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A HYPERBOLIC TANGENT YIELD FUNCTION OF 

FLORIDA CITRUS  

Lan Chen (University of Florida) and Charles B. Moss (University of Florida) 

 

Abstract: This study models Florida citrus production as a function of the age profile of a 

given tree stock. The age relationship is estimated using a modified hyperbolic tangent 

function and the parameters is solved by Spatial Process Models and Maximum 

Likelihood approach. The estimation is based on the production data of four citrus 

varieties in 25 regions of Florida from 1992 to 2005. The results show smooth “S”-

shaped yield curves of Florida citrus. This analysis offers yield function of citrus as the 

first step for statistical modeling of the risks associated with citrus cancers aimed at 

pricing insurance rates. 
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This study initiates the estimation of the effect of diseases such as Citrus Canker and 

Citrus Greening, and other natural calamities such as hurricanes by formulating an “S”-

shaped yield function for citrus and incorporating the spatial dimension of such effects on 

citrus yields. Citrus Canker is a bacterial citrus disease that causes premature leaf and 

fruit drop. Remaining fruit can be unmarketable or much less valuable. Most commercial 

citrus varieties in Florida are susceptible to this disease, especially lime and grapefruit. 

Citrus canker is highly contagious and has several ways of transmission. It is mainly 

spread by human contact and wind driven rain, which possess a spatial nature of 

transmission. Citrus Greening (also known as huangblongbing or yellow dragon disease) 

is a bacterial disease that reduces citrus production. This disease is spread by the Asian 

citrus psyllid. Further, while most crops are susceptible to weather events, the effect that 

hurricanes had on the citrus industry in Florida in 2004. Specifically, Florida‟s citrus 

groves were directly affected by three hurricanes in 2004 (Charley, Francis, and Gene) 



(See Figure 1). Of these storms Charley and Francis had the most severe implications for 

the citrus industry with the storm paths crossing over one Florida County. 

Given the perennial nature of citrus production, modeling the effect of both disease 

and weather risks are somewhat more complex than for annual crops such as corn or 

soybeans. Unlike the yield functions for annual crops, the effect of disease and weather 

must incorporate the dynamic aspects of production. In the case of Citrus Canker and 

Citrus Greening, the disease infects the tree by reducing tree yield over time. In the case 

of hurricanes, the event usually has an immediate effect with dropped fruit from the 

weather event, as well as a long-term effect caused by the destruction of citrus trees. As 

an initial effort to address this time-dependent nature of citrus production we estimate a 

time dependent yield function where the yield per tree is initially small, but increases at 

an increasing rate, then increases at a decreasing rate before reaching a maximum yield 

per tree at around 20 years of age. 

Methods and Procedures 

Optimal Control Setup 

We assume that the various decisions a grove manager makes follow the basic optimal 

control formulation. In this formulation, a manager determines the level of input usage 

that maximizes the expected value of profit through time. In the vernacular of optimal 

control, the fertilizer and other variable inputs are the control variables which are varied 

to control the level of state variables through time (Kamien and Schwartz 1991). In our 

formulation, producers optimize 
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where ))(),(,( tutxtF  is the discounted profit function 

( ))(),(),(,())(),(,()())(),(,( twtutxtCtutxtytptutxtF  where     , ,y t x t u t  is the 

citrus yield,  p t  is the output price, and       , , ,C t x t u t w t  is the cost of production 

which is a function of input prices  w t ),  x t  is the state function (the bearing area of 

the citrus tree),  u t  is the control variable (such as fertilizer), and     , ,g t x t u t  is the 

equation of motion which depicts the growth in bearing area over time.  

Critical to the optimal control problem is the idea that the level of the state variable 

cannot be instantaneously varied over time, but is only changed by variations in the 

control variable. Further complicating our formulation, however, is the fact that our 

control variable (the bearing area of each citrus tree) cannot be observed. Given this 

consideration, we start by focusing on the yield component of the optimal control model 

in Equation (1)     , ,y t x t u t . As a further simplification, we assume that the state 

variable (bearing area) is largely a function of tree age 

   vx t v x h v                                                                                         (2) 

where v  is the age of tree cohort. Replacing x  with h  in   , ( ),y t x t u t , the yield 

function y  becomes a function of bearing age of trees as 

      , ,vy y v y t v x t v u t v                                       (3) 



Yield Function of Florida Citrus 

Zanzig, Moss, and Schmitz (1998) recognized that perennial crops including citrus 

demonstrate two production characteristics that are critical to understanding the 

underlying economics: the first characteristic is the existence of a gestation period before 

the tree bears fruit; the second general characteristic is that the tree is not uniformly 

productive over its bearing years. Casual observation in the case of citrus suggests that: 

during the early bearing years, growth is relatively low, and changes from one year to the 

next are small; at some point, however, changes in growth increase but level off at some 

maximum yield; growth remains stable for a long period of time until at some age growth 

begins to decline (Zanzig, Moss and Schmitz 1998).  

Given these characteristics of perennial crop production, we assume that the form 

of the age-yield relationship follows an “S” shape. Because the hyperbolic tangent 

function provides an ideal “S”-shaped functional form for modeling perennial crop 

production, the yield function is approximated with a transformed hyperbolic tangent 

function proposed by Zanzig, Moss, and Schmitz (1998). The formal representation of 

average yield can be written as 

max
max 0 1 0 1( , , , ) (1 tanh( ))

2
y v v


                    (4) 

where max , 0 , and 1  are estimated parameters, max 0 1( , , , )y v   is the yield of each 

citrus tree, and v is the tree age. The transformed hyperbolic tangent function yields an 

“S”-shaped function. The range of the hyperbolic tangent function is (-1, 1). Thus, in our 

formulation, the range of citrus yields is    max0,y v  . The remaining parameters shift 

the location and relative slope of the sigmoid shaped graph. In its original formulation, 



the hyperbolic tangent has an inflection point at 0v  . Hence, it increases at an increasing 

rate until 0v   and then decreases at a decreasing rate. 

Unfortunately we do not have tree-level yield data. Instead, we aggregate the yield 

of each citrus variety over each county based on this formulation as 

 max 0 1
ˆ , , ,

z

it itv

v a

y y v T  


             (5) 

where ˆ
ity  is the estimated county level yield and itvT  is the number of each tree age v  in 

county i  at time t . In this formulation,  max 0 1( , , , )y v    is the expected yield for a 

particular age cohort. 

Spatial Autoregressive Model 

Given yield age relationship and spatial nature of several random events effecting citrus 

production such as freezes, hurricanes, and disease outbreaks (including both Citrus 

Canker and Greening), these parameters are estimated using Spatial Autoregressive 

Models using the maximum likelihood approach. 

We will begin with the non-linear regression model with spatial autoregressive 

disturbances. We assume that spatial autocorrelation only exists in disturbance term but 

not in dependent variables. The spatial structure is written as: 
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where y  is the county-level average yield for a given citrus variety, ),( xF  is the 

nonlinear model of citrus yields presented in Equation 5,   are the estimated parameters, 

x  is a vector of exogenous factors including the tree age variable v  and the numbers of 

trees in each age cohort is the share of trees in each county by age cohort itvT ,   is the 



spatial autoregressive coefficient, and   is an identically and independently distributed 

error term (  2~ 0,N  ) (Anselin 1988, Livanis et al. 2006). The W  matrix is the 

spatial weight matrix that is determined by the specific location of counties. We define 

that if two counties are contiguous the corresponding cell of the two counties in W  

matrix sets into 1; otherwise, the cell sets into 0. In this formulation we usually assume 

that  0,1  with 0   representing the standard ordinary least squares model. It is 

mathematically, possible for   to be less than zeros, it raises some empirical questions. 

Further, following the intuition from Generalized Least Squares, we note that the true 

spatial formulation is always at least as efficient as ordinary least squares. However, 

Estimated Generalized Least Squares is not guaranteed to more efficient than ordinary 

least squares since estimating the heteroscedasticity process introduces some error. Hence, 

if 0.10   we are more confident that adjusting for spatial autocorrelation improves the 

efficiency of estimation.  

Based on Equation 6, we derive the error term which is a function of production, 

spatial coefficient, independent variables and s as: 
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The likelihood function for the specification in Equation 7 can be expressed as 
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Maximization Equation 8 with respect to , for a given  , yields  
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Substituting this result back into the log-likelihood function Equation 8 we get the 

concentrated likelihood function with respect to  : 

 
1ˆln(2 ) ln ln ,

2 2 2
C MLE

N N
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Given that the eigenvalues of W  matrix can be written as iw , and that 
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the final expression for the concentrated log-likelihood function is given by: 
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Finally, we estimate this likelihood function for the same set of counties over several 

years so that the likelihood function becomes 
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where R  represents years, and N  is number of observations (counties) for each year. 

Data and Estimation 

The Florida Agricultural Statistical Service conducted the state‟s complete citrus tree 

census survey as of January every two years since 1966 and the results of the census 

survey are presented in the Commercial Citrus Inventory and the Citrus Summary. We 



abstracted the number of trees by variety, county and year set from Commercial Citrus 

Inventory, and the total production by county and variety from Citrus Summary for this 

research.  However, because Commercial Citrus Inventory is published every two years 

from 1966 while Citrus Summary is reported every year, data on number of trees in odd 

years had to be estimated to match with data on production. Assuming proportion 

relationship between the total bearing trees and that at each age is constant for two 

successive years, the quantities of trees in odd years can be estimated by Citrus Inventory 

of previous year and corresponding Citrus Summary. For example, for estimating tree 

number in 1993, first we mark trees as age from 0 and added total bearing tree number 

with the tree number at age 2 in 1992‟s Citrus Inventory, resulting in estimated total 

bearing tree number for 1993. Second, calculate ratio of total bearing trees which equals 

to total bearing tree number from 1993 citrus summary divided by estimated total bearing 

tree number resulted from last step. Third, the first 23 categories of bearing trees in 

modified 1992 citrus inventory were remarked as age from 1 to 23, and the rest after age 

23 was aggregated as one group at age 24. The next step is multiplying ratio of bearing 

trees with number of bearing trees older than 2 years which resulted from step 3, resulting 

in estimated bearing tree number data for 1993 from age 3 to 24. Finally bearing tree 

number are transformed into percentage of trees dividing by total bearing tree number, as 

the same as production, for emphasizing the weight of trees at individual age among total 

bearing trees. 

The gestation period before the tree bears fruit is set from tree age 0 to age 2, which 

means that citrus trees start to bear fruit from age 3. The range of yield-age profile is 

from age 3 to 24. We select four citrus varieties‟ data in 25 Florida counties from 1992 to 



2005: Early and Midseason Oranges, Valencia Oranges, White Seedless Grapefruit, and 

Colored Seedless Grapefruit. All-round orange and all grapefruit category are skipped to 

avoid multicollinear problem. Since the share of seedy grapefruit is relatively small, it 

was eliminated from data set.  

Spatial weight matrix W for Equations 11 and 13 are determined by the specific 

location of counties. In this study, we assume that Spatial Autocorrelation only exists 

between two contiguous counties because the closer the locations of two counties the 

more significant the spatial effect. Thus, the W  matrix used in this study becomes 

 

 

           (14) 

 where the cells of two counties are set to be 1 if the two counties are contiguous; 

otherwise the cells are set into 0.  

 The maximization of equation 13 generates estimated parameters s  and  . We 

also set constraints on the second-degree derivative of yield function with respective to 

bearing age v  which is negative at tree age 24 and positive at 3. These settings make sure 

growth of average yield increases fast at early bearing years and but slow down after 

certain point.  

Empirical Results and Discussion 

The empirical results show that citrus has an “S”-shaped yield function and significant 

spatial coefficient  . The parameter estimates and related statistics for the yield function 

are presented in Tables 1. 
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White seedless oranges exhibit the largest maximum average yield per tree which is 

4.47 boxes and Valencia the smallest, 3.11 boxes. 0 s are all negative which means that 

the minimum yield starts from value less than half of max . Small positive 1 s reflect 

yield curve is increasing slowly. The spatial coefficients range from 0.48 to 0.64 and all 

are statistically different from zero at the 95% level, which verify that the spatial 

correlation has significant impacts on the estimation. Given that all the estimated 

parameters pass t-test except 0  of white seedless oranges, the final estimated parameters 

are shown in Table 2.  

The shapes of yield function for each variety are presented in Figure 2 through 5 

which also show the estimated boxes of fruit per tree by USDA based on official end-of-

season production estimates and the number of bearing trees indicated by the citrus tree 

inventory surveys. Although the estimation done by USDA does not have enough points 

to show the shape of yield, the trend and bounds of two curves match well. Several 

critical points coincide. 

The estimated yield functions exhibit an “S” shaped curve which increases with a 

positive second derivative during the early bearing years and once reaching a certain age 

the growth rate decreases rapidly and the yield levels off. For example, Figure 2 shows 

that early and midseason oranges‟ estimated yield goes up rapidly with a concave curve 

until age 10. After that the curve becomes convex and then flat, ending with a maximum 

average yield of around 4.5 boxes. Other varieties have the similar characteristics of yield 

curve except white seedless grapefruit. The reason for white seedless grapes‟ non-“S” 

shape maybe involves that hurricane with citrus canker in 2004-2005 impact yields so 

much that characteristics of curve could not be captured from data.  



Deviation of Yield 

Although we assume that all the counties have the same yield function for the same 

variety, the deviations of counties differ much with each other. The average deviation for 

each county i were calculated as 
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Theoretically, i s should converge to zero, but Figure 6 shows that some counties 

present deviations close to zero such as Hardee, Palm Beach and Seminole while others 

possess a large deviation like Hendry or one with an opposite direction like Hillsborough 

and Glades. The deviations of average yield range from Highland‟s 2337.147 thousand 

boxes to Hillsborough‟s negative 816.25 thousand boxes. The reason for this huge 

difference is various. One of the reasons may be the impact of tree density, because tree 

density is different among counties and impacts average yield per tree. Other reasons 

might be relative to the different locations of counties.  

Summary and Conclusion 

It is complicated to describe the production decisions for perennial crops due to several 

factors including the time-specific nature of yields. There is a proportional relationship 

between changes over time in the yields of perennial crops and the size of the trees in the 

case of citrus. This research provides a descriptive framework for analyzing the yield age 

relationship for Florida citrus. In particular, the focus of the work describes the response 

of the average yield of Florida citrus per tree to the age of trees. Further, spatial effect 



produced by factors from contiguous counties on yield is simulated under spatial 

autoregressive model and maximum likelihood estimation providing clear advantages 

than OLS. 

The results indicate that yield curve depicts a clear “S” shape for Early and 

Midseason orange, Valencia Orange and Colored Seedless grapefruit. The possible 

explanation for the convex shape of White Seedless grapefruit may be involve even more 

significant influence produced by hurricane and citrus canker on its‟ yield. From the 

results, it is also indicated that spatial effects could not be ignored in the process of 

simulation. All estimated spatial coefficients are significant and larger than 0.4 within 1, 

which could include spatial effects of factors such as weather, temperature, catastrophic 

events, and human mobility. This would be useful for future studies that involve these 

factors.  

This study provides the basic structure of citrus yield function that would be helpful 

for analyzing impacts of random events such as freezing, hurricanes and disease outbreak 

including citrus canker. Take citrus canker for example. Citrus canker mainly was not a 

severe problem that impacted citrus production until 2004. However, because infected 

citrus will not be eradicated any more, citrus canker can be added into model as a factor 

impacting betas in form like (1 )Z    where  is canker coefficient and Z  is index of 

citrus canker. Another factor impacting citrus yield is tree density. Brown noted that 

historic boxes per tree may be higher than future tree yields due to increasing tree 

densities, so that the projections based on tree yields may overstate future production.  As 

for insurance program design, the next step is to simulate conditional probability density 



function of average yield  . Mean of  has been estimated by this research and its 

variance may be of interest for future study.  
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Table 1—Parameter Estimates and Relative Statistics 

Early& Midseason  estimation Standard deviation T-value 

max  4.472 0.247 18.142 

0  -1.778 0.653        -2.723 

1  0.235 0.102 2.300 

  0.640 0.048 13.255 

Valencia oranges 

max  3.111        0.133 23.468 

0   -1.041       0.328 -3.177 

1  0.177      0.049 3.618 

  0.576      0.052 11.140 

White Seedless 

max  5.476 0.229        23.960 

0  -0.463 0.370       -1.251 

1  0.139      0.064  2.162 

  0.556  0.056   9.920 

Colored Seedless 

max  4.961 0.216   22.997 

0  -0.984 0.225 -4.370 

1  0.175 0.038 4.582 

  0.482 0.060    8.064 

 



 

Table 2—Final Estimation 

 Early and 

midseason 

Valencia White seedless Colored 

seedless 

max  4.472 3.111        5.476 4.961 

0  -1.778  -1.041       0.000 -0.984 

1  0.235 0.177      0.139      0.175 

  0.640 0.576      0.556  0.482 

 



Figure 1: Florida Citrus Production
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Figure 2: Average Yield Curve-Early and Midseason Oranges
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Figure 3: Average Yield Curve-Valencia Oranges
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Figure 4: Average Yield Curve- White Seedless Grapefruit
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Figure 5 : Average Yield Curve-Colored Seedless Grapefruit
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Figure 6: Deviation of Total Yield of Early and Midseason Oranges by 

counties
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