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Abstract: The hypothetical distribution of multiple technology adoptions under the assumption that 

technologies are mutually independent is compared against the actual observed distribution of 

technology adoptions on hog farms.  Combinations of technologies that occur with greater frequency 

than would occur under independence are mutually complementary technologies. Combinations that 

occur with less frequency are substitute technologies.  This method is easily applied to simultaneous 

decisions regarding many technologies.  We find that some technologies used in pork production are 

mutually substitutable for one another while others are complementary.  However, as the number of 

bundled technologies increases, they are increasingly likely to be complementary with one another, 

even if subsets are substitutes when viewed in isolation.  This finding suggests that farmers have an 

incentive to adopt many technologies at once.  Larger farms and farms run by more educated 

operators are the most likely to adopt multiple technologies.  Our findings suggest that the 

complementarity among technologies in large bundles is contributing to a form of returns to scale that 

is leading to increasing growth in average farm size. 
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1. Introduction 

Numerous studies have examined the choice of whether or not to adopt a given technology (Griliches 

(1957), Putler and Zilberman (1998), etc.). In most of these settings, the decision is whether or not to 

adopt a specific technology, ignoring the presence of other potential technologies. Even papers that 

evaluate the choice between two practices or technologies typically consider these choices as 

separable from the possible existence of other technologies.  However, if these other technologies 

are not truly independent, treating the adoption of a given technology as an independent choice or a 

choice relative to a single alternative can yield misleading results. 

The analysis of multiple technology adoptions is complicated by the curse of dimensionality -- if 

there are n technologies, there will be 2ⁿ potential technology combinations. The computational 

burden of analyzing these adoption decisions simultaneously requires that researchers impose 

simplifying assumptions. For example, Stoneman and Toivanen (1997) and Wozniak (1993) treated 

each technology as an independent choice. This ignores the possibility that technologies may be 

substitutes or complements. Even when one technology is adopted from a menu of many options, as 

with a multinomial logit specification for example, the researcher imposes that the agent select only 

one technology.  This implicitly imposes that the technologies are substitutes for one another. The 

possibility that technologies are complements in production is not allowed. Dorfman (1996) proposed 

but did not test a method which can be extended to check adoption rates of some multiple technology 

bundles. The method utilizes Gibbs sampling to reduce the computational burden of adding additional 

choices to a multinomial probit model.  His method also requires that the technology adoptions be 

ordered. Still, the method does not essentially exam the whether these multiple technologies are 

substitutes or complements. 
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This paper proposes a statistical method that identifies complementarity or substitutability 

relationships from among a large menu of technologies.  This method is applied to the technology 

adoption decisions of hog farmers in the United States.  The data strongly reject the null hypothesis 

of independence among technologies.  Of 256 possible combinations of technologies, only 

one-quarter occur at the frequency within 2 standard deviations of the projected occurrence under 

independence. Almost 60% of the combinations never occur.  Of the remaining 15%, 11% of the 

combinations are mutual substitutes and 4% are mutual complements.  However, while the number 

of complementary combinations is small, these tend to be combinations of large numbers of 

technologies.  In fact pairs of technologies may be substitutes, but in combinations with other 

technologies, they become mutually complementary.  That large technology bundles tend to be 

complements suggests that large farms may have a comparative advantage in technology adoption.  

Smaller farms may not have the capacity to use multiple technologies.  Smaller farms may also be 

unable to attract sufficient loans borrowed against future income to allow them to adopt large numbers 

of technologies.  These findings suggest that multiple adoptions may be complementary with farm 

size. 

We test the hypothesis that farm size is complementary with multiple technology adoptions using 

an ordered probit equation with number of technologies used as the dependent variable. We find that 

it is the larger farms that are the most likely to adopt multiple technologies.  In addition, more 

educated producers are more likely to adopt multiple technologies. 

The next section of the paper will propose our strategy for statistically modeling whether groups 

of technologies are mutually complementary or substitutes for one another.  The third section 

proposes a mechanism to establish statistical bounds that can be applied to establish whether the 
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observed pattern of multiple technology adoption can reject the null hypothesis of independence 

among the technologies and whether the groups are complements or substitutes. The method is 

applied to data on technologies adopted in the US hog industry in the third section. The fourth section 

further relates the multiple technology adoption to the farm sizes and human capital. The final section 

concludes the paper. 

2. Complements or Substitutes among Technologies Adopted? 

In this section, we formally derive a method that can distinguish whether a particular pattern of 

multiple technology adoptions is consistent with mutual independence, mutual substitutability or 

mutual complementarity. The method follows this logic: Suppose K (K>1) technologies are mutually 

independent so that adopting one of the technologies does not affect or is not influenced by the 

presence of any other technologies. The probability of adopting each of K technologies will equal the 

product of the adoption probabilities of each of the K technologies. In reality, these technologies may 

be complements or substitutes. If a set of technologies are mutually complementary, then producers 

will select that combination of technologies with greater frequency than would occur under the null 

hypothesis of mutual independence. On the other hand, if the technologies are mutually substitutable 

for one another, the combination will be bundled together less frequently than would occur under 

mutual independence. This strategy is computationally simple and remains feasible even as the 

number of technologies expands. 

We further check whether or not the data as a whole is consistent with the independence 

assumption.  If technologies are adopted independently, we can decompose the production function 

into technology specific functions. The technology adoption decision can be made independently, 

ignoring the effects from other technologies. However, if technologies are not mutually independently 
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adopted, we cannot decompose the production function because firms have to incorporate the effects 

from simultaneous multiple technology adoption, such as economy scales and complemented labor 

inputs. 

• Independence test for a specific technology bundle 

The null hypothesis (H0) is that K technologies in bundle j are independent. The alternative hypothesis 

(H1) is two sided: either they are substitutes or they are complements. 

H0: The n technologies are mutually independent. 

H1: The n technologies are not mutually independent and may be complements or substitutes. 

Each technology adoption decision can be regarded as a Bernoulli trial, a common assumption 

employed in the single technology adoption literature. Define kX  as a random variable which 

reflects this binary technology adoption decision. kX  has a Bernoulli distribution if 

1
0 1

k
k

k

Adopted with probability p
X

Not Adopted with probability p


=  −
                        (1) 

where 0 1kp≤ ≤ . kX  can be a single technology adoption decision variable, and can also be a 

random variable in the multiple technology combination context. 

The matrix T below illustrates all possible adoption combinations from a menu of K technologies, 

where each column represents a specific technology and each row represents a possible combination 

of technologies. The matrix is KK ×2 . Element “1” in the thj  row and thi  column represents that 
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technology i is adopted in combination j.  
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Define the thj  row of matrix T as (Xj1, Xj2, Xj3,… XjK ).  Suppose that the first m ( Km ≤ ) 

technologies are adopted and that the remaining K-m technologies are not. Define a new random 

variable jY where j indexes the thj  adoption combination: 
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Under H0, the probability is denoted as 0
jq : 0

jq = E(Yj| Independent) =  
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N are the set of technologies adopted and not adopted for the jth technology bundle. 

We can think of specific technology choices as coming from K independent Bernoulli trials where pk
0 

is the probability a producer adopts technology k.  The likelihood function for the null hypothesis 

can then be written as 
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It can be shown that the MLE estimators are 
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which means that the actual probability of adopting a given technology k can be calculated by the 

frequency of its occurrence in a random sample. The probability to adopt technology bundle j is hence 

easy to obtain, 

 ( )∏∏
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It can be also shown that MLE estimate of probability of adopting technology bundle j is 

N
N

q j
j =1ˆ                                                              (5) 

where jN  is the number of individuals in the sample adopting technology bundle j. 

In order to test null hypothesis 01 ˆˆ jj qq =  for a given technology bundle j, usual statistics are not 

available or are very difficult to obtain mainly because o
jq̂  and 1ˆ jq  are correlated such that sample 

variances are not easy to calculate. Percentile Bootstrapping provides a good tool to accomplish our 

goal. Suppose that M samples are drawn with replacement from our raw data. M o
jq̂ s and 1ˆ jq s are 

calculated according to equations (4) and (5) for each new drawn sample. Define jC as a vector of 

adoption rate difference o
jj qq ˆˆ1 − . Sort jC  according to an ascending order. Redefine the new data 

as jC~ . We then get rid of the smallest 2.5% of the elements and the biggest 2.5% of the elements in jC~ . 

The confidence interval of jC  at the significance level 5% is therefore constructed as [ L
jC~ , H

jC~ ] 

where
thM

j
L
j CC %5.2*~~ = and 

thM
j

H
j CC %5.97*~~ = . 

If zero falls into the interval [ L
jC~ , H

jC~ ], we cannot reject the hypothesis that technologies in 

bundle j are independent. If L
jC~  and H

jC~ are both positive, the technologies in bundle j are regarded 

as complements, because it is more likely that these technologies go together. If L
jC~  and H

jC~ are 
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both negative, the technologies in bundle j are regarded as substitutes, because it is less likely that 

these technologies go together than the situation where technologies are independent. 

• Independence test for technology bundles in general 

G test, a log likelihood ratio test of independence, is given by 

)
ˆ
ˆ

ln(ˆ2)ln(2 0

12
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0

12
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j q
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∑∑ ==             (6) 

where 1
jF  and 0

jF  are frequency if the technology bundle j observed under H1 and H0 respectively. 

G is asymptotically distributed as a Chi- square with (2K-K-1) degrees of freedom, )12(2 −− KKχ . 

For those technology bundles which do not exist in the data, define 0)
ˆ
0ln(0 =×

o
jq

. 

3. Multiple Technology Adoption on U.S. Hog Farms 

The U.S. hog industry has experienced rapid technological innovation over last decade in the areas of 

nutrition, health, breeding and genetics, reproductive management, housing, and environmental 

management (McBride and Key, 2003). These technologies are used in four stages of the production 

process: breeding and gestation, farrowing, nursery and finishing. These technologies have been 

associated with improved feed efficiency, lower death loss, higher quality meat, more rapid weight 

gain, and other improved outcomes that raise farmer profits (Rhodes, 1995). Using our statistical 

method comparing observed adoptions against that predicted under the null hypothesis of 

independence, we will be able to assess whether the adoption patterns reflect an underlying 

complementrarity or substitutability among the technologies. 

• Data 

This paper uses survey data from a random sample of subscribers to National Hog Farmer 

Magazine. The surveys were conducted in years 1995, 2000 and 2005. Hog farmers across the United 
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States were asked whether they use any of the ten technologies listed in Table 1. Each technology is 

treated as a dichotomous variable taking the value of 1 if the technology is used and 0 if it is not used. 

Information on Medicated Early Weaning and Modified Medicated Early Weaning was only obtained 

in 1995 and 2000 while questions regarding Auto Sorting and Parity Based Management were only 

asked in 2005. Consequently, we have information on the use of eight different technologies in each 

of the three survey years. The most commonly used technologies are Artificial Insemination 

technology (AI), Phase Feeding technology (PF) and All In / All Out (AIAO) production. Modified 

Medicated Early Weaning (MMEW) is the least often utilized in 1995 and 2000 and Auto Sorting (AS) 

is the least often utilized in 2005. 

Because subscribers to National Hog Farmer Magazine are not a representative sample of all hog 

farmers and because propensity to respond to surveys may also differ by farm size, the survey data are 

weighted to conform to the size distribution of hog farms in the USDA Agricultural Census Data 

(ACD). USDA counts of hog farms in 18 census regions and four farm size classifications were taken 

as the population universe.1 Farm size ranges from fewer than 1000 pigs, 1000 to 1999, 2000 to 4999 

and more than 5000 pigs. The weights are computed as follows: there are N hog farms in total in the 

US and jn  farms in region and size cell j. The proportion of all hog farms in the thj cell is jn /N. 

The comparable number of farms in the same region and size group in our sample is js . Each farm in 

our sample is then assigned a probability weight by
Nn

s

j

j

/
.2 

                                                
1 1. IL 2. IN 3. IA 4. MN 5. MO 6. NE 7. OH 8. WI 9. ND and SD 10. PA, CT, ME, MD, MA, VT, NJ, NH, 
NY, RI and DE 11. MI 12. NC 13. KY, WV and VA 14. GA, SC, FL, AL, TN, MS and LA 15. WA, ID, OR, 
NV, CA, AZ, UT, HI and AK 16. TX, OK and AR 17. KS 18. MT, WY, CO and NM. 
2 Weights based on the 1992 Census were used for 1995 survey responses and the 1997 Census was used to 
construct weights for the 2000 and 2005 survey responses.  2002 Census data were not available at the time of 
the analysis. 
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When the probability weight is considered, the adoption rate for technology k under 

independence assumption is redefined as 
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iw is the weight assigned to observation i in the sample. The adoption rate of technology bundle j is 

calculated from equation (4) in which o
kp̂  is defined as equation (7) now. 

At the same time, the adoption rate of technology bundle j under alternative hypothesis needs 

correction by the probability weights, 
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, where ),(1 ji  is an indicator function, equal to one if individual i adopts technology bundle j, 

otherwise, zero. 

Hog farm size ranges from less than 500 heads in 1995 to more than 100,000 in 2005. The size 

categories varied across survey years, as shown in Table 2. In 2005, the smallest farm is defined as 

producing fewer than 1000 pigs rather than 500 in 1995 and 2000. The 2005 survey adds an additional 

category for the largest farms, distinguishing farms producing 25,000 to 49,999 from those producing 

50,000 or more. The market share of large farms has grown rapidly over time. In 1995, about 30 

percent of farms produced more than 10, 000 pigs. By 2000, that proportion of farms had risen to 43 

percent; and to 54 percent by 2005. On the other hand, 29% of farms were producing fewer than 5,000 

pigs in 1995; 27 percent by 2000; and only 11 percent by 2005.3 

                                                
3 All of these market shares are computed using the sample weights 
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• Findings 

In this section, we show how our method can identify whether technologies adopted in the U.S. 

hog industry are complements or substitutes. 

Using equation (7), we use the raw data and estimate the adoption probability for each technology 

k, 0ˆ kp , k=1,2,…,K respectively, as reported in Table 1. Some have had rapid growth in adoption rates 

such as AI and Segregated Early Weaning (SEW) whose usage doubled between 1995 and 2005. 

Others, such as MEW and MMEW, have decreased in usage from 1995 to 2000. The adoption rate 

0ˆ jq of technology bundle j is calculated from equation (4), j=1,2,…,2K. We then calculate 

K
j jq 2...,2,1,ˆ1 =  according to the equation (5). Difference between 01 ˆˆ jj qq −  is obtained. 

Using bootstrapped method, we draw new data sets with replacement for M = 2000 times. And 

redo the procedure above to obtain a matrix with 2000 elements of differences 01 ˆˆ jj qq − . The matrix is 

now KM 2× . The basic results of multiple technology relations for each case are shown in the Table3a. 

Some cases of technology bundles never occur in our data. Except the non-existence cases, 

technologies in most bundles are independent. For example, 76 out of 133 cases are independent in 

1995, 45 out of 79 in 2000 and 67 out of 102 in 2005. The remaining bundles indicate that 

technologies are either substitutes or complements and the substitute relations prevail. 

Technologies with mutual complementarity are what we are more interested in. We further look at 

the results in the Table 3b where we present the specific technologies adopted which are regarded as 

complementary in each year. The case in which no technologies are adopted generates a higher 

frequency than that under independence assumption. One of the explanations is that very small farms 

do exist in the market and survive the competition even if they do not use any advanced technologies. 

We excluded the zero adoption case from the following analysis. 
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In each survey year, there are some single technologies adopted at a higher rate than under the 

independence assumption. These farms only utilize one of the advanced technologies to produce hogs. 

Among these eight technologies, Artificial Insemination and All In/ All Out are the two technologies 

often used by farmers in all three survey years.  Split Sex Feeding and Phase Feeding technologies 

are also often used by farms in 1995 and 2000. In 1995, Multiple Site Production is another 

technology frequently used by farmers who only use a single technology. 

Other rows in the Table 3b show the adoption of multiple technologies. Certain specific 

technology combinations such as (AI, SSF, PF, MSP, SEW, AIAO) and (AI, SSF, PF, MSP, MEW, 

AIAO) appear very frequently in the sample with the former selected by almost 8% of all farms in 

1995, 14% in 2000, and 6% in 2005. When we add a certain new technology to some technology 

bundles which appear to be complementary, the new technology bundles are still more likely to be 

complementary. For example, technologies SSF, PF, MSP, SEW and AIAO are complementary in 

1995 and 2005. When we add AI into the bundle, the new bundle is also a complementary 

combination. 

However, we still find that some technologies appear to be substitutes. After a new technology is 

added into the bundle, the new bundle may become complementary. For example, AI, PF and AIAO 

appear to be a substitute combination in 1995, but after SSF is used, the new bundle (AI, SSF, PF, 

AIAO) becomes complementary. As the number of bundled technologies increases, they are 

increasingly likely to be complementary with one another, even if subsets are substitutes when viewed 

in isolation.  This finding suggests that farmers have an incentive to adopt many technologies at 

once. 
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Among early weaning technologies, Segregated Early Weaning technology is more frequently 

used in the complementary bundles than MEW and MMEW. The three early weaning technologies 

are less likely to appear together in the technology bundles. However, when farms adopt at least seven 

technologies, they become necessary elements in the complementary bundles to increase productivity. 

MEW and MMEW appeared more frequently in the complementary combinations in 1995 but 

declined dramatically in use in 2000 and were dropped from the survey in 2005. They were 

supplanted by the close substitute technology SEW, which also incorporates the use of anti-biotic 

vaccines in early-weaned pigs combined with methods to keep litters of pigs separated to further 

suppress spread of disease.4 As newly introduced technologies in 2005, Parity Based Management 

and Auto-Sorting System technologies, adopted along with other often used technologies, are 

regarded as complementary with each other. 

As far as the relationship between two technologies is concerned, several studies have examined 

correlations between two practices or technologies to assess whether the technologies are subsititutes 

or complements. For example, Poppo and Zenger (2002) interpret a positive correlation between 

relational governance and formal contracts as evidence that the two choices are complementary. 

Dorfman (1996) interpreted a negative correlation in the errors across probit equations explaining the 

adoption of various irrigation and integrated pest management techniques to suggest that the 

technologies are substitutes. However, the simple correspondence between correlations and 

complementarity or substitutability breaks down when more than two technologies are selected 

simultaneously. 

                                                
4 Additional information on these technologies is available at http://www.admworld.com and 

http://www.thepigsite.com. 
 

http://www.admworld.com
http://www.thepigsite.com
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We compare the conclusions that would result from bilateral correlations to the conclusions that 

are derived from our more general method in Table 4. The bilateral correlations suggest numerous 

occurrences of complementary technology pairs that are really independent or are subsets of more 

complex technology combinations.  For example technology bundle of AI and AIAO, or the bundle 

of AI and SSF are regarded as substitutes by the simple correlations in 2005, but both of the bundles 

are independent when evaluated in conjunction with all the other technologies. Many of the 

presumptive complementary pairs, based on simple correlations, in fact never occur in the data—the 

pair always occurs in conjunction with other technologies that are presumed to be irrelevant 

alternatives when computing the bilateral correlations. 

Finally, the G statistics from equation (6) of the independence of the multiple technology 

adoption in general are constructed using probabilities defined according euqaiton (4) and (5). The G 

statistics are 2850.8，843.84 and 937.21 in 1995, 2000 and 2005 data respectively using our raw data. 

P-value for each test is less than 0.01. Therefore we reject the hypothesis that technology adoption in 

general is independent. Multiple technology adoption in the US hog industry is not mutually 

independent. 

4. Simultaneous Technology Adoption and Farm Size Determination 

The adoption of each technology requires fixed investment in land, equipment and human capital. 

Not all farms will be equally positioned to adopt.  Small farms may face liquidity constraints that 

prevent them from incurring large capital investments or they may not have sufficient land to enable 

multiple adoptions.  Farmers with better human capital endowments, presumably those with more 

education, may be better positioned to learn about new technologies or to learn how to implement 

them effectively. 
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Table 5 provides additional detail on the persistence of the farm size-adoption relationship.  It is 

apparent that larger farms adopt more technologies in all three years.  Farms with fewer than 2,000 

pigs utilize fewer than two technologies on average, while farms producing more than 25,000 pigs use 

more than four technologies on average. Over time, there is modest growth in the number of 

technologies used within each size category, but the gap in technology use between the largest and 

smallest farms remains.  

Previous studies have noted the correlation between firm size and technology adoption.  Several 

reasons have been advanced.  Larger firms have more educated workers who are more easily adapt 

to new technologies, meaning that larger farms have a comparative advantage in training costs (Idson 

and Oi, 1999). Adoption of new technologies is risky, and large farms may be better able to diversify 

that risk across more technologies or across greater volume of output.  Finally, large farms may face 

fewer liquidity constraints in absorbing the fixed costs of technology adoption.  Kristen and Belman 

(2004) found that firms with more than 250 drivers are between 44 percent and 62 percent more likely 

to use Satellite Based Systems than firms with less than 25 employees. Stoneman and Kwon (1994, 

1996) and Colombo and Mosconi (1995) also find a positive relationship between firm size and 

technology adoption. Firms adopting multiple technologies tend to have higher profits (Stoneman and 

Kwon, 1996), consistent with the presumption that these technologies are mutually complementary. 

Previous studies have also consistently shown that more educated agents adopt technologies 

more readily.  This apparent complementarity between human capital and technological innovations 

has been used to explain the positive correlation between average wages and information technology 
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investments at the firm or individual levels.5  Numerous papers have also found a positive 

correlation between farmer education and technology adoption in agriculture.6  More educated or 

more skilled farmers may have a comparative advantage in adopting new or more advanced 

technologies. They may learn of new technologies more quickly or they may have skills that 

complement the productivity of the new technologies. 

To investigate the roles of human capital and farm size in multiple technology adoption, 

assume a bi-variate ordered - response probit model, considering the correlation between the 

technology adoption and farm size. The bivariate ordered – response probit model considers two 

latent dependent variables *
it and *

is  with the following form shown in equation (9), assuming that 

the purely random error terms i1µ and i2µ have independently and identically standard normal 

distribution, where *
it  is the number of technologies used by the producer i , *

is  is the farm i ’s 

size, β is a coefficient vector to be estimated in technology adoption equation and γ  is the 

coefficients to be estimated in the size equation. iε is the random specific individual effect common to 

each equation which is distributed as ),0( 2σN .  

.
10
01

,
0
0

~
2

1

2
*

1
*


































−−=

−−=

N

xs
xt

i

i

iiii

iiii

µ
µ

µεγ

µεβ

                 (9) 

                                                
5 Examples include Krueger, 1993; Dunne and Schmitz, 1995; Caselli and Coleman II, 2001 and Dunne, Foster 
and Troske, 2004.  Dinardo and Pishke (1997) suggest that the correlation may not be causal.  Acemoglu 
(2002) reviews the literature. 
6 See Griliches, 1957; Wozniak, 1987, 1993; Huffman and Mercier, 1991; Dorfman, 1996; Foster and 
Rosenzweig, 1995; Khanna, et. al. 1999; and Abdulai and Huffman, 2005 for examples of technology adoption 
in agriculture. Huffman (1999) presents a comprehensive review. 
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*
it  is the unobserved latent and continuous number of technologies used by the producer i , 

unobserved to the analysts but the number of technologies is observed as a discrete category, it  given 

as: 
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where the ca are unknown parameters to be estimated. The size equation, which is categorized from 0 

to 8, is specified in analogous manner to (10). Its threshold series cb , 7,...,1,0=c  in the size 

equation, is the counterpart of ca  in technology adoption equation. 

The random disturbance term can be redefined as 2,1, =+= ju jiiji µε . Therefore, iu1 and 

iu2 can be regarded as a bivariate normal distribution with correlation coefficient ρ , where 
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where 2Φ (.) is the standard bivariate normal cumulative distribution function, 11, −− ba →  - ∞ and 

88 ,ba  →  ∞ . We expect that the correlation coefficient ρ  is positive since the unobserved 

entrepreneurial skill of producers positively affects both decisions regarding technology adoption 

decision and farm sizes. The more able the producer, the more technologies utilized and the larger her 
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farm is. Elements related to the human capital of producers in β  and γ  are also expected to be 

greater than zero. 

 In our application, we use GLLAMM (generalized linear latent and mixed models) in STATA 

that uses the Newton–Raphson method and adaptive quadrature to approximate the likelihood 

function by numerical integration (Rabe-Hesketh et al. 2004). Regression results are shown in Table 7. 

The correlation coefficient between the error terms is 0.468 and is statistically significant, which 

verifies that technology adoption and farm size growth go hand in hand. Coefficients of all education 

dummy variables are significantly positive in the technology adoption equation. In the size equation, 

having at least a four year college degree raises farm size significantly, and so for holding a 

post-graduate degree. The higher educated the producer, the more likely to adopt more technologies 

and the larger the farm is. However, farm experience is not an important factor in both the technology 

adoption and farm size decision. 

 Females have a significantly lower probability of operating large farms, but do not have a 

significantly different propensity to adopt technologies.7 Farms in the mid-west are using more 

technologies but have smaller farms than those in the northeast, southeast and west. One possible 

reason is farms in the mid-west have a comparative advantage in obtaining input feeds at a lower cost. 

They may not need to be large. On the contrary, newer farms in the southeast and west regions, 

operated by younger producers have higher feed prices, and the improved productivity and size 

economies can offset this disadvantage (McBride and Key, 2003).  

5. Conclusion 

                                                
7 Fortin (2005) has argued that women are less likely to be entrepreneurs because usually they lack the “soft 
factors” such as greediness, ambition, confidence and leadership. 
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This paper proposes a tractable statistical method to test for mutual complementarity or 

substitutability among technologies. The method exploits the fact that profit maximizing producers 

will adopt technologies in groups if they are complements with greater frequency than would be 

predicted if the technologies were mutually independent. On the other hand, if the technologies are 

mutually substitutable for one another, the combinations will be bundled together with less frequency 

than would occur under mutual independence. This statistical method makes it simple and feasible to 

check the relationships between technologies which have high dimensional combinations. 

Applying the method to a data set that includes eight technologies adopted by U.S. hog farmers, 

we find that some technologies used in pork production are mutually substitutable for one another, 

while others are complementary. Several technologies including Artificial Insemination, Sex Split 

Feeding, Phase Feeding, Multiple Site Production, Segregated Early Weaning and All In/ All are often 

bundled together. What is a more important finding is that as the number of bundled technologies 

increases, they are increasingly likely to be complementary with one another, even if subsets are 

substitutes when viewed in isolation. 

Our findings suggest that the complementarity among technologies in large bundles is 

contributing to a form of returns to scale that is leading to increasing growth in average farm size. 

Because the technologies are complementary, the productivity of one technology is enhanced by the 

adoption of the other technologies.  This provides an incentive for multiple technology adoption at 

once, but not all farms are equally able to adopt.  We find that large farms run by more educated 

operators are the most likely to adopt multiple technologies.  This apparent size bias for multiple 

technologies is consistent with the view that new technologies are hastening the move toward larger 

farms in the U.S. pork industry. 
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Table 1. Technologies used in the US hog industry 

Adoption Rate (std) 

Number Name Notation   1995               2000           20005 

1 Artificial Insemination AI 
.549 (.5) .764 (.425) .767 (.423) 

2 Split Sex Feeding SSF .469 (.499) .465 (.499) .393 (.489) 

3 Phase Feeding PF .553 (.497) .509 (.500) .498 (.500) 

4 Multiple Site Production MSP .382 (.486) .470 (.5) .459 (.499) 

5 Segregated Early Weaning SEW .146 (.353) .288 (.453) .318 (.466) 

6 Medicated Early Weaning MEW .083 (.276) .038 (.190) . 

7 Modified Medicated Early Weaning MMEW .018 (.133) .007 (.478) . 

8 All in / All out AIAO .670 (.470) .647 (.478) .606 (.489) 

9 Auto Sorting Systems AS . . .059 (.237) 

10 Parity Based Management PBM . . .261 (.440) 
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Table 2. Size class and frequencies 

Weighted Frequencies (%) 

Code Size Class ( pigs per year) 

1995               2000             20005 

1 Less than 500 0.01 1.61 . 

2 500 to 999 / less than 1000 in 2005 0.02 0.08 1.42 

3 1,000 to 1,999 3.18 4.34 1.71 

4 2,000 to 2,999 14.90 9.21 3.51 

5 3,000 to 4,999 10.66 11.48 4.03 

6 5,000 to 9,999 41.79 29.77 35.36 

7 10,000 to 14,999 13.12 14.81 16.98 

8 15,000 to 24,999 8.67 12.33 13.13 

9 25,000 or more / 25,000 to 49,999 (2005) 7.66 16.33 12.07 

10 50,000 or more (2005) . . 11.79 
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Table 3. Results of specific technology bundle test   

Table 3a. Summary of the results 

Relations 1995 2000 2005 

No existence a 123 177 154 

Substitutes 44 24 24 

Independent 78 45 67 

Complements 13 10 11 

a, based on the raw data. 
The statistics are based on M = 2,000 bootstrapped samples. Probability Weights are considered. 
 
Table 3b. Complementary technologies 

 1995 2000 2005 

Single technology AI , SSF, PF, MSP, AIAO AI, SSF, PF, AIAO AI, AIAO 

2 technologies - AI & SEW AI & SEW  

3 technologies - SSF & PF & AIAO SSF & PF & AIAO 

4 technologies AI & SSF &PF & AIAO - - 

5 technologies T & AI 

T & SEW 

- T & SEW 

6 technologies T & AI & MEW 

T & AI & MMEW 

T & AI & SEW 

 

T & AI & SEW 

T & AI & PM 

T & AI & AS 

T & AI & SEW 

7 technologies - T & AI & SEW & MEW T & AI & SEW& PM 

T & AI & SEW & AS 

8 technologies ALL ALL - 

The number of technologies in the first column is the number of technologies adopted which are significantly 
complementary. 
T = SSF & PF & MSP & AIAO; 
The case in which no technologies are adopted is excluded from the analysis, though it generates a higher 
frequency and is included into the category of “complements”.  
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Table 4. Comparison between bilateral correlation method and our statistical method in 
the context of more than two technologies available 

 Bilateral Correlation Method Our Method for Multiple Technologies 

 Substitutes Complementary Substitutes Complements Independent Nonexistent 

1995 1 27 8 0 14 6 

2000 0 28 6 1 10 11 

2005 3 25 6 1 10 11 
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Table 5. Technology usage by Size Class and Survey Year: Mean and Standard Deviation 
 

 Size(1995) 

Variable < 500 

[500, 
9
9
9
] 

[1000, 

1999] 

[2000, 

2999] 

[3000, 

4999] 

[5000, 

9999] 

[10000, 

14999] 

[15000, 
2
4
9
9
9
] >25000 

number of 
techno
logies 

1.12 

(1.27) 

1.22 

(1.17) 

1.57 

(1.20) 

2.10 

(1.42) 

2.51 

(1.51) 

3.02 

(1..63) 

3.59 

(1.61) 

3.94 

(1.68) 

4.37 

(1.79) 

 Size(2000) 

number of 
techno
logies 

1.23 

(0.70) 

0.12 

(0.43) 

1.61 

(1.43) 

2.07 

(1.33) 

2.77 

(1.39) 

3.49 

(1.69) 

3.55 

(1.70) 

4.04 

(1.83) 

4.20 

(2.16) 

 Size(2005) 

 

< 
1
0
0
0

[1000, 

1999] 

[2000, 

2999] 

[3000, 

4999] 

[5000, 

9999] 

[10000, 
1
4
9
9
9
] 

[15000, 
2
4
9
9
9
] 

[25000, 
4
9
9
9
9
] >50000 

number of 
techno
logies 

1.49 

(0.54) 

1.61 

(1.22) 

2.22 

(1.37) 

2.66 

(1.37) 

2.85 

(1.58) 

3.18 

(1.61) 

4.13 

(2.00) 

4.56 

(1.90) 

4.40 

(2.06) 

   The number in the parentheses is the standard deviation.  
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Table 6. Characteristics of producers and farms 

  Whole sample 
Sample with more 

technologies a 

Sample with fewer 
technologies 

Variables Description Mean (std) Mean(Std) Mean(Std) 

Female Gender of producers 0.039 (0.193) 0.036(0.187) 0.040(0.197) 
Education Schooling of producers 14.125(2.301) 14.540(2.213) 13.839(2.316) 
Experience Working experience 23.832(11.187) 21.594(9.992) 25.345(11.684) 

Firm Size 

Number of pigs 
produced 
( unit: 10,000 heads) 1.005 (0.861) 1.322(0.981) 0.787(0.686) 

Northeast 
Dummy variable, equal to one 
if located in the northeast. 0.045(0.208) 0.030(0.170) 0.0560(0.230) 

Southeast 
Dummy variable, equal to one 
if located in the southeast. 0.057(0.231) 0.032(0.175) 0.074(0.262) 

West 
Dummy variable, equal to one 
if located in the west. 0.081(0.273) 0.048(0.214) 0.104(0.305) 

Number of 
technologies 

Number of technologies used 
by the farmers 3.059 (1.745) - - 

a. Farms with more technologies are defined as the ones adopting at least four technologies, other wise categorized 
into the sample composed of farms with fewer technologies. 
The number in the parenthesis is the standard deviation.  
The statistics of the variables are weighted.  
The education level reflected in the survey is categorical. The schooling years (SY) of producer is defined in the 
following way. SY = 9 if she is a high school drop out.  SY = 12 if she is a high school graduate.  SY = 14 if she 
attended the four year college but did not complete. SY = 16 if she is has a bachelor’s degree.  SY = 19 if she has 
master degree. SY = 23 if she a Ph.D. degree hold or a Doctor of Veterinary Medicine. 
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Table7. Technology adoption – bi-variate ordered probit regression 
 

Dependent Variable: number of technologies Farm Size 

Femaler -0.105 -0.333 
 (1.04) (3.29) * 

Edu12 0.248 -0.028 

 (2.17) * (0.25) 

Edu14 0.392 -0.009 

 (3.24)* * (0.07) 

Edu16 0.721 0.330 

 (6.25)** (2.90)** 

Edu18+ 0.718 0.425 

 (4.94)** (2.94)** 

Experience -0.010 0.003 

 (1.47) (0.41) 

Experience2 -0.0003 -0.0002 

 (2.22) * (1.87) 

Northeast -0.277 0.121 

 (2.95)** (1.30) 

Southeast -0.490 0.960 

 (6.00)** (11.61)** 

West -0.352 0.242 

 (3.97)** (2.73)** 

Year 2000 0.541 0.673 

 (8.11) ** (10.00) ** 

Year 2005 0.606 0.084 

 (9.97) ** (1.38) 

a0 -1.761 -0.741 
 (12.24) ** (4.69) ** 

a 1 -0.508 -1.367 

 (3.59) ** (8.95) ** 

a 2 0.250 -0.923 

 (1.77)  (6.15) ** 

a 3 0.972 -0.776 

 (6.84)* * (5.16) 

a 4 1.684 -0.827 

 (11.71) ** (5.45) ** 

a 5 2.388 -0.740 

 (16.25) ** (4.78) ** 

a 6 3.700 -1.600 

 (21.92) ** (9.14)) ** 

a7 4.490 -1.880 

 (20.48) ** (8.38) ** 

2σ  
0.881   (19.93) ** 

Log likelihood -16147.566 

NOTE: Absolute value of t statistics in parentheses 

a. Thresholds for technology adoption equation are shown in the first column. Thresholds for size determination equation are 

the summation of the cutoff points in the first and second columns ( Rabe-Hesketh, et.al. 2004). 

* Significant at 5%; ** significant at 1% 

 


