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Abstract

We investigate how lumber futures returns are affected by monthly housing starts an-

nouncements and analyze the dependence of the response on lumber inventories and

time to delivery. We develop a Generalized Least Squares method to jointly analyze

simultaneously traded contracts. We find that the unanticipated component of hous-

ing starts announcements increases returns on lumber futures contracts. Further, the

effects of housing starts shocks decline with lumber inventories and time to delivery.

Futures contracts up to four months out respond by a larger amount to the shocks

than do more distant ones. For more distant delivery horizons, the effect of housing

starts shocks declines linearly with time to delivery.

Key words: theory of storage, announcement effects, event study, futures markets,

commodity futures
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1. Introduction

Two concepts are key to understanding commodity futures price formation. One is market

efficiency, which explains how well-functioning markets process information. The other is

the theory of storage, which explains price dynamics when the commodity in question is

storable.

According to the efficient markets hypothesis, asset prices move only when new infor-

mation arrives to the market. Following the seminal paper by Fama, Fisher, Jensen, and

Roll (1969) many economists have conducted event studies to measure the impact and in-

formation content of economic announcements or events and the speed of adjustment of

prices following new information. Binder (1998) reviews the event study methodologies and

previous work on this topic.

According to the theory of storage, the discounted expected price of a storable commodity

should exceed its spot price by the cost of storage. See, for example, Brennan (1958), Telser

(1978), Scheinkman and Schechtman (1983), Thurman (1988), and Williams and Wright

(1991). For storable commodities, and unlike the situation in financial asset markets, physical

inventories serve to stabilize price movements in response to shocks. Thus, the return from

holding commodities and the variance of the return should depend on the level of physical

inventories. In the physical asset markets represented by commodity futures, we expect

smaller price responses to demand or supply shocks during high inventory regimes.

The implications of market efficiency and the theory of storage can be tested in commod-

ity futures markets and futures price movements understood in their context. We empirically

analyze the market for lumber futures contracts, both to test the implications of received
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theories and to contribute to an understanding of an important natural resource market.

Most past analysis of futures price movements (with the notable exception of Smith’s

analysis of corn futures (2005)) splices together time series of prices on multiple futures

contracts—with different delivery dates—and studies the behavior of the resulting single

time series. See, for example, Rucker, Thurman, and Yoder (2005) for an analysis of lumber

futures. As Smith points out, this underutilizes the available information from futures ex-

changes, on which several contracts trade simultaneously. Multiple contracts provide more

information about the market in consideration. Consequently, using all traded contracts

increases statistical efficiency. For this purpose, and in the spirit of Smith’s partially over-

lapping time series (POTS) model, we develop a Generalized Least Squares (GLS) method to

jointly analyze all traded contracts for lumber. Our methods and results differ from Smith’s

but there are common themes. We compare and contrast them in the Conclusions section

(see footnote 2) after presenting our results.

Our empirics measure the effects of U.S. Census Bureau housing starts announcements,

one of the key indicators of the demand side of lumber markets, and their dependence on

physical lumber inventories and time remaining to contract expiration. We analyze daily

lumber futures prices from the Chicago Mercantile Exchange in Chicago, from 1992 to 2005,

and define a housing starts shock as the difference between the released figure and a survey

measure of the market’s expectation. When there is an observable information flow, such as

a housing starts announcement, lumber futures prices should move only if the announcement

contains new information. The effect of the news component of housing starts announce-

ments, or housing starts shock, should also depend on physical lumber inventories —see the

theory of storage— and time remaining to contract expiration, due to the difference between
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contract delivery time and the perceived time horizon of the shock.

We find that housing starts announcements contain new information: the unexpected

component of housing starts announcements increases expected returns on lumber futures

contracts on announcement days. Further, the effects of housing starts shocks decline with

inventories, as predicted by the theory of storage. We also find that housing starts shocks

have effects that vary across delivery horizon. One to four-month out contracts respond

by a larger magnitude to housing starts shocks than do five to eight-month out contracts,

reflecting a greater elasticity of supply and demand response at more distant horizons. The

response to news does not differ among the nearby contracts, that is, the housing starts

shocks have the same impact on return for one to four-month out contracts. However, the

response to news does vary among more distant contracts. We find that among five to

eight-month out contracts, housing starts effects are more pronounced for contracts with the

shortest time to delivery, and less pronounced for the ones with longest time to delivery.

2. Theoretical Implications

The efficient market hypothesis asserts that asset prices move in response to an announce-

ment only if the announcement conveys new information. In most past studies, the price

change of an asset is modeled as a function of the unexpected part of the announcement:

ln Pt − ln Pt−1 = a + bAt + εt,

where ln Pt is the natural logarithm of the asset price in question on day t and At is the

unexpected part of the announcement made on day t. The theory suggests that b 6= 0, that
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is, the return on an asset is related to the news effect of an announcement.

The theory of storage suggests that the return from holding a commodity should depend

on the level of physical inventories. Because inventories can be used to stabilize a supply

or demand shock, we should expect to see a smaller price response due to a shock when

inventories are large. Justification for this result can be seen from the theory developed in

Thurman (1988), which is summarized graphically in figure 1.

Equilibrium in the markets for physical inventories is characterized by a Hotelling-like

equation where the marginal return to holding inventories is just balanced by its marginal

cost. Purchasing a unit of the commodity in the current period costs Pt, the current price.

Holding and selling in the next period gives an expected return of E(Pt+1)/(1+r)−c−CY (St),

where r and c are the (assumed constant) interest rate and cost of storage, respectively

and CY (St) is the marginal convenience yield enjoyed by stockholders. Convenience yield is

large when aggregate inventories are small and declines with aggregate inventories. There are

various interpretations of convenience yield, which are empirically equivalent for our purposes

(see Brennan, Williams, and Wright (1997)). In equilibrium, then, inventory equilibrium

requires:

Pt = E(Pt+1)/(1 + r)− c− CY (St). (1)

The right-hand side of equation (1) can be interpreted as a demand for inventories, St,

to carry out of period t. It is decreasing and convex in St, as depicted in figure 1(a). This

decreasing and convex relationship is also shown in the three-period simulation study of

Karali (2007), which is based on the analytical solutions of optimal storage rules.

Flow equilibrium derives from the material balance equation and the excess supply of
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the commodity:

St = St−1 + S(Pt)−D(Pt)

= St−1 + XS(Pt), (2)

where S(Pt) and D(Pt) are the flow supply and demand functions for the commodity, XS(Pt)

is the excess supply function, and St−1 is the level of inventories inherited from period t− 1.

The flow supply curve is upward sloping in Pt−St space because excess supply is an increasing

function of price. Flow supply shifts rightward for increases in Pt−1. Equilibrium price and

inventories are determined by the intersection of the inventory demand and flow supply

curves in figure 1(a).

Next consider the price effects observed in response to commodity supply and demand

shocks. Refer to figure 1(b). There, the uppermost two supply functions are both conditioned

on an initial inventory level of So
t−1. The top supply curve is subject to a negative excess

supply shock of ε and the one immediately below it is subject to a positive excess supply

shock of the same size. The difference between the price responses from the positive and

negative shocks (as, say, forecast in the futures market) can be seen from the vertical distance

between the two implied equilibrium prices.

The bottommost two supply functions replicate the excess supply shock experiment but

for a higher beginning level of inventories, S1
t−1. Because the demand for inventories is

flatter in the region of the two equilibria for the second experiment, the implied difference

in prices is smaller. When inventories are small, the rapidly declining marginal value of

inventories, coupled with the large changes in expected future price with respect to changes
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in inventories, combine to make price changes large and inventory changes small. When

inventories are large, more of the equilibrium adjustment is accommodated by inventory

changes.

Beyond the effects of inventories, the futures prices response will depend upon the time

between when the shock is observed and when the futures contract matures. The price

response of a futures contract to a shock should be smaller when its delivery time is farther

away due to greater elasticity of supply and demand curves over longer runs. We generically

model these effects as:

ln Pt − ln Pt−1 = a + b(St, TTDt)At + εt,

where St is the physical inventory level on day t, TTDt is the number of days remaining

to contract expiration on day t, and b(St, TTDt) is a function of inventories and time to

delivery. For an announcement that naturally increases equilibrium commodity price, we

should expect to find:

∂(ln Pt − ln Pt−1)/∂At = b(St, TTDt) > 0

∂2(ln Pt − ln Pt−1)/∂At∂St = ∂b(St, TTDt)/∂St < 0

∂2(ln Pt − ln Pt−1)/∂At∂TTDt = ∂b(St, TTDt)/∂TTDt < 0.
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3. Econometric Methodology for Multiple Contracts

Time series of futures contracts partially overlap. As time passes, some contracts expire

and others begin trading. Figure 2 is a graphical depiction of overlapping futures contracts;

each line represents the trading life of a contract. On any given day, we observe price

data on multiple contracts. As an example, on September 15th 1992, the date that the

September 1992 contract expires, three other futures are traded and so quotes exist for four

contracts. As seen in the figure, no two contracts cover the same period. To combine all

of these contracts, and account for contemporaneous correlations among the observations

from the same trading day, we develop a GLS method, which is explained in detail in the

appendix. The method corrects for contemporaneous correlation among contracts and also

for delivery-horizon-specific heteroskedasticity.

4. Empirical Measures of Returns, Inventories, Announcements,

and Market Expectations

4.a. Futures Returns

We analyze daily settlement prices of lumber futures from the Chicago Mercantile Exchange

(CME) in Chicago, from 1992 to 2005. Trading takes place on Monday through Friday

between 9:00 am and 1:05 pm (CT) in an open outcry trading pit. Lumber futures contracts

expire every two months and the delivery months are January, March, May, July, September,

and November. The last trading day for any contract is the last business day prior to the

sixteenth calendar day of the contract’s delivery month. A new contract is listed on the day
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after the front month expires, and a total of seven contracts are listed at any point in time,

each with a different delivery date up to 14 months into the future. However, in the data

we analyze there are price observations on a maximum of five contracts on any given day.

Our sample period, in which total of 77 futures contracts are traded, covers the period from

July 14, 1992 to November 15, 2005. There are 170 observations for each contract, resulting

13,090 observations in total (see appendix for details). The prices of each of these futures

contracts are presented in figure 3.

4.b. Inventories

We employ inventory data from Monthly Wholesale Trade reports published by the U.S.

Census Bureau from January 1992 to December 2005. Because they are not seasonally

adjusted and stated in current dollars we convert inventory data into real dollar values by

using not seasonally adjusted monthly lumber Producer Price Index (PPI) published by the

Bureau of Labor Statistics. We interpolate the resulting monthly series, which are now in

1982 (PPI’s base year) dollars, by a cubic spline method to obtain daily inventories. Figure

4 presents these daily inventory data.

4.c. Housing Starts Announcements

For announcement data we use housing starts estimates released by the U.S. Census Bu-

reau in monthly New Residential Construction reports along with the estimates of building

permits and housing completions. Housing starts is a measure of the initial construction

of single-family and multi-family residential units. The start of construction is defined as
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the beginning of excavation for the footings or foundation of a building. New Residential

Construction reports are released between the 15th and 20th of each month at 8:30 am (ET).

Thus, the lumber futures market is closed when the announcement is made and opens one-

and-a-half hours later. The announcements contain statistics for the previous month. For

instance, the report released on August 16, 2005 contains information during the month of

July 2005. Market participants know the release date and time of the current reports in ad-

vance because these are always listed in the prior release. We consider the news component

of the announcements of housing starts estimates by measuring the difference between the

actual numbers in the releases and the numbers expected by the market. The selection of

market expectation data is discussed in the following section.

4.d. Market Expectations of Housing Starts

For market expectations data, we construct three different forecast series and then compare

their forecasting accuracy by Root Mean Square Error (RMSE) measure. Money Market

Services (MMS) surveys are conducted every Friday unless it is a holiday. Survey participants

include economists from major financial institutions and universities, and are asked to predict

the economic variables that will be released during the following week. Survey results are

available commercially before the announcements. For more detailed information on MMS

survey data, see Aggarwal, Mohanty, and Song (1995).

The first forecast series we consider is the median response of the MMS surveys. For

the second forecast series, we assume that the best forecast of the housing starts that will

be released in current month is the actual housing starts number released in the previous
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month. So, the forecast is the housing starts lagged by one month. The third forecast series

is constructed by analyzing the released housing starts series through standard time series

techniques. This analysis suggests a moving average of order one for the first difference

of housing starts, which implies an exponential smoothing forecast. Therefore, the third

forecast series takes the following ARIMA(0,1,1) form: ĤSm = HSm−1 − 0.57177(HSm−1 −

ĤSm−1), where HSm is the released housing starts in month m, and HSm−1 is the previous

month’s released housing starts.

Table 1(a) shows summary statistics of housing starts shocks, which are computed as

the difference between the actual number and the forecasted number. In our sample period,

there were 159 monthly announcements of housing starts. As seen in the table, the smallest

RMSE is obtained from the forecast errors of the MMS survey. These median responses

of market expectation data perform better than the other two forecast series in predicting

housing starts.

The rationality of the MMS survey data has been widely studied in the literature. Studies

that support the unbiasedness and efficiency of the MMS survey data include Pearce and

Roley (1985), Pearce (1987), and Balduzzi, Elton, and Green (2001). To further analyze the

performance of these survey data in forecasting housing starts announcements, the following

regression is performed:

ln Ft − ln Ft−1 = β(HSt −MMSt) + γMMSt + δ(HSt−1 −MMSt−1) + εt

≡ βht + γMMSt + δht−1 + εt, (3)

where ln Ft is the natural logarithm of futures contract on day t, HSt is the released housing
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starts on day t and MMSt is the median response of the MMS survey for housing starts on

day t. The variables HSt and MMSt are defined as zero on nonannouncement days. Efficient

market hypothesis states that β should be nonzero, meaning that unanticipated information

should cause a price movement. Further, γ and δ should be zero, implying that anticipated

part of an announcement and the past forecast error should not cause a price movement.

The results from equation (3) are presented in table 2(a). As seen, the estimate for β

is positive and statistically significant, showing that the unexpected part of housing starts

announcements is positively related to daily return on lumber futures contracts. The estimate

for δ is negative and statistically insignificant. This shows that yesterday’s forecast error

does not affect today’s price change. The negative and significant estimate of γ is somewhat

puzzling. It seems that the expected component of the announcements has an explanatory

power in explaining daily price changes. However, the magnitude of the coefficient is quite

small compared to the magnitude of the shock coefficient (approximately 39 times smaller).

The table also gives the F statistic and its p-value for the null hypothesis that both γ and δ

are zero. We do not reject the null hypothesis with a p-value of 0.13, which is slightly higher

than conventional 10% level due to the significant effect of γ. One possible reason that we

observe a significant estimate for the market expectations might be the timing difference

between the realization of survey results and the announcements.

The unbiasedness of the MMS data is tested in the following model:

HSm = a + bMMSm + em, (4)

where HSm is the released number of housing starts in month m and MMSm is the median
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response of the MMS survey forecast for housing starts that will be released in month m.

Unbiased expectations imply that a = 0 and b = 1. Results given in table 2(b) show that

the intercept estimate is not statistically different from zero, with a t-statistics of 0.87. Also,

the coefficient estimate for the MMS forecasts, b, is significantly different from zero but not

significantly different from one. The F-statistic of the joint test of unbiasedness is 2.02 with

a p-value of 0.14. Thus, we do not reject the null hypothesis and conclude that the MMS

forecasts are unbiased estimators of housing starts.

Another issue that has attracted economists’ attention is the possibility of an asymmetric

response to positive and negative shocks. See, for example, Li and Engle (1998), Andersen,

Bollerslev, Diebold, and Vega (2003), Pearce and Solakoglu (2006). We test whether or not

there is asymmetric response to positive and negative housing starts shocks by estimating

the following:

ln Ft − ln Ft−1 = ψP pt ∗ ht + ψNnt ∗ ht + εt, (5)

where pt is a dummy variable that takes the value of one if the housing starts shock on day

t, ht, is positive, and zero otherwise. Similarly, nt is a dummy variable that takes the value

of one if housing starts shock on day t, ht, is negative, and zero otherwise. Table 2(c) shows

that both positive and negative shock coefficients are positive and statistically significant.

The null hypothesis that the response to positive and negative shocks is the same is not

rejected and has a p-value of 0.49. We conclude that lumber futures contracts respond by a

similar magnitude to positive and negative housing starts shocks.1

Based on these results, we use the MMS survey data in the rest of the empirics to represent

1The equations (3) and (5) were estimated with intercepts as well. The intercept estimates were insignif-
icant and therefore dropped from the equations.
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expected housing starts by market participants. Figure 5(a) shows the actual housing starts

and the MMS survey forecasts. Figure 5(b) shows the forecast errors, or news component of

announcements, which are computed as the difference between the actual number and the

forecasted number.

5. Housing Market Shocks and Expected Return: Measures of the

Dependence on Time-to-Delivery and Inventories

In this section we explore the price effects of the unexpected component of housing starts

announcements and their dependence on inventories and time to delivery. Housing starts

shocks are computed as the difference between the released housing starts number and the

median response of the Money Market Services (MMS) survey. These announcements are

made between the 15th and 20th of each month and lumber contracts expire on the last

business day prior to the 16th calendar day of the contract’s delivery month. Therefore

when the announcement is made in a contract’s delivery month, that month’s contract has

already expired. Because lumber contracts expire every two months and announcements are

made every month, the nearest contract on any announcement day will be either one month

out or two months out. As a result, the distribution of the time to delivery (TTD) variable

is such that it does not take values close to zero on announcement days. Figure 6 shows

the distribution of TTD on announcement days. As the figure shows, there are eight TTD

clusters on announcement days.

The clusters in figure 6 will be important to our empirical specifications. Figure 7 gives a

graphical explanation of the clusters of the TTD variable on announcement days. In the data,
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at most four contracts were traded on announcement days. When an announcement is made

in a delivery month, TTD takes values near 40, 80, 120, and 160 for the four contract traded.

Because the contracts expire before the announcements, the nearest delivery contract is a

two-month-out contract, and the next contract is four months out. When the announcement

is not made in a delivery month, then TTD takes values near 20, 60, 100, and 140. So, the

first two nearby contracts are one-month and three-month out contracts. Therefore, on any

announcement day, the contracts that are closest to delivery will have TTD values near 20,

40, 60, and 80.

5.a. A Nonparametric Model of Time-to-Delivery Effects

Given the data structure just noted, a reasonable model for the conditional mean of lumber

futures returns might include some function of inventories and a linear combination of eight

dummy variables for the TTD categories, all interacted with housing starts shocks. Such a

specification would look like

ln Ft − ln Ft−1 = BSt ∗ ht + b1T1,t ∗ ht + b2T2,t ∗ ht + b3T3,t ∗ ht + b4T4,t ∗ ht

+b5T5,t ∗ ht + b6T6,t ∗ ht + b7T7,t ∗ ht + b8T8,t ∗ ht + εt,

(6)

where ln Ft is the natural logarithm of the futures price on day t, St is the lumber inventory

level on day t, and ht is the difference between released housing starts and the market

expectation on day t. The dummy variables are defined as follows:
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T1,t =





1, if 15 ≤ TTDt ≤ 21

0, otherwise

T2,t =





1, if 31 ≤ TTDt ≤ 42

0, otherwise

T3,t =





1, if 57 ≤ TTDt ≤ 64

0, otherwise

T4,t =





1, if 75 ≤ TTDt ≤ 86

0, otherwise

T5,t =





1, if 98 ≤ TTDt ≤ 106

0, otherwise

T6,t =





1, if 117 ≤ TTDt ≤ 128

0, otherwise

T7,t =





1, if 140 ≤ TTDt ≤ 150

0, otherwise

T8,t =





1, if 158 ≤ TTDt ≤ 169

0, otherwise

,

where TTDt is the number of days remaining to delivery on day t. The dummy variables are

constructed according to the minimum and maximum TTD observed on announcement days

for each one of eight TTD categories. The ht variable is defined as zero on nonannouncement

days. Table 1(b) presents summary statistics of the key variables.

Estimates of specification (6) are presented in table 3(a). Both OLS and GLS estimates

of all dummy coefficients are positive and statistically significant. The GLS estimate of

B, which is the partial inventory effect of housing starts shocks, is negative and statistically

significant at the 10% level (one-tailed). This implies that as inventory levels become smaller,
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housing starts shocks affect expected return on lumber contracts by a larger amount. As

inventory levels increase, the effect of housing starts shocks on expected return is smaller.

To see the overall effect of housing starts shocks on expected return, one needs to compute

the derivative ∂(ln Ft − ln Ft−1)/∂ht for each one of eight TTD categories and evaluate the

derivative at a particular value of inventories. Table 3(c) shows the marginal effects of housing

starts shocks computed by using the GLS estimates of parameters. The marginal effect of

housing starts shocks is positive for each TTD category in all cases. While these effects are

significant for medium and low levels of inventories, they are statistically insignificant when

the derivatives are evaluated at the maximum value of inventories.

Figure 8 shows predicted daily return from the table 3(a) GLS estimates for each TTD

category separately. The predicted returns are computed using the mean values of inventories

and housing starts shocks and so answer the following question: on a typical announcement

day, with inventories equal to their sample, how does expected return on a futures contract

vary with its time to delivery? From figure, it appears that after the first four categories

(TTD > 86), the effect of housing starts on the expected return on lumber futures contracts

starts to decline. The nearby contracts have a higher response to ht than do the distant ones

for a given shock and inventory level. This suggests a more parsimonious version of equation

(6), with a parametric dependence on TTD. This, in turn, suggests performing F-tests of

the equality of the parameters from equation (6). Table 3(b) shows such tests.

The hypothesis that all TTD dummy coefficients are zero is rejected at the 10% level

with GLS estimates. The F-statistic for the hypothesis that the average of the first four

TTD dummy coefficients is equal to the average of the last four dummy coefficients also

is rejected at the 10% level. Although the hypothesis of the equality of all eight dummy
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coefficients is not rejected with a p-value of 0.16, the equality of averages is rejected. The

clustered pattern of predicted price changes seen in figure 8 can be tested by the hypotheses:

H1
0 : b1 = b2 = b3 = b4

H2
0 : b5 = b6 = b7 = b8.

The first null hypothesis, H1
0 , is not rejected with a p-value of 0.88. The second null hy-

pothesis, H2
0 , is also not rejected with a p-value of 0.80. Further, the joint test of these null

hypotheses is not rejected with a p-value of 0.67. Given these test results and the visual

pattern evident in figure 8, we define two dummy variables: one for the first four TTD

categories and one for the last four TTD categories.

To this end we define the following new model:

ln Ft − ln Ft−1 = BSt ∗ ht + b1,4T1,4,t ∗ ht + b5,8T5,8,t ∗ ht + εt, (7)

where T1,4,t = T1,t + T2,t + T3,t + T4,t and T5,8,t = T5,t + T6,t + T7,t + T8,t. In this model, the

effects of housing starts shocks are the same for the first four contracts and for the last four

contracts. However, the effects can change between the two groups.

Estimation results for equation (7) are given in table 4(a). Once again, we obtain neg-

ative estimates for B, and positive estimates for the dummy coefficients. The estimate of

B is statistically significant at the 10% level (one-tailed test). The estimates of b1,4 and b5,8

are also significant with t-values of 2.62 and 2.37. To see the overall marginal impact of

housing starts on expected return, the derivatives ∂(ln Ft− ln Ft−1)/∂ht for both TTD cate-
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gories are computed with GLS estimates. These are presented in table 4(b). As before, the

marginal impact of housing starts is positive for each TTD category, however, insignificant

at the maximum value of inventories. The estimated ∂(ln Ft− ln Ft−1)/∂ht for the first TTD

category (T1,4,t = 1) is larger in all cases. This reflects that housing starts shocks have larger

impacts on nearby contracts than the distant ones. As evidenced by the sign of B, the effect

of housing starts shocks on expected return declines with inventories.

When we consider the GLS estimates and evaluate the marginal effect of housing starts

shocks at the mean value of inventories (second row of table 4(b)), a change in shocks from

their minimum value, -273,000 housing units, to their maximum value, 200,000 housing units,

causes a 3.6 percentage point increase in the expected returns of contracts that have 86 or

less days to delivery. The same change in shocks causes a 2.9 percentage point increase in the

expected returns of contracts that have 98 or more days to delivery. The respective increases

in the expected return with the minimum value of inventories are 4.7 and 4.0 percentage

points. These results show that supply and demand curves are inelastic in the short run, so

that housing starts shocks, a demand shock, have a larger price impact on nearby contracts.

On the other hand, supply and demand curves become more elastic in the long run, hence the

price impact of housing starts shocks is smaller for more distant contracts. Also note that,

as the theory of storage predicts, we obtain larger price response to shocks when inventories

are small.

The results of F-tests performed on parameter estimates from the model with two dummy

variables are given in the bottom part of table 4(a). The hypothesis that both dummy

coefficients are equal to zero is rejected. The equality of b1,4 and b5,8 is also rejected with a

p-value of 0.01.
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5.b. A Piecewise Linear Model of Time-to-Delivery Effects

The results in the previous section suggest that the effect of housing starts shocks on expected

return is different across contracts, and the effect declines with contract horizon.

To further analyze this time-to-delivery pattern we construct a new model that captures

the time-horizon effects discussed above with a piecewise linear spline function of time to

delivery. We define expected return as

E[ln Ft − ln Ft−1] = (A + BSt) ∗ ht + g(TTDt) ∗ ht, (8)

where
g(TTDt) = (1− dt) ∗ (a + bTTDt) + dt ∗ (c + eTTDt)

and dt = 1 if TTDt ≥ T ∗, zero otherwise. A graphical depiction is given in figure 9. At T ∗,

a + bT ∗ = c + eT ∗. So, we can solve for a and substitute in g(TTDt) to ensure that the

two linear pieces are connected at T ∗. Solving for a gives us a = c + (e − b)T ∗. When we

substitute the solution for a into the function g(TTDt), we obtain:

g(TTDt) = (1− dt)(c + (e− b)T ∗ + bTTDt) + dt(c + eTTDt)

= c + b[(1− dt)(TTDt − T ∗)] + e[(1− dt)T
∗ + dtTTDt].

Substituting this into equation (8) yields the new regression model:

ln Ft − ln Ft−1 = (A + BSt) ∗ ht +
{

c + b[(1− dt)(TTDt − T ∗)]

+ e[(1− dt)T
∗ + dtTTDt]

}
∗ ht

= (A + c)ht + BSt ∗ ht + b(1− dt)(TTDt − T ∗) ∗ ht

+ e[(1− dt)T
∗ + dtTTDt] ∗ ht + εt.

(9)
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Given the results from the previous section, we set T ∗ = 90 because this splits the eight

clusters of TTD variable observed on announcement days in half. Moreover, TTD never

equals 90 on announcement days (see figure 6).

Regression results from the piecewise linear model are presented in table 5(a). The

estimates of A + c and b are positive but only the former is statistically significant. The

insignificance of b (the slope before T ∗) is in accordance with what we expect. For contracts

that have less than 90 days to delivery, the effect of housing starts shocks does not change

with TTD. The four nearby contracts respond to shocks by similar amounts. On the other

hand, the estimate of e (the slope after T ∗) is negative and statistically significant. This

shows that when contracts have more than 90 days to delivery, the effect of housing starts

shocks decreases with TTD. Among these contracts, the one with nearest delivery is affected

by more than ones with more distant delivery. After some critical value of TTD, we observe a

declining impact of housing starts shocks with time to delivery. The estimate of B is negative

and statistically significant at the 10% level (one-tailed test). This confirms that the effect

of housing starts shocks on expected return declines with inventories. When inventories are

small, housing starts shocks have more impact on expected returns, whereas when inventories

are large, shocks have less impact on returns.

Interest centers on the overall impact of housing starts shocks on expected returns. Once

again, we need to compute the derivative ∂(ln Ft − ln Ft−1)/∂ht and evaluate it at some

predetermined values of inventories and time to delivery. Table 5(b) shows the marginal

effects computed at the minimum, mean, and maximum value of inventories for the cases

when TTD takes its maximum value, the region beyond T ∗, and its minimum value, the

region before T ∗, by using the GLS estimates. The second derivatives do not depend on any
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variable; they are simply the estimates of B, b, or e. We see that the expected return is

positively related to housing starts shocks in each case. Once again, this marginal effect is

insignificant at the maximum value of inventories. For the contracts that have more than

90 days to delivery, a change in the housing starts shocks from their minimum to maximum

value results in a 2.3 percentage point increase in the expected return when the derivative is

evaluated at the mean value of inventories. The same change in shocks causes a 3.5 percentage

point increase in the expected return for contracts that have less than 90 days to delivery.

When the derivative is evaluated at the minimum value of inventories, the respective changes

are 3.4 and 4.6 percentage points. The second derivative ∂2(ln Ft − ln Ft−1)/∂ht∂St is equal

to B. As discussed before, the effect of housing starts shocks on expected return decreases

with inventories. The second derivative ∂2(ln Ft − ln Ft−1)/∂ht∂TTDt is equal to b for the

values of TTD that are less than 90. As seen in the table, it is positive and insignificant.

The effect of housing starts shocks on expected return does not significantly change with

time to delivery for TTD < T ∗. The second derivative ∂2(ln Ft− ln Ft−1)/∂ht∂TTDt is equal

to e for the values of TTD that are equal or greater than 90. The estimate of e is negative

and statistically significant. Therefore, the effect of housing starts shocks on expected return

declines with TTD for more distant contracts. The marginal effect of housing starts shocks,

∂(ln Ft − ln Ft−1)/∂ht, is plotted against TTD in figure 10 using the GLS estimates and

evaluating the predicted effect at all sample points in the data.

The bottom part of table 5(a) gives results from the F-tests performed on parameter

estimates. The hypothesis of no TTD effect on housing starts shocks, b = e = 0, is rejected

with a p-value of 0.04. The hypothesis that the effect of housing starts shocks is the same

for both TTD categories, b = e, is rejected with a p-value of 0.10.
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6. Conclusions

The expected return on lumber futures is positively related to housing starts shocks. Hous-

ing starts convey important news to lumber markets. When market participants over- or

underestimate housing starts, these forecast errors result in a price movement. In this anal-

ysis, we conclude that the effect of announcements on daily returns declines with physical

inventories. As inventory levels become larger, these shocks cause a smaller change in return.

This provides empirical evidence for a central implication from the theory of storage. It is

the first such evidence, to our knowledge, that connects announcement effects in futures

markets with measured commodity inventories.

The dependence of the effect of housing starts shocks on time to delivery is analyzed in

different settings. All models we investigate lead to the conclusion that the effect of shocks is

not the same for all contracts, and what differs across contracts is their delivery horizon. The

most nearby (one to four-month out) contracts respond by a larger magnitude to housing

starts shocks than do the more distant (five to eight-month out) contracts, which we interpret

as reflecting a greater elasticity of supply and demand response at more distant horizons.

Further, the decline is found not to be linear. The response to news does not differ among

the nearby contracts (up to four months out), but does vary among more distant contracts.

Among contracts more than four months out, housing starts effects are more pronounced for

contracts with the shortest time to delivery, and less pronounced for those with longest time

to delivery. These results from the lumber market are quite similar to those found by Smith

in the corn market.2

2Our work is closely related in two ways to the work of Smith (2005) and his Partially Overlapping Time
Series (POTS) model. Methodologically, we and he develop econometric models that exploit the information
available from simultaneously traded futures contracts. Substantively, we both study the economics of futures
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Our results suggest that the information embodied in housing starts announcements is

short term. Other information sources may have different time profiles, suggesting further

research using multiple futures contracts to characterize the term structure of information.

price movements and how they are affected by time-to-delivery and physical inventories.
There are, however, important differences between his work and ours. Smith studies time series of futures

contract prices without reference to exogenous observables. He models unobservable information flows using
a purely time series methodology—a sophisticated factor analytic model, incorporating the Kalman filter
and cubic splines to specify the dependence of futures price movements on unobserved new- and old-crop
information shocks. GARCH effects are included as well. To estimate the model, he uses an approximate
EM algorithm in cooperation with more standard numerical methods to maximize the Gaussian likelihood
function. In contrast, we relate futures price movements to observed information flows—Housing Starts
announcements relative to survey forecasts of them—and condition the reaction to market news on observed
measures of physical inventories. Because our measures of news and inventories are observable we are
naturally led to a different empirical model, a Generalized Least Squares regression methodology based on
the unbalanced panel structure of futures contracts. Our method has some advantages in its transparency
and ready adaptability to other partially overlapping times series contexts with observable covariates.

With regards to economic results, the obvious contrast with Smith is that he studies corn and we study
lumber. But despite the difference in commodities, and far from taking POTS shots at Smith’s results, we
find that our empirical results are quite consistent with his. We estimate the effect of inventories on the
futures market’s response to information and confirm directly the indirect inference that Smith draws from
his time series factor model: that volatility (in our case, the size of the market response to news) is inversely
related to inventories. We also find that volatility increases as time to delivery approaches (the Samuelson
effect, also studied by Anderson and Danthine (1983), Anderson (1985), Milonas (1986), Leistikow (1989),
and Black and Tonks (2000)). Also similar to Smith’s findings, for contracts with more than about four
months to delivery volatility is roughly constant with respect to time to delivery. We find this result both
for observed announcement effects and for daily volatility due to unobserved factors.
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APPENDIX

A. Econometric Methodology for Multiple Contracts

To combine simultaneously traded contracts we choose futures contracts according to the

availability of lumber inventory data, which are available from January 1992 to December

2005. Therefore, we only consider contracts that started trading after January 31, 1992 and

ones that matured before December 31, 2005. This results in a sample period of July 14,

1992-November 15, 2005. Within this time interval there are 77 contracts. Because each

contract has a different number of active trading days, the maximum TTD varies somewhat

among contracts. For consistency, we trimmed the data set to include only those observations

for which TTD is equal to or less than 169, which is the shortest TTD in the sample. The

resulting data set has 170 observations on each of 77 contracts (13,090 observations in total).

During the sample period, at most five contracts were traded on a given day and on some

days three or four were traded.

We organize the observations into five groups, according to the number of contracts

traded on a given day. We denote the groups as:

y1 =

[
y1,t11

y1,t12
· · · y1,t1n1

]′
,

y2 =

[
y1,t21

y2,t21
y1,t22

y2,t22
· · · y1,t2n2

y2,t2n2

]′
,

y3 =

[
y1,t31

y2,t31
y3,t31

y1,t32
y2,t32

y3,t32
· · · y1,t3n3

y2,t3n3
y3,t3n3

]′
,

y4 =

[
y1,t41

y2,t41
y3,t41

y4,t41
y1,t42

y2,t42
y3,t42

y4,t42
· · · y1,t4n4

y2,t4n4
y3,t4n4

y4,t4n4

]′
,

y5 =

[
y1,t51

y2,t51
y3,t51

y4,t51
y5,t51

y1,t52
y2,t52

y3,t52
y4,t52

y5,t52
· · · y1,t5n5

y2,t5n5
y3,t5n5

y4,t5n5
y5,t5n5

]′
,

where tjk refers to the kth day in the j-contract group; for example t12 refers to the second day
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during which only one contract was traded, t25 refers to the fifth day during which exactly two

contracts were traded. The variable yi,tjk
refers to the change in the price of the ith-nearest-

delivery contract in the j-contracts-a-day group on day tjk; for example, y2,t417
is the price

change on the second-nearest-delivery contract (two to four months out) in the group with

four contracts traded per day, on the 17th day in that group. The variable nj, j = 1, 2, 3, 4, 5

is the number of trading days with j contracts traded in total. There are 3,365 trading days

in the data and n1 + n2 + n3 + n4 + n5 = 3, 365. Specifically, n1 = 86, n2 = 85, n3 = 96,

n4 = 2, 944, n5 = 154: y1 is n1 × 1, y2 is 2 · n2 × 1, y3 is 3 · n3 × 1, y4 is 4 · n4 × 1, and y5 is

5 · n5 × 1.

The five grouped vectors are stacked to compose a single data vector:

y =

[
y1
′ y2

′ y3
′ y4

′ y5
′
]′

,

Once the column vectors are stacked, the resulting vector is 13, 090 × 1. We organize the

entire data set in this way to have column vectors for each variable ordered according to the

number of contracts traded on a given day.

Because information flows to the market affect, to some degree, all lumber contracts, price

observations from the same calendar date will be correlated with each other. Simply pooling

the time series and ignoring contemporaneous correlation would falsely imply that each

observation provided an independent observation on the relationship between prices, TTD,

and inventories. To deal with correlation among observations from the same day, we first run

a regression for the model of interest like ln Ft− ln Ft−1 = α+δht +βSt ∗ht +γTTDt ∗ht +εt.

The variable ln Ft is the natural logarithm of futures price on day t, ht is the difference
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between the released housing starts and market expectation on day t, St is the inventory

level on day t, and TTDt is the number of days remaining to delivery on day t. From any such

regression we obtain the residual vector ordered as above. Then we construct submatrices

from this residual vector. The residual submatrices are:

e1 =
[
e1,t11

e1,t12
· · · e1,t1n1

]′
, e2 =




e1,t21
e1,t22

· · · e1,t2n2

e2,t21
e2,t22

· · · e2,t2n2




′

, e3 =




e1,t31
e1,t32

· · · e1,t3n3

e2,t31
e2,t32

· · · e2,t3n3

e3,t31
e3,t32

· · · e3,t3n3




′

,

e4 =




e1,t41
e1,t42

· · · e1,t4n4

e2,t41
e2,t42

· · · e2,t4n4

e3,t41
e3,t42

· · · e3,t4n4

e4,t41
e4,t42

· · · e4,t4n4




′

, e5 =




e1,t51
e1,t52

· · · e1,t5n5

e2,t51
e2,t52

· · · e2,t5n5

e3,t51
e3,t52

· · · e3,t5n5

e4,t51
e4,t52

· · · e4,t5n5

e5,t51
e5,t52

· · · e5,t5n5




′

. (A-1)

In the preceding matrices each row represents a trading day. The first column of each

submatrix shows residuals associated with the first nearby contract. Similarly, the second

columns are associated with the second nearby contract, the third columns with the third

nearby contract, and so on. Using these submatrices, we compute the sample means of

squared residuals by column to obtain variance estimates of first nearby contracts, second

nearby contracts, etc. We also estimate covariances between first and second nearby con-

tracts, between first and third nearby contracts, etc. by computing sample means of the

products of related residuals. The variance estimate of the ith-nearest-delivery contract is
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computed as:

σ̂2
i =

5∑
j=i

1

nj

nj∑

k=1

(ei,tjk
)2.

More specifically, the variance estimates are:

σ̂2
1 =

5∑
j=1

1

nj

nj∑

k=1

(e1,tjk
)2, σ̂2

2 =
5∑

j=2

1

nj

nj∑

k=1

(e2,tjk
)2, σ̂2

3 =
5∑

j=3

1

nj

nj∑

k=1

(e3,tjk
)2,

σ̂2
4 =

5∑
j=4

1

nj

nj∑

k=1

(e4,tjk
)2, σ̂2

5 =
1

n5

n5∑

k=1

(e5,t5k
)2.

The estimate of the covariance between the ith-nearest-delivery and `th-nearest-delivery

contracts is computed as:

σ̂i` =
5∑

j=max{i,`}

1

nj

nj∑

k=1

ei,tjk
e`,tjk

.

For example,

σ̂23 =
5∑

j=3

1

nj

nj∑

k=1

e2,tjk
e3,tjk

,

or

σ̂23 =
1

n3

n3∑

k=1

e2,t3k
e3,t3k

+
1

n4

n4∑

k=1

e2,t4k
e3,t4k

+
1

n5

n5∑

k=1

e2,t5k
e3,t5k

.
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Using these estimates we construct a 5× 5 variance-covariance matrix as

Σ =




σ̂2
1 σ̂12 σ̂13 σ̂14 σ̂15

σ̂12 σ̂2
2 σ̂23 σ̂24 σ̂25

σ̂13 σ̂23 σ̂2
3 σ̂34 σ̂35

σ̂14 σ̂24 σ̂34 σ̂2
4 σ̂45

σ̂15 σ̂25 σ̂35 σ̂45 σ̂2
5




.

This method allows variances to change for the five contract types and covariances to vary

among contracts that have the same discrepancy in delivery month. Even though there are

two-month delivery discrepancies between the first and second nearby contracts and between

the second and third nearby contracts, the covariance between the first and second contracts

(σ̂12) is not assumed to be the same as that between the second and third contracts (σ̂23).

For all the models discussed in this paper, it is observed that variance estimates decline with

time to delivery. That is, the variance estimates of distant contracts are smaller than those

for nearby contracts. Further, the covariance estimates between contracts decrease as the

discrepancy in contract delivery times becomes larger.

Once the variance-covariance matrix from a regression is obtained, its Cholesky decompo-

sition can be used to apply a GLS transformation to the data to eliminate contemporaneous

correlation among residuals and to adjust the observations to be homoskedastic. To accom-

plish this we construct five submatrices for each variable like the ones in equation (A-1).

We then compute the Cholesky factors, Cis, of the five submatrices of Σ using the

following:
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Σ1 = C ′
1C1 = σ̂2

1, Σ2 = C′
2C2 =




σ̂2
1 σ̂12

σ̂12 σ̂2
2


 , Σ3 = C′

3C3 =




σ̂2
1 σ̂12 σ̂13

σ̂12 σ̂2
2 σ̂23

σ̂13 σ̂23 σ̂2
3




,

Σ4 = C′
4C4 =




σ̂2
1 σ̂12 σ̂13 σ̂14

σ̂12 σ̂2
2 σ̂23 σ̂24

σ̂13 σ̂23 σ̂2
3 σ̂34

σ̂14 σ̂24 σ̂34 σ̂2
4




, Σ5 = C′
5C5 =




σ̂2
1 σ̂12 σ̂13 σ̂14 σ̂15

σ̂12 σ̂2
2 σ̂23 σ̂24 σ̂25

σ̂13 σ̂23 σ̂2
3 σ̂34 σ̂35

σ̂14 σ̂24 σ̂34 σ̂2
4 σ̂45

σ̂15 σ̂25 σ̂35 σ̂45 σ̂2
5




.

Then we premultiply the variable submatrices by the associated (C′
i)
−1, i = 1, 2, 3, 4, 5. For

example, for the data group during which four contracts were traded on a given day, the

GLS transformation to the variable x is performed as:

x∗4
′ = (C′

4)
−1x′4 = (C′

4)
−1




x1,t41
x1,t42

· · · x1,t4n4

x2,t41
x2,t42

· · · x2,t4n4

x3,t41
x3,t42

· · · x3,t4n4

x4,t41
x4,t42

· · · x4,t4n4




,

where (C′
4)
−1 is 4× 4 and x′4 is 4× n4.

With this method, we obtain new data that are corrected for the contemporaneous cor-

relation among contracts and for delivery-horizon-specific heteroskedasticity.
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Figure 2: Overlapping Futures Contracts
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Figure 3: Lumber Futures Contract Prices ($ per 1,000 board feet)
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Figure 5: Housing Starts Announcements and MMS Forecasts
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Figure 7: Contract Expiration and Time to Delivery on Announcement Days
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Figure 9: Piecewise Linear Function of Time to Delivery
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Tables

Table 1: Summary Statistics

(a) Summary Statistics of Monthly Housing Starts Shocks

HSm −MMSm HSm −HSm−1 HSm − ĤSm

Mean 12.57 5.94 13.01

Median 10 10 19.35

Min -273.00 -358.00 -264.85

Max 200 233 221.96

Std. Deviation 82.50 99.85 87.53

RMSE 83.20 99.71 88.22

N 159 158 159

(b) Summary Statistics of Daily Variables

N=13,090 ln Ft − ln Ft−1 | ln Ft − ln Ft−1| Inventories TTD Housing Starts Shocks |Housing Starts Shocks|
Mean -0.00010534 0.01243 4,615.40 84.50 0.6226 3.0610

Median 0 0.00974 4,383.50 84.50 0 0

Min -0.0786 0 3,105.40 0 -273 0

Max 0.1419 0.1419 7,533.70 169 200 273

Std. Deviation 0.0161 0.0102 954.15 49.08 17.8192 17.5654

Notes: Panel (a): HSm is the released number of housing starts in thousands in month m, MMSm is the median forecast

of the Money Market Services (MMS) survey for housing starts that will be released in month m, HSm−1 is the previous

month’s released number for housing starts, ˆHSm is the forecast of housing starts constructed by an ARIMA(0,1,1) model

ˆHSm = HSm−1 − 0.57177(HSm−1 − ĤSm−1). RMSE is the Root Mean Square Error measure of forecasting accuracy. Panel

(b): Inventories are measured in millions of dollars. Inventory statistics are computed with all 13,090 observations. As a result,

inventory levels repeat themselves when multiple contracts were traded on any day. The mean of unrepeated inventory series

is 4,651.62 million dollars. Housing starts are measured in thousands. Shocks are computed as the difference between the

released housing starts and the median response of the Money Market Services (MMS) survey. Housing starts shocks statistics

are computed with zeros on nonannouncement days and with repeated shocks on announcement days if multiple contracts were

traded.
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Table 2: Market Efficiency Tests and Asymmetric Effects

(a) Market Efficiency

N=13,090 ∆yt = βht + γMMSt + δht−1 + εt

β 5.09× 10−5

[1.26× 10−5]
(4.04)

γ −1.31× 10−6

[6.55× 10−7]
(-2.00)

δ −3.71× 10−6

[1.24× 10−5]
(-0.30)

H0 : γ = δ = 0

F 2.0387
Pr>F 0.1302

(b) Unbiasedness

N=159 HSm = a + bMMSm + em

a 40.44
[46.29]
(0.87)

b 0.98234
[0.02904]
(33.83)

H0 : a = 0 b = 1

F 2.0237
Pr>F 0.1356

(c) Asymmetric Effects

N=13,090 ∆yt = ψP pt ∗ ht + ψNnt ∗ ht + εt

ψP 3.97× 10−5

[1.64× 10−5]
(2.42)

ψN 5.72× 10−5

[1.92× 10−5]
(2.98)

H0 : ψP = ψN

F 0.4827
Pr>F 0.4872

Notes: In panel (a), the model is ∆yt = βht + γMMSt + δht−1 + εt. ∆yt is the log price differences and computed as

ln Ft − ln Ft−1, where ln Ft is the log price of futures contract on day t. ht is the difference between released housing starts

and the market expectation on day t and computed as HSt −MMSt, where HSt is is the released number of housing starts

in thousands on day t and MMSt is the median forecast of the Money Market Services (MMS) Survey for housing starts on

day t. In panel (b), the model is HSm = a + bMMSm + em, where HSm is the released number of housing starts in thousands

in month m and MMSm is the median forecast of the MMS Survey for housing starts that will be released in month m. In

panel (c), the model is ∆yt = ψP pt ∗ ht + ψNnt ∗ ht + εt. pt is a dummy variable that equals one if ht is positive on day

t, zero otherwise. nt is a dummy variable that equals one if ht is negative on day t, zero otherwise. In panels (a) and (c),

housing starts shock, ht, is computed with zeros on nonannouncement days and with repeated shocks on announcement days if

multiple contracts were traded. The parameter estimates in panels (a) and (c) are obtained using the Generalized Least Squares

(GLS) method explained in the appendix. In panel (b), only data on announcement days are used and parameter estimates are

obtained through Ordinary Least Squares (OLS) method. Standard errors and t-values of estimates are given in the brackets

and parentheses, respectively.
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Table 3: Housing Starts Effects on Expected Return

(a) Parameter Estimates

Least Squares
Estimates

Generalized Least
Squares Estimates

B −8.44× 10−9 −1.64× 10−8

[6.74× 10−9] [1.06× 10−8]
(-1.25) (-1.55)

b1 1.07× 10−4 1.47× 10−4

[4.15× 10−5] [6.17× 10−5]
(2.57) (2.38)

b2 1.18× 10−4 1.56× 10−4

[4.12× 10−5] [6.05× 10−5]
(2.86) (2.57)

b3 1.08× 10−4 1.54× 10−4

[4.14× 10−5] [6.01× 10−5]
(2.61) (2.57)

b4 1.32× 10−4 1.63× 10−4

[4.09× 10−5] [5.83× 10−5]
(3.24) (2.80)

b5 1.01× 10−4 1.47× 10−4

[4.13× 10−5] [5.89× 10−5]
(2.44) (2.49)

b6 9.88× 10−5 1.38× 10−4

[4.06× 10−5] [5.67× 10−5]
(2.44) (2.43)

b7 9.35× 10−5 1.40× 10−4

[4.12× 10−5] [5.84× 10−5]
(2.27) (2.39)

b8 9.15× 10−5 1.30× 10−4

[4.05× 10−5] [5.57× 10−5]
(2.26) (2.33)

(b) F-tests

Least Squares Estimates Generalized Least Squares Estimates

H0 F Value D.f.(N) D.f.(D) Pr>F F Value D.f.(N) D.f.(D) Pr>F

b1=b2=· · ·=b8=0 1.4567 8 13,081 0.1675 1.9118 8 13,081 0.0538

b1=b2=· · ·=b8 0.3395 7 13,081 0.9361 1.4975 7 13,081 0.1629

(b1+b2+b3+b4)/4=(b5+b6+b7+b8)/4 1.6041 1 13,081 0.2053 3.2878 1 13,081 0.0698

b1=b2=b3=b4 0.2709 3 13,081 0.8464 0.2194 3 13,081 0.8830

b5=b6=b7=b8 0.0379 3 13,081 0.9902 0.3327 3 13,081 0.8017

b1=b2=b3=b4 and b5=b6=b7=b8 0.1548 6 13,081 0.9882 0.6683 6 13,081 0.6753
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Table 4: Housing Starts Effects by Time to Delivery

(a) Parameter Estimates and F-tests

Least Squares
Estimates

Generalized Least
Squares Estimates

B −8.88× 10−9 −1.50× 10−8

[6.66× 10−9] [1.04× 10−8]
(-1.33) (-1.44)

b1,4 1.17× 10−4 1.46× 10−4

[3.61× 10−5] [5.60× 10−5]
(3.25) (2.62)

b5,8 9.85× 10−5 1.31× 10−4

[3.56× 10−5] [5.52× 10−5]
(2.77) (2.37)

H0 : b1,4 = b5,8 = 0

F2,13087 5.3643 5.6432
Pr > F 0.0047 0.0035

H0 : b1,4 = b5,8

F1,13087 1.4483 6.4787
Pr > F 0.2288 0.0109

(b) Marginal Effects

∂yt
∂ht

∣∣
T1,4,t=1

∂yt
∂ht

∣∣
T5,8,t=1

∂2yt
∂ht∂St

Smin 9.99× 10−5 8.40× 10−5 −1.50× 10−8

(3.80) (3.39) (-1.44)

Smean 7.72× 10−5 6.14× 10−5 −1.50× 10−8

(4.75) (4.43) (-1.44)

Smax 3.35× 10−5 1.76× 10−5 −1.50× 10−8

(1.15) (0.63) (-1.44)

Notes: In panel (a), the model is ln Ft− ln Ft−1 = BSt ∗ht + b1,4T1,4,t ∗ht + b5,8T5,8,t ∗ht + εt. ln Ft is the log price of futures

contract on day t, St is the lumber inventory level on day t, ht is the difference between released housing starts and the market

expectation on day t. T1,4,t = 1 if 15 ≤ TTDt ≤ 21, or if 31 ≤ TTDt ≤ 42, or if 57 ≤ TTDt ≤ 64, or if 75 ≤ TTDt ≤ 86;

0 otherwise. T5,8,t = 1 if 98 ≤ TTDt ≤ 106, or if 117 ≤ TTDt ≤ 128, or if 140 ≤ TTDt ≤ 150, or if 158 ≤ TTDt ≤ 169; 0

otherwise. TTDt is the number of days remaining to delivery on day t. Standard errors and t-values of estimates are given in

the brackets and parentheses, respectively. In panel (b), yt ≡ ln Ft − ln Ft−1 = BSt ∗ ht + b1,4T1,4,t ∗ ht + b5,8T5,8,t ∗ ht + εt.

Derivatives are computed by using the GLS estimates of parameters and evaluated at the minimum, mean, and maximum value

of inventories. t-values of the derivative estimates are given in parentheses.
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Table 5: Housing Starts, Inventory, and Time-to-Delivery Effects on Expected Return

(a) Parameter Estimates and F-tests

Least Squares
Estimates

Generalized Least
Squares Estimates

A + c 1.56× 10−4 1.85× 10−4

[5.92× 10−5] [6.05× 10−5]
(2.64) (3.05)

B −8.98× 10−9 −1.59× 10−8

[6.67× 10−9] [1.05× 10−8]
(-1.35) (-1.52)

b 1.24× 10−7 4.10× 10−8

[3.76× 10−7] [1.80× 10−7]
(0.33) (0.23)

e −4.07× 10−7 −3.74× 10−7

[3.75× 10−7] [1.47× 10−7]
(-1.08) (-2.54)

H0 : b = e = 0

F2,13086 0.6806 3.2348
Pr > F 0.5063 0.0394

H0 : b = e

F1,13086 0.6168 2.7532
Pr > F 0.4323 0.0971

(b) Marginal Effects

TTDt = TTDmax = 169 TTDt = TTDmin = 0

∂yt/∂ht ∂2yt/∂ht∂TTDt ∂2yt/∂ht∂St ∂yt/∂ht ∂2yt/∂ht∂TTDt ∂2yt/∂ht∂St

Smin 7.21× 10−5 −3.74× 10−7 −1.59× 10−8 9.79× 10−5 4.10× 10−8 −1.59× 10−8

(2.92) (-2.54) (-1.52) (3.14) (0.23) (-1.52)

Smean 4.81× 10−5 −3.74× 10−7 −1.59× 10−8 7.40× 10−5 4.10× 10−8 −1.59× 10−8

(3.46) (-2.54) (-1.52) (3.20) (0.23) (-1.52)

Smax 1.84× 10−6 −3.74× 10−7 −1.59× 10−8 2.77× 10−5 4.10× 10−8 −1.59× 10−8

(0.06) (-2.54) (-1.52) (0.84) (0.23) (-1.52)

Notes: In panel (a), the model is ln Ft− ln Ft−1 = (A+BSt)∗ht +[(1−dt)(c+(e− b)T ∗+ bTTDt)+dt(c+eTTDt)]∗ht +εt =

(A+ c)ht +BSt ∗ht + b(1− dt)(TTDt−T ∗) ∗ht + e[(1− dt)T ∗+ dtTTDt] ∗ht + εt. ln Ft is the log price of futures contract on

day t, St is the lumber inventory level on day t, ht is the difference between released housing starts and the market expectation

on day t, TTDt is the number of days remaining to delivery on day t, and dt is a dummy variable, which takes the value of one

when TTDt ≥ T ∗, zero otherwise on day t. T ∗ is set equal to 90. Standard errors and t-values of estimates are given in the

brackets and parentheses, respectively. In panel (b), yt ≡ ln Ft− ln Ft−1 = (A + BSt) ∗ht + [(1− dt)(c + (e− b)T ∗+ bTTDt) +

dt(c + eTTDt)] ∗ht + εt = (A + c)ht + BSt ∗ht + b(1− dt)(TTDt−T ∗) ∗ht + e[(1− dt)T ∗+ dtTTDt] ∗ht + εt. Derivatives are

computed by using the GLS estimates of parameters and evaluated at the minimum, mean, and maximum value of inventories.

t-values of the derivative estimates are given in parentheses.
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