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Sub-vector Efficiency Analysisin Chance Constrained
Stochastic DEA: An Application to Irrigation Water Usein
the Krishna River Basin, India

Chellattan Veettil P. , Arathy Ashok, Stijn Speeimaderoen Buysse and Guido van
Huylenbroeck

Abstract

All deviations from the frontier is inefficiency deterministic DEA (DDEA); thus making the
DDEA unable to accommodate the measurement andfispgon errors. But, most of the
production relationships are stochastic in naturighwsome inputs fixed in the short run. This
paper addressed the above two issues by formulairgub-vector efficiency model in a
Stochastic DEA (SDEA) framework to analyze theieffcy of sub vector of inputs. The results
illustrate that there is a wide scope for stochastificiency analysis. The overall efficiency in
SDEA is higher than DDEA under both Constant andidiiée Return to Scale frameworks.
SDEA revealed that some efficient producers aresud-vector efficient in our case study.
Thus, overall efficiency oriented policy may not sudficient for optimizing water use. The
proposed model has limitations in terms of the degsf stochastic variability and the level of
tolerance that the model can accommodate.

Keywords: stochastic DEA, sub-vector efficiencygnede constrained programming, irrigation
water use efficiency

JEL classification: Enter JEL codes.

1. INTRODUCTION

Estimating the performance of productive units (Biea Making Unit or DMU) requires
an appropriate methodology. Stochastic Frontier Iysis (SFA) and Data Envelopment
Analysis (DEA) are the two dominant methods redpelst in the most widely used parametric
and non-parametric approaches for efficiency aiglys Non-parametric approaches on
efficiency analysis has gained greater momentuer dlffte pioneer work by Charnes et al in
1978 (CCR model) for a constant return to scalBS version of DEA, which was later
extended by Banker et. al. (1984) to variable retur scale (VRS) DEA framework (BCC
model). In CCR-BCC models and other deterministeAD(DDEA) methods observations at
the frontiers are assigned to have an efficiencyurmty and all those behind this frontier
envelopment are given a value less than unity.t ifhglies all deviations from the frontier are
considered as inefficiency; thus making the DDEAhle to accommodate measurement and
specification errors. As most production relatiapshare stochastic in nature, recently
researchers started paying attention to incorpatatehastic considerations into DEA models.
This paper attempts to extend the concept of sttichBEA (SDEA) to analyze the sub-vector
efficiencies in the context of irrigation water useKrishna river basin, India.
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The importance of sub-vector efficiency is illusé here by taking the efficiency of
irrigation water in an agricultural production gective. Irrigation water is the limiting factor
in most arid and semi-arid regions. In this sitratihe agricultural production relationships will
be sub-optimal if we do not take into account shie-vector efficiencies of irrigation water
(Water use efficiency — WUE). The scope for impngwvater resource allocation is high if we
know the farms/sectors with high WUE and very lIoWB/ Theoretically best allocation can
be achieved between farms or sectors when the nargroductivity of water is equal in all
farms or sectors. Additionally, we want to know wWie farmers with efficient overall
production are also efficient water users.

e The main contribution of this paper is to presestahastic DEA model for sub-vector
efficiency analysis and to compare the results iobth from this model with that of
DDEA. Further, the proposed model is illustratadhe context of irrigation WUE in
Krishna river basin where water is one of the seamd limiting resource for agricultural
production.

* The remaining sections of the paper are organizeflibows. The next section briefly
discusses the basic concepts of deterministic tnathastic efficiency. We here define the
condition for ana-stochastically efficient DMU. This is followed kg brief discussion
about the family of deterministic DEA and a forntida of the basic CCR-BCC model
under VRS and CRS framework. The concept of stdichB&A model is introduced in a
chance constrained framework. Later on these madelfurther extended to incorporate
the sub-vector efficiency concept introduced byeFat al (1994). The third section
provides an empirical illustration of the proposeadels in the context of irrigation water
use efficiency of the agricultural production systen Krishna river basin, India. A
comparison is made between the efficiency calauiatiunder the two approaches.
Finally the paper concludes with highlighting tloege and limitations of the model.

2. NON-PARAMETRIC FRONTIER EFFICIENCY ANALYSIS

In the group of non-parametric efficiency analyhisie we focus on DEA and its variants
which can accommodate the stochastic data for snantl outputs. Farrell (1957) introduced
the relative efficiency concept in his seminal worktechnical efficiency. He defined technical
efficiency as the ability of a farm to produce theximum feasible output from a given bundle
of inputs (output-oriented efficiency) or to usenimium feasible amounts of inputs to produce
a given level of outputs (input-oriented efficiehcy Extending the relative efficiency concept
of Farrell, Charnes et al (1978) developed tha M®EA model (CCR model). The DDEA
uses linear programming to calculate the efficammbest practice frontier through the piecewise
linear envelopment of observed input-output comtidng with the assumptions concerning
scaling and disposability of inputs and outputse@@h & Petersen, 1995). The DMUs on this
technical efficiency frontier are assigned withedficiency score of unity and others behind this
frontier get an efficiency score less than unitgating all the deviations from this frontier as
inefficiency. The CRS assumption in CCR model igher extended to VRS specification by
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Banker et al (1984) famously known as BCC modelt, Banfortunately these DDEA
approaches cannot be used for applications wittreand random noises in data which often
occur in reality. In response to this criticisrffpegs have been made to extend these DDEA to
accommodate stochasticity of inputs and outputsifBrConforti, Beraldi, & Tundis, 2009;
Desai, Ratick, & Schinnar, 2005; Kenneth, Lovell,.Sfen, 1993; Olesen & Petersen, 1995).
Here we extend the stochastic DEA model to anatheesub-vector efficiencies of inputs.
First, we discuss the basic concepts of deterningid stochastic efficiency followed by a
brief discussion of the CCR-BCC model and then fdate the chance constrained DEA
(CCDEA). Finally we extend the CCDEA to accommediie sub-vector efficiency.

2.1. Deterministic and Stochastic Efficiency : The concept

. _ M
Let J =L "M he the collection of DMUSs, X = (Xa, Xz Xy )OD denotes

Y, Y, ...

— K
quantity vectors of " productive inputs ana/ - ( » Yk )D O, denotes the vector of

k outputs. The production technoloé{;ﬂy) can be characterized by the production possibility

set (PPS) which consists of all combinations()éif i ) J=L...n which can be formulated
as (Bruni, et al., 2009):
PPS=((xy):x= XA,y =YA,11=1120) (1)

WhereY is the (N xK) matrix of observed outputgﬁ is the vector of outputs of current DMU;

Xis the(N xM) matrix of observed productive input>s(§ is the vector of productive inputs of

(N x1)

current DMU; Ais a vector of intensity variable representing the iafine of each

DMU in determining the technical efficiency of therrent DMU; I'disa convexity constraint
which specifies the VRS specification without whithe DEA model will be a CCR model

DMU

describing a CRS situation. In a deterministic DE#&del, the I js efficient if it is
impossible to find a feasible solution for the déeling problem (Bruni, et al., 2009):

XA <X,

YAy, (2)

with 420 satisfying I'’A=1and strict inequality holding for at least one doamigt. The
concept of efficiency can be extended to stochd3H& by jointly comparing the outputs and

DMU, . -

inputs of DMU under study. Following Bruni et alO@) the stochastically

efficient if and only if for any/1 20 satisfying I'A =1
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Ob{)’f(wm < izmj(w), m=1..... ,M}S
Y(@)'A2y,(w), k=1....... K 3)

X; (w)

with strict inequality holding for at least one straint; X] y;(«)

and

X(@) =Y %, (@)

random input and output vectors respectively with = and

V(@)=Y 5@

representing the

. We assume that the distribution function o(?<i ()., (w))is known.
Here we restrict the probability of the existendedominating DMU to beS & . Hence, the

stochastic efficiency of tthU Ican be measured by solving the following model:

\ X(W)A €% (w), m=1,..... M

a =max Prob ~( ), ,j“J( ) a
A Y(W)'A 2y, (w), k=1...... K 4)

with 420 satisfying I'’A =1and strict inequality holding for at least one domist. a is the

risk of incorrectly identifying DMUJas non-dominated stochastically in its efficiensgg
Bruni, et al., 2009 for more details). Cooper et(#98) and Huang and Li (2001) have

. - " DMU . .
suggested separate chance constraints as the argcasd sufficient condition for Y, is

& ~stochastically efficient. That isPMUi is 0 ~stochastically efficient if the following
condition is satisfied:

Prob{i ()Z (W)'A =%, (a)))— i (V(a))’/l = Vi (a))) < O} <a (5)

2.2. Deterministic and stochastic DEA model for efficiency analysis

The non-parametric representation of the underlyiraguction technolog)y(y) as described
in the above section, is given below (Lansink &&;jl2004):

V) =((xy): YAy, XA<x,1'A=1120) (6)

The following dual formulation of the above prodoot technology in a mathematical
programming formulation can be written in an inptiented BCC framework as follows:

Min, 6
s.t. YAzy;,

X%sﬁm,
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I'A =1,

N
g00, 200" @)

Where 9 is the radial input contraction factor represemtime technical efficiency of the above
input-oriented programming formulation.

The above model corresponds to deterministic DEzhig8dt, 1985) where we assume
that there is no uncertainty affecting input-outpettors. This implicit assumption of no
random noise in data is overcome by the followitagisastic DEA approach.

2.1.1 Chance constrained formulation of DEA

The LLT (Land, Lovell and Thore) model formulatdsetineth, et al., 1993) a basic chance
constrained programming approaches for incorpayatiochasticity in input and output vectors.
The LLT model imposed the probabilistic constrainttividually on each output and input, and
does not account for the intra-DMU correlationspp@sitely, the OP (Olesen and Pertersen)
model is formulated to introduce intra-DMU corradas (Olesen & Petersen, 1995), but
overlooks the inter-DMU dependencies. By usingtj@robability, the stochastic DEA model
allows to simultaneously handle inter and intra-DMependencies (LLT and OP models) as
shown in model (5). Since in our present case,ogad on inter-DMU dependencies rather than
intra-DMU correlations, we nevertheless built ore thLT model in our analysis. The
programming model can be formulated as:

Min, ,6
X (N A<OX.
st. Pro )S(a))’A_f’me(w) <a
Y(W)'Azy,(w)
I'N=1
e0d, A0ON (8)

The joint probability constraint of the model (8arc be simplified using the following
assumptions (for more details see Kenneth et 83)19

Ey, =Y, forall jandk
CoMyy. yi) = 0 for allk andfor i # j
Vary, = o,constantfor eachj

as independent probability constraints and theltitegumodel is LLT specification:

Prod)?(a))% < Himj(w))s a
Prob(Y (w)'A = §, (@) < a
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2.1.2 Sub-vector efficiency

Fare et al (1994) described the need for a noticulo-vector efficiency as follows “in the short
run some inputs might be fixed or uncontrollablel éimerefore it may be possible to contract
only a sub-vector of inputs. Alternatively, sometputs may be produced under a fixed
contract while others may be adjustable”. Subeseefficiency measures efficiency for a the
sub-vector of inputs and outputs rather than ferahtire vector of inputs and outputs (Fare, et
al., 1994; Lansink & Silva, 2004; Speelman, D'Had&agysse, & D'Haese, 2008). Sub-vector
efficiency of the DEA model (1) can be formulatedfallows:

Min, ,6°

s.t. YA < Yig:

XASOX;
X ASX;
I'A =1,

N
00, A00O" ©)

Where & is the sub-vector efficiency;xSis the sub-vector of the inputs contracted for the

production of outputs,x—S is the vector of all other inputs.

2.3. Chance constrained formulation of sub-vector efficiency

Using independent probability constrained the setter efficiency model can be
formulated as

Min, ,6°
Y (@)1 < ()
st. Proby (X_ (w)'A =X, (W) <a
X ()2 2 6° X, (w)
' =1
oo, A00" (10)
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3. EMPIRICAL ILLUSTRATION

3.1. The Data

Data on agricultural production systems were ctéigédrom the farmers of the Krishna
river basin area of the northern Karnataka statadia from December to March 2008 by face-
to-face interview method using a structured quastire. The Krishna river basin constitutes
8% of the total geographical area of India and flathrough three Southern Indian states:
Maharashtra, Karnataka and Andhrapradesh. Thisrmdindes four sub-basins, namely Lower
Krishna, Ghataprabha, Malaprabha and Tungabhaflig. 1 shows the map of the Krishna
river basin. About 77% of the total basin areaullivable (203,000 Km2) with an irrigation
potential of 47,200 km2 (IWMI, 2007). The majgrdf the basin area is arid or semi arid and
faces high water scarcity. The per capita totakweable water resources availability of the
basin is estimated to be 1,133 m3 (Amarasinghal.,e2005). More than 90% of total water in
Krishna River is used for irrigation. The croppimattern in this basin is very diverse with field
crops constituting the principal share. In thisdgt the villages and farmers within villages
were selected randomly. The production detaild 2§ farms were collected and used in the
DEA analysis.

Figure 1. The map of Krishna river basin showingstudy area
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Three outputs and eight productive inputs (wagand) labor, capital, manure, fertilizer,
seed and chemicals) are distinguished in the ptmatuprocess. The outputs measured were
Yy, :quantity of ricegrainin 100kg
Yy, :quantity of corngrainin 100kg
Yy, :quantity of sugarcanen tons
and the inputs were

x, : totalamountof irrigation waterusedin acre- inches(lacre-inch =102.8m?)

X, : totalareaundercropsin acreq2.5acre= 1lhectare)

X, : totalfamily andhiredlaborusedfor croppingin man- days

X, :capitalinvestedon machinery

X -quantityof organicmanureappliedin tons

X - quantityof fertilizer appliedin 100kg

X, :seedn kg

Xg :chemicalsn kg

The outputs consist of rice, corn and sugarcanateiNis the total amount of irrigation
water used in acre-inches (1 acre-inch = 102.8cculeter); Land represents the total area
cultivated and is measured in acres (2.5 acre #arec labor is measured in man-days and
includes family as well as hired labor; capital sists of the capital invested in machinery;
manure represents the organic manure which corddistatural products comprising farmyard
manure, green manures, compost prepared from esigues and other farm wastes, oil cakes
and other manures from decaying plant/animal matted is measured in tons; fertilizer is
measured in 100 kg; seed and chemicals are meaisukgd Table A in appendix provides the
summary characteristics of the production fact@edun the analysis.

The agricultural production faces uncertaintieseeggly in irrigation water use, hence it
is an ideal case to illustrate the advantage s&ichBEA in assessing sub-vector efficiency.
We assume that within a farm, outputs are appraeiypaormally distributed and the observed
outputs serves as an unbiased estimate of thettpaits of the farm. Additionally we assume
that all farms are stochastically independent, yimgl that the agricultural production of one
farm is independent of other farms. It is quitesm@ble to assume this independence as the
agricultural production depends on the productiveuts and since the farms are randomly
selected from different villages belonging to samgeo-climatic conditions, the dependencies
are minimal. Both linear (DDEA) and non-linear (&8) programming models are solved
using GAMS (General Algebraic Modeling System). &= an input-oriented SDEA model

because farmers have more control over the inpats they have on output (Tuna & Oren,
2006).

Page 8 of 16



Ancona - 122 EAAE Seminar
"Evidence-Based Agricultural and Rural Policy Makin

3.2. Agricultural production efficiency of the farming system

Table 1 lists the results of efficiency scores gifi@ultural production system of the first
40 farms. The table can be divided into two pdts:left side presenting the DDEA efficiency
scores and the right side the SDEA efficiency storlh each method, both overall and sub-
vector efficiencies under CRS and VRS specificatiare reported. Chance constrained DEA
efficiency scores are higher than deterministic DEfficiency scores. The soft frontier in
chance constrained DEA in contrast with the haodtfer in deterministic DEA allow output
observations crossing the frontier (Kenneth, etl®193), but not too often.

A close look at the Table 1 reveals that the efficy score for SDEA is higher than that
of DDEA. This is quite logical as for DDEA the efiéncy is bounded to a maximum efficiency
ratio score of 1 where as in SDEA this hard franBerelaxed to a soft frontier (Kenneth, et al.,
1993). The greater be the stochasticity of outghesgreater is the band of this frontier that can
be crossed in SDEA. In our present study the totardimit is set to 5%. Almost half of the
farmers lie on the output frontier in DDEA undee tWRS framework where as it is slightly
lower (44%) in CRS framework (see Table 3 for dethdistribution of the efficiency scores in
different bins). In both cases, the fraction ofriars on the stochastic output frontier is higher
(about 15%). Stochasticity of inputs and outpuliswa more farmers obtaining higher
efficiency scores (or lie on the ‘band of soft'riteer). The average overall efficiency for DDEA
is 0.870 and 0.856 under VRS and CRS frameworlectsely (Table 2). Similar deterministic

Table 1 Overall and Sub-vector Efficiency scores BEA and SDEA (for first 38
farms)

Overall Efficiency Sub-Vector (Water Use) Efficignc

Farm Deterministic DEA stochastic DEA Deterministic DEA stochastic DEA

VRS CRS | VRS CRS VRS CRS ! VRS CRS
Farm001 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm002 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm003 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm004 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm005 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm006 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 .0001
Farm007 0.902 0.902 | 1.000 1.000 :
Farm008 0.819 0.819 | 0.977 1.000 ,
Farm009 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 .0001
Farm010 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 .0001
Farm011 1.000 1.000 |  1.000 1.009 1.000 1.000 1.000 .0001
Farm012 0.686 0.686 | 0.720 1.000 0.200 0.200 0.200 .2000
Farmo13 1.000 1.000 |  1.000 1.009 1.000 1.000 1.000 .0001
Farm014 1.000 1.000 ! 1.000 1.000 1.000 1.000 1.000 .0001
Farm015 1.000 1.000 1.000 1.000 1.000 1.00D 1.000 .0001
Farm016 0.699 0.699 1.000 0.699 0.250 0.2515) 0.250 .2500

Page 9 of 16




Ancona - 122 EAAE Seminar
"Evidence-Based Agricultural and Rural Policy Makin

Farmo17 | 0.952 0952 |  1.000 1.000 0.938 0.933 0.937 .9380
Farmo18 |  1.000 1.000 | 1.000 1.000 1.000 1.00 1.000 .0001
Farmo19 |  0.927 0927 | 0927 0.927 0.625 0.625 0.625 6250
Farm020 |  0.760 0760 |  1.000 0.760 0.700 0.70D 0.700 .7000
Farmo21 |  0.774 0774 |  0.834 0.834 0.153 0.153 0.204 1910
Farm022 1.000 0952 |  1.000 1.000 1.000 0.771 1.000 .0001
Farm023 |  0.692 0692 |  0.692 0.758 0.380 0.380 0.446 7890
Farm024 | 0.596 0596 |  0.754 0.754 0.400 0.400 0.577 5700
Farm025 | 0.544 0.544 | 0581 0.581 0.404 0.408 0.451 4410
Farm026 |  1.000 1.000 |  1.000 1.000 1.000 1.000 1.000 0001
Farm027 |  0.832 0832 |  0.928 1.074 0.452 0.452 0.632 4520
Farm028 |  1.000 1.000 | 1.000 1.000 1.000 1.00D 1.000 0001
Farm029 |  0.891 0.891 |  1.000 0.891 0572 0.57p 1.000 0001
Farm030 |  1.000 1.000 | 1.000 1.000 1.000 1.00D 1.000 0001
Farmo3l |  1.000 1.000 |  1.000 1.000 1.000 1.000 1.000 0001
Farm032 |  0.898 0.898 |  0.898 0.898

Farm033 |  1.000 1.000 |  1.000 1.000 1.000 1.000 1.000 0001
Farm034 | 0.742 0742 | 1.000 0.742 0.250 0.250 0.250 .2920
Farmo35 | 0.991 0.991 |  1.000 1.000 0.357 0.357 0.357 5060
Farm036 |  1.000 1.000 |  1.000 1.000 1.000 1.000 1.000 .0001
Farm037 |  0.719 0.79 | 0719 0.80 0.460 0.460 0535 .4600
Farm038 0.945 0.815 | 1.000 1.003 0.546 0.459 1.000 .4590

technical efficiency scores were estimated forvilneat based cropping system (Tuna &
Oren, 2006). The overall efficiency in SDEA is heglthan DDEA under both frameworks and
they are 0.912 and 0.894 respectively for VRS aR& CTable 2 also reveals that the minimum
and maximum efficiency ratios are also higher fDE3.

Table 2. summary statistics of the efficiency miiotwo approaches

Overall Efficiency Sub-Vector (Water Use) Efficignc

Statistic | peterministic DEA stochastic DEA Deterministic DEA  stochastic DEA
VRS CRS VRS CRS VRS CRS VRS CRS

Mean 0.870 0.856 0.912 0.89 0.681 0.627 0.708 820.4
Minimum 0.265 0.265 0.329 0.265 0.050 0.050 0.050 .058
Maximum 1.000 1.000 1.198 1.074 1.000 1.000 1.0001.00001
Std. dev. 0.180 0.182 0.158 0.16|Y 0.362 0.370 0.3450.348

The distribution of the efficiency scores for DDEBAd SDEA models are given in table
3. The percentage of farmers in the lower efficjesmore bin is lower for SDEA compared with
DDEA. The sub-vector efficiency also shows a saamttend. On an average the percentage of
farmers in the lower efficiency bins are found Rglior CRS model. The figures 2 and 3

Page 10 of 16



Ancona - 122 EAAE Seminar
"Evidence-Based Agricultural and Rural Policy Makin

showed the difference between efficiency scoreSDEA and DDEA for overall and sub-
vector efficiency respectively. There are no défece between both efficiency scores for 60%
and 54% of farmers under VRS and CRS overall efficies. 76.79% and 66.07% of farmers
show no differences for sub-vector efficiencies (#ylih both models. The average differences
between SDEA and DDEA are 4.28, 3.82, 3.32 and pé&¢entage point respectively for
overall VRS, overall CRS, sub-vector VRS and suttwe CRS models. In the case of sub-
vector efficiencies this difference is found higlfi@r CRS model compared to VRS model.

Table 3. distribution of efficiency scores (%) ot approaches

Overall Efficiency Sub-Vector Efficiency
Efficiency score| Deterministic DEA: stochastic DEA|  Deterministic DEA stochastic DEA
VRS CRS! VRS CRY VRS CRS! VRS  CRS
<0.100 0.00 0.00; 0.00 0.0 2.68 3.57; 1.79 26
0.100-0.200 0.00 0.00! 0.00 o.oll 8.93 12.50! 714 80
0.200-0.400 1.67 1.67: 083 1.6f 1518 16.07! 14.29  16.
0.400-0.600 | 10.83 12.5o§ 6.67  7.5) 13.39 13.39§ 11.61 1o.3|[
0.600-0.800 | 15.83 15.oo§ 1167 1338 2.68 4.46§ 446 53
0.800-0.900 | 10.00 15.00, 8.33 11.6f 0.89 0.89! 089 0.8
0.900-0.950 | 583 500, 417 50(  0.89 179, 089 1.7
0.950-0.999 | 333 667 333 33} 000 000, 000 00
>0.999 5250 4417 6500 57.50 5536  47.32] 5893 54.z]L

Figure 2. The difference between SDEA and DDEA alNefficiency scores
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Fig 3. The difference between SDEA and DDEA subweefficiency scores
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3.3. Water use efficiency

Some of the sub-vector efficiency values are mgssintable 1 because these farmers do
not use irrigation (rainfed cropping) or use ofrertely low amount of water. The sub-vector
efficiency frontier shows a similar pattern as tbhthe overall efficiency frontier in terms of
the number of farmers on the hard frontier wherahasstochastic input efficiency shows a
deviation from the stochastic overall efficiencyrftier. 54% of the farmers lie on the
stochastic input frontier for efficient water useder VRS framework where as it is 48% under
CRS framework. According to the DDEA model outcortiese farmers who are efficient
producers (overall efficiency) are also efficiemtwater use (sub-vector efficiency). This is not
true in SDEA. Some efficient producers are noicefht in water use when we consider
stochasticity in inputs and outputs . For exampke Farm017 is an efficient producer but not
efficient in water use under both the CRS and tRSYWWUE= 0.94) framework. The opposite
can be true for both DDEA and SDEA. Though SDEA@e complex, the stochastic model is
flexible and relies on fewer assumptions which loawiolated than DDEA. 17% of the farms in
the stochastic WUE frontier are not in the WUE frenof DDEA under the CRS framework,
but all farms in DDEA frontier are also in SDEA WUfEontier. Whereas under VRS
framework it is only 7.5%.

In many decision problems, the uncertainties anstemxce of slacks are integral part of
reality and the SDEA offers one format for this (iKketh, et al., 1993). Due to the
unpredictability of climate and resulting uncertadn in irrigation water availability, the water
use decisions in agricultural production often dedsa due attention to the underlying
uncertainties. Chance constrained formulation askedge this uncertainty by introducing the
stochasticity in input use. High variations in tegtimated efficiency scores for sub-vector
reflects the wide variations in actual water uséaahers.
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4, CONCLUSION

A vast literature of DEA discusses the efficien@séd on the mathematical theory of
production which is deterministic in nature (Fard57). The sub-vector efficiency analysis in
SDEA provides ample opportunity to accommodatestbehasticity of inputs in the production
relationships. Since, agricultural production pftaces uncertainties due to changing climatic,
physical, social and political conditions, forgoinf such random errors and noises are not
appreciable. This paper provides an illustrationnabrporating stochasticity in a sub-vector
efficiency analysis in irrigation water use in agdtural production relationships in semi-arid
farming systems.

The result of the stochastic DEA efficiency motiels the advantage of the greater
scope to accommodate noises and errors in dataatechpo deterministic DEA model. The
theoretical consequence is that the possibilityadew number of farms, possibly outliers,
dominating the frontier is lower. As illustrated tine case study, the SDEA is determined by
more DMUs than the DDEA frontier. The SDEA frontleais as a results a more complex and
possibly a more complete representation of ther@olgy in the frontier. However, the case
also shows that the ranking of the efficiency matio both cases are almost similar which
explains that the ranking is robust against assiamgtbout the noise.

The advantage of flexibility of SDEA has also soro@sequences. In fact DDEA can be
considered as a special case of SDEA where thetwle limit of noise is set to zero. SDEA is
less restrictive by incorporating noise but thedéraff is that one also has to make an
assumption about the tolerance limit. The gredterstochastic variability, the greater would be
the band of soft frontier which can be crossed.s Tilakes the efficiency ratios of data with
large uncertainties close to unity (Kenneth, et #893). A greater tolerance limit could also
lead to the fact that real inefficiencies are ilattted to plain noise. Therefore, even if we keep
the stochastic variability as constant, an incraasthe tolerance level of chance constraints
always increases the efficiency score.
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APPENDI X

Table A. The summary characteristics of the pradad&ctors used in the model

Production factor Mean Std. dev. Minimum Maximum

Inputs
Irrigation water (x) 48.89 52.24 0.00 360.00
Land area (¥ 7.28 10.78 1.00 100.00
Labor (%) 87.84 73.48 11.00 519.00
Capital (%) 2.37 4.03 0.00 28.00
Organic manure g 8.49 11.07 0.00 80.00
Fertilizer () 4.63 5.05 0.00 40.00
Seed (%) 128.16 686.36 0.00 5000.00
Chemicals (¥) 3.32 22.03 0.00 300.00

outputs
Rice (w) 7.99 11.84 0.00 55.00
Corn () 3.07 6.12 0.00 24.00
Sugarcane @ 29.82 38.05 0.00 360.00
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