run exogenous growth of Solow-

Swan-type and only rarely referred to the theoretical and empirical advancements. On this latter 

aspect, today the literature on economic convergence widely accepts the influence of space on 

regional growth (Capello, Nijlkamp, 2009). For this reason, lacking analysis on the role of 

spatial dependence and heterogeneity in convergence across the agricultural regions represents 

an important deficiency particularly from a policy-making point of view. Further, form an 

econometric perspective the paper confirms that the non spatial models applied to testing β-

convergence suffer from errors and missspecifications due to omitted spatial effects.  

From the analysis of the econometric techniques available for investigating the role of 

spatial autocorrelation and heterogeneity, the paper has pointed out some interesting limitations 

that might represent points of departure for further research in this field. Among them, there is 

the specification of the weight matrix. In particular, little formal guidance is available in the 

choice of the more appropriated spatial weights for SLM and SEM in both a cross-country and 

panel data environment (Anselin, 2002). Florax and de Graaff (2004) provide an overview on 

how the neighbouring structure of regions selected might affect results strongly, an aspect that 

finds confirmation in the empirical analysis developed considering 80 agricultural regions of the 

EU-15 at NUTS-2 level from 1980 to 2007 and in the two sub-period introduce to take into 

account the the two programming periods to which Structural Funds payments are referred to: 

the adoption of the same W matrix in spatial cross-country and panel data approaches changes 

evidence dramatically influencing tests and the parameter estimates. For this reason, two 

different spatial schemes completely exogenously constructed have been adopted selecting 

among different options on the basis of their influence on tests. In a certain sense they represent 

the W matrices that allow for the best estimates. The fact that they have resulted different 

according to the approach adopted might be interpreted in the sense that the structure of spatial 

dependence and the type of spatial weights become more complex and able to be statistically 

significant in affecting the speed of convergence including in the analysis of agricultural 

catching-up both between and within regions’ variations. However, this aspect deserves a more 

deep understanding particularly for the related policy implications; the speed of convergence 

estimated by adopting the panel spatial model is much lower than that obtained with the 

classical β-convergence cross-country approach confirming the positive effect of factor 

mobility, trade relationships and knowledge spill-over on the process.  

Another problem related to the weighting schemes adopted for investigating spatial 

autocorrelation is that they remain the same for every region in the sample. This might be a 

more serious problem in panel data analysis where the matrix is assumed not to change also 

over time.  
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These issues are partly overcome with the GWR approach. The software available lets the 

data to determine the W-matrix selecting according to specific tests among fix or adaptive 

bandwidth,  the number of regions to retain within the kernel and the type of spatial weights. 

Empirical evidence from this technique have pointed out the role of spatial heterogeneity in 

agricultural convergence, confirming the existence of convergence clubs that should be better 

investigated, particularly, in the light of the different explanations provided by the theoretical 

literature. For example, convergence clubs may arise when saving rate out of wage is larger than 

saving rate out of capital within the neoclassical perspective (Dalgaard, Hansen, 2004) or due to 

different initial values of human capital and knowledge for the endogenous growth theory 

(Lucas, 1988, Romer, 1986, Gallor 1996). Further, the importance of spatial heterogeneity in 

agricultural convergence process suggests a further possible extension of the econometric 

framework to include the issue in panel data approach. 

Results achieved underline absolute convergence that is affected by effects of both spatial 

autocorrelation and spatial heterogeneity. This means that, contrary to what prescribed by the 

neoclassical theory of growth, all the agricultural regions have not converged to the same steady 

state but to different equilibriums with some of them characterised by equilibrium  values below 

the average. For this latter group of territorial units it should be evaluated a policy intervention 

aimed at promoting growth. 

The importance of space for agricultural growth increase over the sub-period form 1994 

to 2007 introducing a future possible area of investigation in the light of the empirical literature 

economic convergence that, on the topic, suggest that this result might depend not only on the 

action of policy interventions but also on the alternative specifications and estimators adopted 

(see, for example, Bond et al., 2001; Esposti, Bussoletti, 2007) .  

Another issue with an impact on results particularly in analysis that take into 

consideration spatial effects is the delimitation of territorial units. The NUTS-2 regions are 

administrative units of the European Commission and EUROSTAT neither internally 

homogeneous nor uniformly large and, most important, with no relationship to socio-economic 

factors. This latter aspect is even more accentuated testing agricultural convergence across EU 

regions due to the fact that “agricultural regions” have different borders than that of the NUTS-2 

regions (for a preliminary analysis of the different agricultural systems in the EU see, for 

example, Montresor et al., 2007).  

In the light of these considerations, it emerges that the process of agricultural regional 

convergence in Europe is complex and that cannot be adequately captured by the non-spatial 

growth regression models that have dominated the research and policy debate in this field. 

Spatial interaction is an important component of regional agricultural growth and convergence 

and spatial spill-over effects matter for the evolution of regional agricultural disparities. This 

suggests the need for deserving more attention to spatial dimension not only in the econometric 

analysis but also in the policy debate where the interaction between spatial and temporal 

dimension of effects introduced by policy shocks is of specific importance in an area 

characterised by deepening economic integration. 
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