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Abstract

This paper examines how cotton farmers’ perceptions about their spatial yield variabil-

ity influence their decision to adopt precision farming technologies. Utilizing cross-section

survey data from 12 Southeastern states and a two-step econometric modeling approach, we

find that farmers who perceive their yields as more spatially heterogeneous will more likely

use site specific information gathering technologies and apply their inputs at a variable rate.

In addition, our empirical analysis shows that perceptions about future profitability and im-

portance of precision farming, along with socio-economic factors, also drive the technology

adoption decision. These results have implications for producers contemplating the variable

rate management decisions, as well as dealers selling these precision farming technologies.

Keywords: Multinomial logit, endogeneity, variable rate input applications, site specific

information gathering technology, yield perceptions

JEL Classification: Q12; Q16
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1 Introduction

Large agricultural fields consist of numerous sites (or sub-locations) that typically differ from one

another with respect to the factors that affect crop yields (i.e., different soil characteristics for

different locations). Variable rate technologies (VRT) aim to take advantage of the heterogeneity

within fields by allowing farmers to vary input applications depending on location-specific needs.

By contrast, conventional farm management practices apply inputs at a single rate uniformly

across the entire field, based on the average conditions in the field. If the responsiveness of

yields to input varies substantially across a field, this average uniform application strategy can

result in overapplication of inputs on some parts of the field and underapplication on other parts

of the field. Thus, the VR applications can improve the efficiency of input application (Torbet

et al., 2007) and may lead to increased profitability and environmental benefits, especially in

fields that are spatially heterogeneous.

A prerequisite for successful implementation of the VRT is the use of site-specific information

gathering (SSIG) technologies that enables one to determine the degree of spatial heterogeneity

in fields. These SSIG technologies range from yield monitors to grid soil sampling and aerial

imagery. Using spatially-referenced data from these site-specific technologies (e.g., nutrient

content, soil quality, site-specific yields) allows one to apply varying input rates to match the

spatial variability in the field. Although precision agriculture has been practiced since 1990s,

the adoption rate is still very low in cotton production. This is due to expensive equipment

costs, incompatibility between software, monitors and equipment; and repair delays (Lowenberg-

DeBoer, 1998). Moreover, it was not until 2000, when USDA issued the first call for funding

proposals for precision agriculture.

There have been previous studies that investigated factors influencing adoption of VR tech-

nologies using farm survey data and discrete choice modeling techniques (Fernandez-Cornejo,

Daberkow, and McBride (2001); Khanna, Epouhe, and Hornbaker (1999); Khanna (2001);

Roberts et al. (2004)). All of these studies aimed to determine farm (or farmer) characteristics

(e.g., farm size, age, education, etc.) that significantly influence the adoption of VR technolo-

gies. Khanna (2001) and Roberts et al. (2004) assessed the impact of these farm characteristics
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within a framework that allows for sequential adoption of SSIG and VR technologies. Note that

none of these studies specifically explored the role of farmers’ perceptions about within-field

spatial variability in the decision to adopt the VRT bundle.

The objective of this paper is to determine whether farmers’ perceptions about their within-

field yield variability significantly influence the decision to adopt precision technology. Previous

literature has shown that the profitability of VR application technology critically depends on

the degree of spatial variability in farmers’ fields (Roberts, English, and Mahajanashetti, 2000;

Isik and Khanna, 2002). Higher spatial variability typically results in higher economic returns

from VR application. But in reality what really matters is the farmers’ prior perception about

spatial yield variability rather than the actual yield variability. For example, a farmer who has

not used any SSIG technology may believe that the spatial variability of his/her field is low

(i.e., believes that the field is more spatially homogenous) based solely on prior experience of

farming the field (See Rejesus et al., 2010 for evidence of this behavior). Hence, this particular

farmer may decide not to adopt the VRT bundle because he/she believes that the potential

economic returns from this investment may not be worth it due to the perceived lack of spatial

heterogeneity (even if the field is, in reality, spatially heterogeneous).

Examining whether spatial yield variability perception affects VRT adoption behavior is

consistent with recent literature that advocates the use of subjective perceptions in empirical

models explaining economic behavior (Nyarko and Schotter, 2002; Manski, 2004; Bellemare,

2009). As Delavande, Gine, and McKenzie (2009) have shown, there are a number of studies

in the agricultural economics literature that demonstrate how subjective perceptions influence

decision-making in agriculture. For example, Hill (2007) found that subjective expectations

about future coffee prices influence the allocation of labor used in coffee production. Gine,

Townsend and Vickery (2008) reveal that farmers’ perceptions about the start of the monsoon

season affect their planting decisions even after controlling for a wide-range of farmer charac-

teristics. The role of perceptions has also been examined in a number of technology adoption

studies as well (Gould, et al., 1989; Adesina and Zinnah, 1993; Adesina and Baidu-Forson,

1995; Sall et al., 2000; Abadi Ghadim, Panell, and Burton, 2005). But note that most of these

technology adoption studies investigate the influence of perceptions about the attributes of the
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technology itself and not the effects of perceptions about another factor that determines prof-

itability of the technology (i.e., VR applications). To the best of our knowledge, no study has

yet investigated the impact of perceptions about a spatially explicit variable in the adoption

of agricultural technologies (SSIG) and the variable rate management decisions. Our paper

contributes to the literature in this regard.

2 Estimation Strategy: Multinomial Logit

We estimate a multinomial logit model (MNL) where the dependent variable (precision farming

technology or Yi) is discrete and takes the values of 1, 2 and 3 respectively. The explanatory

variable of interest (Perceptionsi) is continuous and endogenous. Thus, we first perform a first

stage estimation (OLS) of Perceptionsi, and then use its predicted values as instruments in the

second stage MNL model. More specifically,

Perceptionsi = α1Wi + ei (1)

where Wi is a vector of control covariates (that include instrumental variables) and ei is

an error term. The cross-sectional nature of our data, along with the fact that unobserved

characteristics included in education, age, etc. might affect the perceptions’ formation, imply

possible measurement error. Therefore, the predicted value of Perceptionsi is then utilized

in MNL instead of the actual Perceptionsi to account for this potential endogeneity caused

by unobserved variables that influence both perceptions and precision technology adoption.

The use of (1) in the estimation requires good instruments correlated with Perceptionsi, but

uncorrelated with the unobservables that affect precision farming adoption (embodied in ei).

Without any strong instruments, the inferences from our estimation must be interpreted with

caution. The two-step procedure described below and the use of predicted values necessitate

the use of bootstrapped standard errors (1000 replications), since the conventional standard

errors would be incorrect.

Cotton farmers are now considered as consumers of agricultural technologies, who have to

choose between the following precision farming options: alternative 1 : no adoption of any site-
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specific information gathering technology (SSIG) or variable rate technology (VRT), alternative

2 : adoption of at least one SSIG technology and input application at a uniform rate (URT), and

alternative 3 : adoption of at least one SSIG and input application at a variable rate (VRT).

Let Ui,None, Ui,SSSIG−URT , and Ui,SSIG−V RT denote i producer’s expected utility from

choosing between the unordered choices 1, 2 and 3 respectively. The observed variable in

this case is the technology choice decision Yi, where

Yi = 1 if Ui,None > Ui,SSIG−URT and Ui,None > Ui,SSIG−V RT

Yi = 2 if Ui,SSIG−URT > Ui,None and Ui,SSIG−URT > Ui,SSIG−V RT

Yi = 3 if Ui,SSIG−V RT > Ui,None and Ui,SSIG−V RT > Ui,SSIG−URT

Each farmer’s expected utility is assumed to be a function of observable covariates xi, plus a

random disturbance that captures non modeled effects. We model her choice using a multinomial

logit, which is an extension of the binary logistic regression but has more than two values for

the dependent variable. Since we cannot identify separate b’s for all of the choices, we set the

coefficients for one of the outcomes (i.e., the reference alternative) equal to one (Jones, 2000).

Hence, the probability of a farmer i to choose an alternative j is given by:

Pi,j = P (Yi = j) =
exp(xibj)

1 +
∑m

j=1 exp(xibj)
(2)

and the choice probability for the base is

Pi,j = P (Yi = 1) =
1

1 +
∑m

j=1 exp(xibj)
(3)

where xi is the vector of independent variables associated to farmer i, and bj is the vector

of parameters associated to the alternative j. In our case, the non adoption of SSIG and VRT

may be treated as the baseline category. The multinomial logit model, which also accounts for

the simultaneity of choices, would identify the probability of using SSIG and applying inputs

at a uniform rate relatively to the non adoption as well as the probability of using SSIG and

applying inputs at a variable rate relatively to the non adoption. The estimated parameters of a

multinomial logit are even more difficult to interpret than those of a bivariate choice model. To
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capture the effect of the explanatory variables on the farm management decisions, we examine

the derivative of the probabilities with respect to the explanatory variables. These derivatives

are defined as (Greene 1990):

∂Prob(Yi = j)

∂xik
= Pj [βjk −

2∑
m=0

Prob(Yi = m)βjk] (4)

The above relationship demonstrates the marginal effect of on the probability of adopting

either one of the scenarios 1, 2, and 3.

We calculated both the average marginal effects AME (i.e., the marginal effects on the

probabilities for each observation and then take the average of it), as well as the marginal

effects at the average MEA (i.e., marginal effects on the probabilities of each independent

variable calculated at the means of each independent variable). Studies have shown though,

that evaluating the derivatives at their sample means leads to biased predictions, plus they are

restricted to discrete explanatory variables.

Multinomial logit method is computationally simpler than other approaches (e.g., multino-

mial probit), but it relies on the very restrictive assumption of independence of irrelevant alter-

natives (IIA)1. This property states that the probability of choosing among two alternatives is

not affected by the presence of additional alternatives . Otherwise MNL is not appropriate and

we should implement other nested models e.g. nested logit2.

3 Data

Data for this study were collected from a survey sent to cotton producers in 12 states: Alabama,

Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina,

Tennessee, Texas and Virginia. This survey was developed to query cotton producers about

their attitudes toward and use of precision farming technologies (i.e., SSIG and VRT). Follow-

ing Dillman’s (1978) general mail survey procedures, the questionnaire, a postage-paid return

1The basic idea of the Hausman test is to estimate the model with all the alternatives and then to re-estimate
it dropping one of the alternatives. After dropping alternatives 2 : (SSIG and URT) and 3 : (SSIG and VRT),
the chi (squared) statistics are -4.71 and 6.85, respectively. Thus, we fail to reject IIA.

2We also estimated the model using a multinomial probit (computationally more complicated, but relaxes the
IIA assumption), and our results are consistent with the multinomial logit.
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envelope, and a cover letter explaining the purpose of the survey were sent to each producer.

The initial mailing of the questionnaire was on February 20, 2009, and a reminder post card

was sent two weeks later on March 5, 2009. A follow-up mailing to producers not responding

to previous inquiries was conducted three weeks later on March 27, 2009. The second mailing

included a letter indicating the importance of the survey, the questionnaire, and a postage paid

return envelope. A mailing list of 14,089 potential cotton producers for the 2007-2008 marketing

year was furnished by the Cotton Board in Memphis, Tennessee. Among responses received,

1981 were counted as valid, and thus used in our study.

Our survey consisted of three main sections: 1. precision agriculture technology (i.e., sources

of information about technology, ways of inputs application, expectations, etc.), 2. farm and

production data (i.e., farm location, acres of owned and/or rented land, yields per acre etc.),

and 3. socioeconomic characteristics (age, experience with farming, education level, income

etc).

Only 35% of the valid responses indicated use of at least one SSIG technologies (some

producers made use of more than one technologies), and around 22% applied their inputs at

a variable rate. The most popular SSIG technologies were the grid and zone soil sampling,

followed by the yield monitors with GPS. The most used variable rate management decisions

were fertility or lime, and then followed the growth regulator. Less than half of respondents are

high school graduates and almost 25% have a bachelor’s degree. Most of the farmers’ income

ranges from $50,000 to $99,000 annually, whereas 10% of cotton producers in our survey have

income above $500,000.

4 Variable Construction and Empirical Specification

Based on the estimation strategy above, we constructed the necessary dependent and indepen-

dent variables using responses from the survey questionnaire. Farmers were asked to indicate

the acres on which five information gathering technologies (i.e., yield monitoring with GPS,

aerial satellite, handheld GPS units, green seeker and electrical conductivity) were used in or-

der to make the variable rate decision (i.e., drainage, lime, seeding, growth regulator, fungicide,
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herbicide, irrigation etc). A producer who provided an answer for this question3 was considered

both an SSIG and VRT adopter (Yi=3).

SSIG and URT adopters are those who checked either one of the cotton yield monitors, grid

sampling, soil maps, satellite imagery, aerial photography or COTMAN technologies, but did

not provide an answer to the above question regarding VRT decisions (Yi=2).

[Place Figures 1 and 2 here]

The Perceptionsi variable is calculated based on their answers about the least productive,

average productive and most productive sections of the farmer’s field. We then utilize the

spatial variability formula used in Larson and Roberts (2004) to calculate perceived Spatial

Yield Variability (SYVAR):

SY V AR = 0.33 ∗ (YLOW − YAV G)2 + 0.33 ∗ (YMID − YAV G)2 + 0.33 ∗ (YHIGH − YAV G)2 (5)

where YLOW is the best estimate for the yield of the least productive portion of field, YAV G

is the estimated average yield for the typical field, YHIGH is the estimated yield for the most

productive portion and YMID=3YAV G - YLOW . We, then, used the SYVAR and YAV G, in

order to create a coefficient of spatial yield variability (SY CVi) statistic based on the following

formula:

SY CV =
SY V AR0.5

i

YAV G
100 (6)

where SY V AR0.5
i is the standard deviation of spatial yield variability estimated using (5).

[Place Figure 3 here]

4.1 Explanatory Variables for SSIG and VRT

From the literature review, we identified the factors affecting the precision farming adoption

decisions and we created proxy variables, based on the availability of our sources. Since SSIG

3There was a small fraction of farmers who answered ”don’t know”. We included them in the adopters’
category as well, because they might have not been aware of the exact number of acres where they utilized VR
practices.
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and VRT are considered as a bundle of technologies, rather than a single unit, the explanatory

variables included in alternative 2 (SSIG and URT) were also used in estimating alternative 3

(SSIG and VRT)4. The farmer characteristics, assumed to affect technology decisions, were the

level of their education, year they were born, the use of computer in farm management, the per-

centage of taxable income from farming, perceptions about future importance and profitability

of precision farming, manure application, soil quality, yields, and location dummies.

We would expect that producers with a bachelors or a graduate degree (COLLEGE) will

most likely adopt a new technology because of the human capital and the technical skills that

they have acquired through their education. Younger farmers (AGE) are expected to be more

familiar with the new technologies, thus more likely to adopt precision farming. On the other

hand, they are less experienced, which implies that they might not be aware of their field

variability contrary to the older ones, thus not eager to adopt new technologies. Hence, the sign

cannot be determined a priori. The use of computer is hypothesized to have a positive effect

on precision farming, since it is part of the farm management and can also be considered as a

proxy for innovativeness (Surjandari I., and Batte M., 2003). To capture the effect of income

in technology adoption, we used a proxy variable that accounted for the percentage of the 2007

taxable household income coming only from farming, contrary to the different categories of

pretax total household income from both farm and nonfarm sources (Banerjee et al., 2008).

We would expect that the higher this percentage, the higher the probability of adopting new

technology, in the sense that farmers who make a living mostly by farming will invest on practices

that would improve their harvests and hence their profitability (INCOME).

Moreover, we incorporated farmers’ perceptions about future profitability of precision farm-

ing as well as future importance. We would expect that farmers who argue that precision

farming will be important 5 years from now (IMPORTANCE), as well as those who believe

that its use will be more profitable in the future (PROFIT), would more likely adopt SSIG and

VRT technologies. We added proxies of MANURE, YIELDS (Khanna, 2001), as well as 12

dummies (AL, AR, FL, GA, LA, MS, MO, NC, SC, TN, TX and VA) that capture the effect

4We faced a similar situation when applying the 2-step Heckman approach. In practice, it is very difficult
to find plausible identification restrictions, in which case the Heckman model is estimated with the same set of
regressors in each equation. Then, identification relies on the non-linearity of inverse mills ratio (A. Jones 2001,
Cameron A. and Trivedi P., 2005)
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of farm location on VRT adoption. We cannot make hypotheses for the regions’ signs in ad-

vance. Regarding the impact of actual yields, we would expect that a higher average cotton lint

yield (YIELDS), which is a possible indicator of land quality, may imply positive effect on the

probability of adopting VRT. The effect of manure on VRT is expected to be rather negative.

Farmers who use manure might have lower incentives to adopt VRT, compared to those who

rely on inorganic fertilizers (Khanna, 2001). Regarding the variable of interest ( ̂SY CV ), we

would expect a positive sign. Farmers, who perceive that their yields are more variable, would

more probably utilize information gathering technologies, in order to better see their true within

field variability. Likewise, they would more possibly apply their inputs at a variable rate.

4.2 Instruments for Yield Risk Perceptions

For the vector Wi , we included two instrumental variables – the 10-year county average yields

and the total acreage (sum of rented and owned acres) of the previous year (2007). The 10-year

county average (PINDEX) may be a good instrument since it is publicly available information

that gives a benchmark to individual producers as to where their field may stand in comparison

to the county (NASS, USDA). Hence, we posit that it influences perceptions about spatial

variability but is not correlated with farm-level unobservable variables. The sign of PINDEX is

ambiguous and depends on how farmers see their fields in high or low yielding areas. Regarding

the total acreage (FARM SIZE) previous studies have indicated a positive relationship between

the farm-size and the spatial within field yield variability. Therefore, we would expect that

producers who operate large farms will believe that their yields are more variable.

5 Results and Discussion

The first stage of perceived spatial yield variability regression indicated significant coefficients

and sensible signs. Farmers in high yielding areas perceive that their yields are more homoge-

nous, whereas farmers with large acreage believe that their yields are more variable. F statistic

which represents the joint significance of the two exogenous variables is high.

[Place Table 2 here]

11



We use the ”non adoption” (category 1) as reference point. Under this scenario, our predic-

tions for perceived yield variability have the expected signs and are statistically significant for

all three categories. Farmers, who perceive their yields more variable, they will probably utilize

SSIG and/or VRT. Farmers, who perceive their yields more homogeneous (i.e., more optimistic

farmers), will most probably not utilize any type of SSIG technology, and thus VR applications.

This result is robust with all the specifications we applied.

Scenario 2: SSIG and URT

Table 3 shows the coefficients and the standard errors of the MNL approach, along with

the marginal effects of the explanatory variables. We estimate the marginal effects since the

coefficients in MNL are simply the values that maximize the likelihood function and do not have

a direct interpretation. The conditional probability of adopting at least one SSIG technology

with uniform rate input applications was significantly and positively related (0.6%) with the

predicted spatial yield variability perceptions ( ̂SY CV ), the year that producer was born (AGE),

the use of computer in farm management (COMPUTER) and the perception about future

importance of precision farming (IMPORTANCE).

Younger farmers, who are more innovative, and those who believe that information gathering

technologies will be important in five years, will more likely (0.1%) utilize these techniques. On

the other hand, the perceptions about future profitability (PROFIT) seem to inversely affect

the use of information gathering technologies and the uniform rate input application. Farmers

who believe that the new technology will be less profitable in the future will probably use

SSIG technologies but apply their inputs at a uniform rate (8%). Although, they might access

their true yield variability through SSIG, they are reluctant to purchase VRT, if they consider

precision farming potentially non profitable.

Bachelor’s or graduate degree (COLLEGE), along with manure application (MANURE)

have a negative albeit insignificant impact on SSIG and URT. We would expect that users of

organic fertilizer would have more incentives to apply their inputs at a uniform rate, thus a

positive sign. Similarly, we would expect that more educated farmers would more likely adopt

SSIG technologies, but maybe the negative effect from URT offsets the positive effect of college

on SSIG. Actual yields (YIELDS), the percentage of taxable income coming only from farming
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sources (INCOME), and the soil quality have the consistent from literature positive signs, but

they do not strongly affect farmers’ decision to adopt SSIG and use URT. Regarding the location

dummies, the effect is either positive or negative but insignificant for all cases. The negative

signs in farm locations might be an implication that remote locations, far from a regional center

and the available equipment, will less likely adopt precision technology.

[Place Table 3 here]

Scenario 3: SSIG and VRT

The same explanatory variables that were utilized above seem to have a stronger effect for

the farmers who used at least one SSIG technology and decided to apply VRT afterward. More

educated (COLLEGE) and younger (AGE) farmers, who use computer (COMPUTER) and

believe that precision agriculture will be profitable in the future (PROFIT), and whose income

comes mainly from farming (INCOME) will more likely use the precision farming bundle by

7%, 0.2%, 11%, 12% and 0.1% respectively. Contrary to the previous alternative estimation,

expected future profits positively affect the probability of adopting SSIG along with VRT. The

same holds for farmers whose taxable income comes mainly from cotton farming. Although it

is not statistically significant, the effect of actual yields on adoption decision is negative. The

interpretation could be that high yields reflecting high land quality do not necessarily imply

high yield variability, thus no incentive for producers to utilize VRT.

The positive and significant coefficient of the PROFIT variable is indicative of the impor-

tance of the profit maximizing decision in farmer’s behavior. The probability of using a new

technology is higher for those who believe that this technology would bring profits in the near

future (i.e., 5 years from now). Likewise, COLLEGE is a significant determinant of VRT adop-

tion, since the information revealed from SSIG technologies would be more evident to a well

educated farmer, who is familiar with soil properties.

Our marginal effects are consistent with Roberts et al. (2004) and Khanna (2001) for

the majority of the explanatory variables. However, we should not ignore the fact that our

variables are constructed using survey questions, thus differences in the signs might result from

the differences between the data.
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[Place Table 4 here]

6 Conclusions

Applying a multinomial logit model, we tried to infer about the role of perceived yield variability

in the precision farming decision. Our results suggest that farmers who perceive that their yields

are more variable, will most likely apply their inputs at a variable rate. This is consistent with

the theoretical insight in Isik and Khanna (2002) who found that higher spatial variability

increases the incentive to adopt precision technologies. Another approach we implemented was

the 2-step Heckman correction model, which presumes that producers’ decision about precision

technology is sequential. We first estimated the SSIG adoption using the full sample of farmers

(i.e., adopters and non-adopters), and then appended an inverse mills ratio to VRT adoption

estimation, which referred to the selected sample of precision technology adopters. Our findings

are identical with this method as well.

This has important implications for agribusiness firms and VRT sellers. Since the perceived

yield variability of SSIG adopters leads to higher conditional probability of VRT adoption, then

VRT dealers may have incentives to offer free information gathering technologies so that farmers

can better see their true within field variability.

Future research could involve incorporation of additional data from previous surveys. Al-

though, respondents are different, we might infer whether farmers’ perceptions regarding yields

affect technology adoption decision in a similar way. We could also include perceived yield

variability into a more general context of perceptions, i.e., how yield perceptions, along with

perceptions about future profitability and perceptions about future importance of precision

agriculture, affect SSIG and VRT adoption (i.e., use of a Tobit model, see Adesina Forson).
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Table 1: Summary of dependent and independent variables used in the OLS and the Multinomial Logit Model

Variable Description Mean StD

SYCV Perceived Spatial Yield Variability 30.74727 1.331025

Soil productivity index using 10-year county yields as a proxy 644.5297 6.028936
PINDEX (US Dept. of Agriculture, National Agricultural Statistics Service, 2010)

FARM SIZE Total acreage (sum of rented and owned acres) for 2007 crop season 325.8354 36.36688

SSIG Farmer used at least one site-specific information gathering technology (yes=1; no=0) 0.2412923 0.0096156

VRT Farmer applied her inputs at a variable rate (yes=1; no=0) 0.3219424 0.0198324

COLLEGE Farm operator had either a bachelors’ or a graduate degree (yes=1; no=0) 0.4021739 0.0124027

AGE Age of the farm operator (in terms of year born) 1953.166 0.3187948

Farmer perceived that precision farming would be important in five years from now 0.6971227 0.0103266
IMPORTANCE (yes=1; no=0)

PROFIT Farmer perceived that precision farming would be profitable to use in the future (yes=1; no=0) 0.4316002 0.011131

COMPUTER Farmer uses computer for farm management (yes=1; no=0) 0.5378606 0.4987144

INCOME Percentage of 2007 taxable household income coming only from farming sources 71.7231 0.7795698

YIELDS Estimate of average yield per acre for 2007 crop season 1166.337 30.94584

MANURE Farmer applied manure on his/her fields (yes=1; no=0) 0.2481013 0.0217594

SOIL QUALITY Ratio of historical yields over average yields 1.764122 17.791

AL Farm located in Alabama (yes=1; no=0) 0.0636042 0.0054845

AR Farm located in Arkansas (yes=1; no=0) 0.0413932 0.0044766

FL Farm located in Florida (yes=1; no=0) 0.0989399 0.0067101

GA Farm located in Georgia (yes=1; no=0) 0.0161535 0.0028331

LA Farm located in Louisiana (yes=1; no=0) 0.0449268 0.0046552

MS Farm located in Mississippi (yes=1; no=0) 0.0726906 0.0058347

MO Farm located in Missouri (yes=1; no=0) 0.022211 0.0033119

NC Farm located in North Carolina (yes=1; no=0) 0.0959112 0.0066177

SC Farm located in South Carolina (yes=1; no=0) 0.0307925 0.0038824

TN Farm located in Tennessee (yes=1; no=0) 0.0560323 0.0051685

TX Farm located in Texas (yes=1; no=0) 0.4457345 0.0111703

VA Farm located in Virginia (yes=1; no=0) 0.0116103 0.0024074



Table 2: OLS Results of the SYCV Estimation
Variable Coefficient P-Value

INTERCEPT1 ∗∗∗ 47.91679 0.000
PINDEX ∗∗∗ -0.0244354 0.000

FARM SIZE ∗∗ 0.0028964 0.002

No.Observations = 961
R2 = 0.0308

F (2, 958) = 15.23

1∗, ∗∗, and ∗ ∗ ∗ denote significance levels at a 10%,
5% and 1% respectively

Figure 1: SSIG Variable Construction

Figure 2: VRT Variable Construction

Figure 3: SYCV Construction
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Table 3: SSIG Adoption and URT

Variable Coefficient Bootstrap Marginal Effects Delta-method Average Marginal Delta-method
Std. error at the average(MEA) Std. error Effects (AME) Std. error

INTERCEPT 1∗ -42.86858 16.49892 — — — —̂SY CV ∗ 0.0744289 0.0310317 0.0090216 0.00459 0.0065179 0.0038911
COLLEGE 0.1346293 0.1957773 -0.0012192 0.03132 -0.0093144 0.0275637

AGE ∗∗ 0.0195077 0.0086617 0.0023943 0.00131 0.0017462 0.0011463
YIELDS 0.000342 0.0003117 0.000057 0.00004 0.0000497 0.0000381

SOIL QUALITY 0.0806175 0.1787759 0.0100589 0.0199 0.0074246 0.0150999
IMPORTANCE ∗∗ 0.6708316 0.2565062 0.0884399 0.03814 0.0782774 0.0435933

PROFIT ∗∗ -0.2851806 0.2308274 -0.081424 0.03281 -0.0848116 0.0281061
INCOME 0.0047271 0.0034917 0.0003702 0.00052 0.0001564 0.0004589

COMPUTER ∗∗ 0.550945 0.2129616 0.0530783 0.03167 0.0311699 0.0284104
MANURE 0.0361645 0.2586485 -0.0009382 0.03947 -0.0032613 0.0347114

AL -0.2254715 1.659936 -0.0283781 0.10049 -0.021643 0.0954872
AR -0.083342 2.685451 -0.0198078 0.12889 -0.0201017 0.1209622
FL -1.094505 4.134595 -0.1304284 0.08348 -0.1466263 0.1425303
GA -0.1570056 1.661377 -0.0525006 0.08909 -0.0558905 0.0921669
LA 0.9560014 1.695277 0.1177788 0.14706 0.0904489 0.102623
MS 0.368846 1.596986 0.0371884 0.11698 0.0264389 0.0946633
MO 0.2330897 1.798793 0.0401154 0.15267 0.0327845 0.1195139
NC 0.0963116 1.667366 0.0129053 0.10268 0.0098863 0.0877612
SC 0.9922796 1.615526 0.1580759 0.15329 0.1144274 0.102269
TN -0.1846223 1.707552 -0.0303271 0.0995 -0.0279797 0.0952835
TX -1.44405 1.709179 -0.1457761 0.08897 -0.1007573 0.0915857
VA (omitted) — — — — —

1∗, ∗∗, and ∗ ∗ ∗ denote significance levels at a 10%, 5% and 1% respectively



Table 4: SSIG Adoption and VRT

Variable1 Coefficient Bootstrap Marginal Effects Delta-method Average Marginal Delta-method
Std. error at the average(MEA) Std. error Effects (AME) Std. error

INTERCEPT ∗∗ -49.79526 16.3262 — — — —̂SY CV ∗∗ 0.0882208 0.0341718 0.0107282 0.00426 0.0089146 0.0038042
COLLEGE ∗∗ 0.5319554 0.1775544 0.080691 0.03045 0.0715585 0.0265996

AGE ∗∗ 0.0224546 0.0083496 0.0027055 0.00121 0.0022371 0.0011191
YIELDS 0.0000573 0.0004202 -6.13e-06 0.00004 -0.0000108 0.000038

SOIL QUALITY 0.08912 0.2702543 0.0105953 0.0177 0.0086978 0.0141989
IMPORTANCE 0.4505202 0.3765342 0.0433693 0.04656 0.029047 0.049415

PROFIT ∗∗ 0.7177929 0.2379991 0.1259076 0.03178 0.1230152 0.0289001
INCOME ∗∗ 0.0101478 0.0033864 0.0014051 0.00051 0.0012427 0.0004661

COMPUTER ∗∗∗ 0.9543703 0.2060244 0.1245066 0.02965 0.1108462 0.0284585
MANURE 0.1562928 0.2521209 0.0239106 0.03733 0.0212166 0.0326289

AL -0.2337655 0.8014688 -0.0265886 0.0901 -0.0220207 0.0913249
AR 0.1271238 1.736523 0.0248937 0.13206 0.0236474 0.1122524
FL -0.4013635 1.622539 -0.028784 0.11512 0.0022819 0.1207144
GA 0.5574693 0.7213172 0.1089773 0.11793 0.0918848 0.0851728
LA 1.014414 0.7678541 0.1220569 0.14269 0.0968283 0.0990682
MS 0.5406264 0.7546535 0.0751883 0.11771 0.0595753 0.0897305
MO 0.057978 1.827293 -0.0020292 0.12082 -0.0045794 0.1129373
NC 0.0885384 0.7624302 0.0098212 0.09242 0.0077217 0.0835799
SC 0.6903778 0.8796235 0.0534864 0.12135 0.0465352 0.097552
TN -0.0104167 0.7940089 0.0061853 0.09897 0.0089126 0.0894238

TX ∗∗ -2.165139 0.8362593 -0.2517155 0.07769 -0.2404691 0.0885687
VA (omitted) — — — — —

1No. of Obs. 918 Wald χ2 (38) = 265.50 Log likelihood = -776.77199 Pseudo R2= 0.1509 Prob> χ2= 0.0000


