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Abstract

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass
supply at regional scale. By modeling the profitability of alternative crop production practices, it
captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model
draws upon biophysical crop input-output coefficients, price and cost data, and spatial
transportation costs in the context of profit maximization theory. Yields are simulated using
temperature, precipitation and soil quality data with various commercial crops and potential new
cellulosic biomass crops. Three types of alternative crop management scenarios are simulated by
varying crop rotation, fertilization and tillage. The cost of transporting biomass to a specific
demand location is obtained using road distances and bulk shipping costs from geographic
information systems. The spatial mathematical programming model predicts the supply of
biomass and implied environmental consequences for a landscape managed by representative,
profit maximizing farmers. The model was applied and validated for simulation of cellulosic
biomass supply in a 9-county region of southern Michigan. Results for 74 cropping systems
simulated across 39 sub-watersheds show that crop residues are the first types of biomass to be
supplied. Corn stover and wheat straw supply start at $21/Mg and $27/Mg delivered prices.
Perennial bioenergy crops become profitable to produce when the delivered biomass price
reaches $46/Mg for switchgrass, $118/Mg for grass mixes and $154/Mg for Miscanthus
giganteus. The predicted effect of the USDA Biomass Conversion Assistance Program is to
sharply reduce the minimum biomass price at which miscanthus would become profitable to
supply. Compared to conventional crop production practices in the area, the EPIC-simulated
environmental outcomes with crop residue removal include increased greenhouse gas emissions
and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic
biomass crops reduced greenhouse gas emissions and improved water quality compared to
current commercial cropping systems.

Keywords: biomass production, bioenergy supply, biofuel policy, bioenergy, cellulosic ethanol,
agro-ecosystem economics, ecosystem services economics, agro-environmental trade-off
analysis, mathematical programming, EPIC.

JEL codes: Q16, Q15, Q57, Q18



Biomass Supply from Alternative Cellulosic Crops and Crop Residues:
A Preliminary Spatial Bioeconomic Modeling Approach

1. Introduction

Current US energy policy aims to foster national energy independence and environmental
stewardship by stimulating liquid biofuel production as substitute for fossil fuels [1]. In the
pursuit of these goals, the US Energy Independence and Security Act (EISA) of 2007 mandates
that 36 billion gallons of biofuel be produced by 2022, of which 16 billion gallons are to be
derived from ethanol made from cellulosic biomass. Reaching such an ambitious cellulosic
biofuel production target requires that commercial land managers produce and supply large
quantities of biomass from agricultural residues and new perennial energy crops. Cellulosic
biomass sources under consideration for ethanol production include agricultural residues and
dedicated cellulosic biomass crops, such as the perennial grasses and short rotation tree crops.
Past research suggests that the current agricultural system can supply desirable quantities of crop
residues and farmers can grow new perennial energy crops using a fraction of current croplands
if appropriate market incentives are provided [2, 3].The well-known Department of Energy
report on producing a billion ton annual supply of biomass also recognized that for such a large
quantity of biomass to be produced, a significant portion of current cropland would have to be
converted into new cellulosic crops production in addition to the conservation reserve program
(CRP) lands [4].

Although it is technically feasible to produce the large quantities of biomass needed, research
is warranted to understand conditions under which rational profit maximizing farmers would
willingly choose to provide such biomass. Of equal interest are the environmental implications of
such new production activities. While the final quantity of biomass supplied will critically
depend on prevailing market prices and production technology; there is also a need to know how
the new energy policy would affect greenhouse gas fluxes (carbon dioxide [CO;] and nitrous
oxide [N,O] emissions) and water quality changes that result from surface and sub-surface
phosphorus [P] and nitrate [NOs;] losses. Efforts have been made in the study of these
environmental issues at national scale [5-7], principally in determining the impact of biomass
supply on greenhouse gas emissions and climate change. However, some environmental impacts
such as soil erosion and nutrient loss affecting surface and groundwater water are best captured
at watershed scale [8]. Understanding such environmental issues will help design appropriate
policy incentives to reduce greenhouse gas emissions and improve water quality in a context of
nonpoint pollution.

This paper integrates biophysical simulation of multiple crop and environmental outcomes,
transportation information and economic profit optimization behavior to model the likely supply
of biomass and associated land use environmental consequences at watershed scale. The model
captures the opportunity cost to farmers of changing practices from growing current commercial
crops to producing biomass from annual crop residues and perennial cellulosic crops. To reach
this objective, the the terrestrial ecosystem model (Environmental Policy Integrated Climate)
(EPIC) is used to simulate crop yield and environmental variables from various cropping systems
in a spatially explicit manner. A regional mathematical programming model is developed to
simulate the profit maximizing cropping system choices of representative farmers under



prevailing market conditions. Transportation costs are included to evaluate the impact of
transporting biomass to a centrally located biorefinery facility (or electrical power plant). This
paper describes the model and answers the following research questions, 1) Under what price
conditions would biomass production become attractive to profit-oriented farmers? 2) What is
the sequence of crop production systems and associated land uses as biomass supply increases?
3) What are the environmental consequences of the changing crop production systems as
biomass production increases? and 4) How are these results altered by provisions of the Biomass
Conversion Assistance Program (BCAP) in the 2008 farm bill?

The remainder of the paper is organized as follows. First, we present a conceptual framework
where the structure of the model is described with all its components. Second, an empirical
application of this bioeconomic model to southern Michigan is described, including development
of the parameters driving the model, and the model validation and calibration procedures. Third,
we report results for the predicted biomass supply in response to rising price along with
associated changes in land use and environmental outcomes. The paper concludes with
observations about feasibility of biomass production, likely environmental consequences, the
need for environmental policy simulation and desirable extensions of this bioeconomic modeling
framework.

2. Conceptual Modeling Approach
2.1 Existing modeling approaches

While farmers have many business objectives, expected profitability has proven to be a
powerful predictor of farmer behavior at farm and regional scales [9-11]. Land quality and
quantity plus available cropping system technologies shape productive potential. Prices and
transportation costs tend to influence strongly both cropping system profitability and the
associated spatial distribution of land use by crops. Two modeling approaches have arisen in the
literature as a result. The first approach regroups pure geographic information systems (GIS)
approaches [12] and non-optimizing cost-benefit approaches [10, 13] of biomass supply
modeling. The GIS modeling approach particularly helps understand the importance of
transportation costs in the production and supply of biomass. These models are informative in
giving general estimate of biomass supply potential without focusing much on the underlying
economic agent behavior. However, as other authors have made it clear, for revenues to exceed
costs by itself will not be a sufficient condition for a rational profit maximizing farmer to switch
to new cellulosic crop production or crop residue collection [14]. Farmers also need to cover the
opportunity cost of the crops that are displaced by biomass crops activities.

The second modeling approach includes all models that rely on farm profit maximization to
derive biomass supply [15-17]. This group includes both representative farm profit maximization
models and market-level economic surplus maximization models. While these models have the
advantage of incorporating farmers’ economic behavior, the information they offer on potential
regional scale environmental impacts of changed landscape-level crop production tends to be
scanty or available only at a large spatial scale, such as the county [16, 17]. The modeling
approach presented here seeks to unite the strengths of both previous modeling approaches in a
regional, spatial model that captures the opportunity cost on profitability and the environmental
trade-offs of changed cropping system responses to incentives to supply cellulosic biomass.
Since production system choices yield both marketed products and environmental outcomes, the
analysis highlights instances where policy incentives may be needed to manage trade-offs



between biomass productions and undesirable environmental externalities (such as increased
water pollution or greenhouse gas emissions).

2.2 Structure of the Bioeconomic Model

The bioeconomic model is an integrated biophysical - GIS - economic regional mathematical
optimization model. The biophysical component is a spatial crop simulation model that supplies
crop yields and environmental outcomes to the bioeconomic model. The GIS component
supplies transport distance and time parameters to the bioeconomic model. Finally, the economic
component includes a spatially-explicit mathematical programing model which uses crop prices
and production costs as inputs in addition to biomass transport costs and biophysical parameters
from the first two models. The general structure of the bioeconomic model is summarized in
Figure 1.

EPIC Biophysical
Simulation USDA data &
Transport cost
Analysis (GIS)
Crop Yields Crop Prices,
& Environ. Production &
Outcomes Transport cost

Spatial Bioeconomic Model:

Predict Biomass Supply, Land
Use & Profit-environ. Trade offs

Figure 1: The structure of the bioeconomic model

2.2.1 Biophysical crop growth and environmental fate model (EPIC)

EPIC is a comprehensive terrestrial ecosystem model capable of simulating many
biophysical processes such as plant growth and element cycling (water, carbon, and nitrogen) as
influenced by climate, landscape, soil, and management conditions [18]. The spatially-explicit
integrative modeling framework (SEIMF) developed by Zhang et al. [19] is employed to execute
EPIC to provide biomass yield and relevant environmental variables. A minimum set of soil



properties (e.g. albedo, soil layer depth, soil texture, soil bulk density, and soil carbon
concentration) are needed to run EPIC. Salient processes modeled include growth and yield of
numerous crops, herbaceous and woody vegetation; carbon dioxide (CO;) and nitrous oxide
(N,0) fluxes; water and wind erosion; and the cycling of water, heat, carbon (C) phosphorus (P)
and nitrogen (N).

2.2.1.1 Plant Growth and Biomass Yield

The plant growth sub-model of EPIC uses the concept of radiation-use efficiency by which a
fraction of daily photosynthetically-active solar radiation is intercepted by the plant canopy and
converted into plant biomass. Daily gains in plant biomass are affected by vapor pressure
deficits, atmospheric CO, concentrations, environmental controls and stresses. Stress indices for
water, temperature, N, P, and oxygen (O,) availability are calculated daily to reduce potential
plant growth and crop yield. Four processes are simulated to determine root distribution: a) the
increasing depth of the rooting front, b) the length/weight ratio of new roots, c) the proliferation
of roots within soil layers, and d) senescence [20]. Currently, EPIC is parameterized for about
120 plant species, including food crops, native grasses and trees. Up to ten plant species may
compete for light, water and nutrients in a single land unit (plot, field, or small uniform
watershed) [21]. In this work, we consider both food crops and lignocellulosic bioenergy
feedstock; therefore, the biomass yield is defined by two yield components (grain/seed and
cellulosic biomass). Biomass yield of all cropping systems scenarios are estimated using the
environmental, edaphic, and past management conditions of the region, in order to estimate the
production of various feedstock necessary to supply cellulosic biofuel and also provide the
necessary information to analyze the potential competition between bioenergy and food
production in a region.

2.2.1.2 Water and nutrients

The amount and quality of water from watersheds containing agricultural ecosystems is an
important component of sustainability evaluation [22]. Water balance components calculated by
EPIC include snowmelt, surface runoff, infiltration, soil water content, percolation, lateral flow,
water table dynamics, and evapotranspiration [18]. EPIC simulates the N cycle in soil, including
atmospheric N inputs, fertilizer and manure N applications, crop N uptake, denitrification,
mineralization, immobilization, nitrification, ammonia volatilization, organic N transport on
sediment, and nitrate-nitrogen (NO;-N) losses in leaching, surface runoff, lateral subsurface
flow, and tile flow [20]. Organic N loss to streams is estimated by a loading function developed
by McElroy et al. [23] and modified by Williams and Hann [24]. Amounts of NOs-N contained
in runoff, lateral flow, and percolation are estimated as products of the volume of water and
NO;-N concentration in different flow components [18]. EPIC simulates the P cycle in soil by
considering inputs through fertilizer and manure P applications, crop P uptake, mineralization,



immobilization, organic P loss, and soluble P runoff. Sediment transport of P is simulated with a
loading function as described in the organic N transport. The soluble P runoff equation is a linear
function of soluble P loss in the top soil layer, runoff volume, and a linear adsorption isotherm
[18].

2.2.1.3 Soil erosion

Soil erosion represents a major environmental threat to the sustainability and productive
capacity of agricultural land [25]. In EPIC, the wind erosion continuous simulator (WECS) [26]
is employed to compute wind erosion. This approach estimates potential wind erosion for a
smooth bare soil by integrating the erosion equation through a day using the wind speed
distribution. Potential erosion is adjusted using four factors based on soil properties, surface
roughness, cover, and distance across the field in the wind direction. Several equations based on
the Universal Soil Loss Equation are available to simulate water erosion [18]. The sediment yield
is calculated as a function that integrates soil erodibility factor, crop management factor, erosion
control practice factor, slope length and steepness factor, coarse fragment factor, runoff volume,
and peak runoff rate [18].

2.2.1.4 Greenhouse gas (GHG) emissions

Proper accounting of the total GHG emissions generated from production of biofuels is an
important factor in considering the overall sustainability of biofuel production [28]. In our
modeling framework, we have modified the EPIC model to simulate GHG emissions (i.e. CO;
and N,O) associated with different crop production systems. The total GHG emissions is
composed of three major components GHGs emission = ASOC + APlantC +C ,, +C o .Where

pro
ASOC + APlantC gives the gross C balance of the ecosystem and the gross C exchange between
the land and the atmosphere. ASOC (kg C ha™) is the change in soil organic carbon stock
between two periods; APlantC (kg C ha™) is the change in plant biomass carbon between two
periods; C__, (kg C ha™') represents carbon-equivalent emissions associated with the production,

prod
distribution, and use of materials, both man-made (e.g. pesticides and fertilizers) and natural (e.g.
seeds and water for irrigation) [29]. The C, , is the calculated carbon equivalent emission (kg C

ha™') of N ,O emission (kg N,O-N ha™'). We assumed the global warming potential (GWP) of

N,O is 298 times of that of CO, based on the latest assessment report from the
Intergovernmental Panel on Climate Change [30]. The EPIC model was further enhanced with a
new algorithm to estimate N,O flux due to microbial denitrification under anaerobic condition

[31]. Soil C dynamics is simulated in EPIC by a coupled carbon and nitrogen cycle [32]. For this
work, the carbon balance in EPIC was revised and modified to account for both living and dead
vegetation.



2.2.2 Mathematical programming model

Economic behavior is modeled from the standpoint of a representative farmer endowed with
land resources in each sub-watershed at levels described by resource vector b, who chooses
among a set of crop production systems and related market activities X so as to maximize his
gross margin (revenues minus relevant costs). The problem of the representative farmer can be
written as a linear constrained maximization program where the total net revenue is maximized
subject to a set of land resource constraints [33]. The general problem can be mathematically
expressed as

Max f (X) €Y)
Subject to
AX<b (2)
DX =d (3)

Xiskx1,AismXxk,DismXkandb,d are of dimension m. A and D are matrices of
crop and environmental yield coefficients, respectively. Constraint (2) is the set of land resource
availability constraints and constraint (3) is a set of accounting rows that calculate the
environmental outputs from chosen activities X, equal to d. Since the objective function (1) is
linear, the solution to this problem leads to an unrealistic allocation of all the resources to the
most profitable activity, a problem known as overspecialization. To avoid this problem, the
model is calibrated using positive mathematical programming (PMP) techniques. The calibrated
PMP model uses a quadratic objective function with decreasing marginal yield assumption that
helps replicate closely the variety of observed activities in the region of study [34, 35].

The resulting calibrated PMP model is

Maxy f (X) + a’X == X'EX 4
Subject to
AX<b (5)
DX =d (6)

where a is a k X 1 marginal linear yield intercepts and Z is a k X k positive definite matrix of the
slopes of linear yields that capture declining marginal product with expanding land use. The
values of a and X are calculated from the land resource shadow prices, prices of outputs sold and
the observed activity levels from an intermediary model constrained by actual observed activity
levels [34]. The resulting calibrated model (4)-(6) will be used to derive output supplies and land
use response to various agricultural and land policies.



2.3 The Empirical Bioeconomic Model

The empirical bioeconomic model is built on the economic behavioral assumption that a
representative farmer would select among a set of 74 cropping systems (see Table 1) to which he
allocates land resources to maximize returns over stated costs. The modeling region is defined by
nine counties divided into 37 subwatersheds, represented by 10-digit hydrological unit codes
(HUC). The subwatersheds, in turn, are subdivided into good and poor quality cropland,
represented by Land Capability Classes (LCC) 1-4 for good cropland and LCCs 5-7 for poor
cropland. Since not all subwatershed has both good and poor cropland, there are a total of 71
land units.The cropping systems simulated are defined in terms of three management practices:
crop rotation, fertilization and tillage. In all, we simulate the production of 13 crops managed via
74 potential cropping systems. So given expected crop yields, production and transport costs, the
representative farmer allocates resources among various cropping systems to grow crops that
maximize expected returns over 71 land units. The mathematical statement of the empirical
model is expressed as follows:

71 74 15 5 9
Ma)J(C” [ CiXij — rmomjxij + Z PrQijiXij + Z qnenjxl-j] — Z TC, (7)
i=1j= k=1 n=1 h=1
Subject to
74
ExijS b;,Vi=1to71, (8)
j
71 74
Zemxu <I,vn=1to5, 9
i=1 j=1
71 74
D anryx BHyyi+0z)=TG,  Vh=1t09, (10)
71 74

ZZZaU Xij = (11)

h is a set 9 biomass outputs,
i is a set of 71 land units defined by subwatershed and land quality,
j is a set of 74 cropping systems simulated on each land unit,

k is a set of 15 grain or biomass crop products (13 crops with corn and wheat offering both grain
and biomass outputs),



m is a set of 3 fertilizer nutrients (nitrate, phosphate and potash) used in the cropping systems,
n is a set of 5 environmental outputs produced from the cropping systems,

a;j 1s the yield of crop k from land parcel i and cropping system j,

b; 1s the maximum quantity of cropland available in watershed i,

¢; is the average cost of production for cropping system ¢,
en; 1s the environmental yield n of system j ,
O is the quantity per hectare of nutrient m used in cropping system j,

Dy 1s the market price of crop k,

qr 1s the subsidy or the cost of the environmental output n,

T 18 the unit cost of fertilizer nutrient m,

[}, is the quantity limit of environmental outputs allowed,

TCy, s the cost of transporting biomass product h to the demand point
WY is the total quantity of all biomass produced in the region,

x;j is the quantity of land i allocated to cropping system j,

(B + yy; + 6z;) is the transport cost of one metric ton (Mg) of biomass to the refinery site; with
B being the cost of loading and unloading, y is the cost per mile of hauling distance and 6 the
cost per hour of hauling time. The variables y; and z; are respectively the hauling distance and
time from a parcel i to the refinery plant site.

The objective function (7) contains five expressions. The first expression (— Y/* 217-4 CjXij)
represents the total variable production cost in all cropping system and watershed land units. The
second expression (— X7t Y74 33 1 15,00%;;) is the total cost of synthetic fertilizers across
systems and land units. The third expression (X" X.7* X32, prayjex;;)* is the total crop sales
revenue from all cropping systems and watershed land units. The fourth expression
O 217-4 > L Gnén ;jXij) 1s the sum of each environmental output across all cropping systems

and land units. The last expression (X5, TCy) represents the total transport cost of biomass to

* This expression is later modified to a quadratic form in the calibration process transforming the
model into a nonlinear optimization program as mentioned in section 2.2.2. The quadratic form
is obtained by writing a;j, = px — Prx;j, where prand ¢, is the average yield intercept and
slope for crop k . For details, refer to Howitt (1995).



the refinery plant. Equation (8) is the expression of the 71 land resource constraints. Equation (9)

is a set of constraints enabling the creation of limits on permitted environmental output levels,

while the last two accounting equations (10) and (11) are respectively used to calculate transport

costs and total biomass quantity.

Table 1: Summary of simulated cropping systems

Residue Rotation Nur;cber
Rotation Tillage Fertility removal & length .
ercent (years) cropping
P systems
Y o
Alfalfa-Alfalfa-Alfalfa-corn-corn  Till or No-till Medium or High es (50%) 5 8
or No (0%)
Y o
Continuous corn Till or No-till Medium or High es (50%) 1 8
or No (0%)
. . . . Yes (50%
Corn-soybean-canola Till or No-till  Medium or High orelilf) (0%(3 3 8
. . . . Yes (50%
Corn-soybean Till or No-till Medium or High orteI(E © (y(;)) 2 8
. . . . Yes (50%
Corn-soybean-wheat Till or No-till Medium or High orteI(E (O‘V(;)) 3 8
Grass mix of 5 types No-till Medium or High - 24 2
Grass mix of 6 types No-till Medium or High - 24 2
Miscanthus No-till Medium or High - 24 2
Native prairie cool season No-till Medium or High - 24 2
Native prairie warm season No-till Medium or High - 24 2
Hybrid poplar No-till Medium or High - 12 2
Switchgrass No-till Medium or High - 24 2
Alfalfa-Alfalfa-Alfalfa-corn(for ) o Noill  Medium or High . 5 4
silage)-corn (for silage)
Continous corn (for silage) Till or No-till  Medium or High - 1 4
Corn (for silage)-soybean-canola  Till or No-till Medium or High - 3 4
Corn (for silage)-soybean Till or No-till Medium or High - 2 4
Corn (for silage)-soybean-wheat Till or No-till Medium or High - 3 4
All systems 74

3. Parameterization of the model

The bioeconomic model is driven by four types of parameters. These are variable production

costs, market prices, transport costs and simulated yields (of both crops and environmental

outcomes).
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3.1 Production cost parameters (c;)

Production cost are calculated using custom machine work rates for all farming operations
such as disking, planting, cultivating, fertilizer application, harvesting and baling. Production
costs for field crops (corn, soybeans, soybeans, alfalfa, corn silage and canola) are calculated
using crop budgets (for information on seed costs and fertilizer nutrients) and machine work
rates (for information on farming operation costs) from Stein [36, 37]. The advantage of using
such data is that it combines both variable labor and allocated fixed equipment costs for farming
operations from planting to harvest. Similarly, we use the machine work rates [36] with
additional information on seed and planting cost from previous research on cellulosic energy
crop profitability analysis [9] to calculate production costs for all the cellulosic energy crops.

3.2 Crops market price (py,) fertilizer nutrients prices (7;,,) and land resources parameters (b;)

Crop market price parameters used are primarily average prices for each of the 6 field crops
(corn, soybeans, wheat, alfalfa, canola and corn-silage) over the period of 2007-09. All crop
price data are collected from U.S. Department of Agriculture’s (USDA) National Agricultural
Statistics Service (NASS) data bases [38]. Note that biomass prices for cellulosic energy crops
and crop residues are zero in the model as no market exists for such crops. Land use data for
corn, soybeans, wheat, alfalfa and canola are obtained from USDA-NASS [38] but alfalfa area
data are derived from the USDA cropland data layer (CDL). Prices of fertilizer nutrients,
including nitrate, phosphate and potash, prices were obtained from Stein [37].

3.3 Transportation cost parameters (8,v, 6, v;, z;)

GIS is used to identify travel time (y;) and distance (z;) between biomass supply areas and
biorefinery demand points in southwestern Michigan. Thirty-seven 10-digit watersheds are
modeled across nine counties of southwest Michigan (Allegan, Barry, Eaton, Van Buren,
Kalamazoo, Calhoun, Cass, St. Joseph and Branch). Transport costs are measured from the
centroids of these 37 sub-watersheds to a one central potential biorefinery site located at the city
of Kalamazoo (see Figure 2). The network dataset is set up in two connectivity groups to
accommodate limited highway access. The state of Michigan digital framework roads version 9a
is used to create the network. Roads are classified based on the Michigan department of
transportation (MDOT) national function class (NFC). The three major types of roads in this
classification system are arterial, collector, and local. Within these three classes, the roads are
subdivided into thirteen urban and rural categories. The road network does not have speed limits
associated with the features and speed limits are assigned by MDOT NFC class and were derived
from comparison of multiple factors. Actual speed limit is derived from representative roads in
Michigan. These are compared to speeds used in standard commercial applications such as
Google maps, MapQuest, and Yahoo Maps. Actual speed limits are then reduced by 15%-60%
for non-interstates and are reduced by 5% for interstates to closely relate to the speeds used in
commercial applications. The other inhibitor to take into consideration is that the Michigan road
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network does not account for stop lights, stop sign, or traffic. These reduced speeds will
hopefully account for those factors and serve a more realistic image of transportation costs. The
value of parameters regarding the loading and unloading costs , the per kilometer hauling
distance cost and the per hour hauling time cost 0 are graciously obtained and updated from
Graham, English and Noon [12] paper.

Centroids of lands
® nder each 10-digit HUC

+ Kalamazoo City

[110-digit HUC
[_JLand capability 1-4
I Land capability 5-7

0 20 40
— Km

Figure 2: Map of the southwest Michigan study area’s nine counties subwatersheds (based on
10-digit hydrologic unit codes (HUC)).

3.4 Biophysical simulated yield parameters

The yield parameters used are mean values from site specific EPIC simulations over the
period of 1986 to 2009 of 6 traditional field crop grain and silage yields, 7 cellulosic crop
biomass yields and 2 field crop biomass residue yields. Field crop yields include corn, soybean,
wheat, alfalfa, canola and corn-silage yield. Cellulosic energy crop biomass yields include
switchgrass, poplar, miscanthus giganteus, native prairie cool season mix, native prairie warm
season mix, grass mixes of 5 types (switchgrass, big bluestem, little bluestem, altai wildrye,
indian grass) and grass mixes of 6 types (which includes lespedeza in addition to the first 5
types). Crop residues include corn stover and wheat straw yields. The values of all these
parameters and the data sources are given in table 2.



12

Table 2: Parameters used in the empirical bioeconomic model for southwest Michigan

Parameters Values Units Source

Field crop prices

Corn 163.60 $/Mg

Soybean 364.87 $/Mg

Wheat 241.07 $/Mg | 2007-2009 average from USDA-NASS
Alfalfa 147.11 $/Mg

Canola 400.95 $/Mg

Silage 49.82 $/Mg  Estimated by Authors

Fertilizer nutrient prices

Nitrate(N) 0.95 $/Kg

Phosphate (K) 0.94 $/Kg | 2007-2009 average from Stein (2010)
Potash(P) 1.00 $/Kg

Land use validation

parameters

Corn 252,230 ha |

Soybean 172,895 ha

Wheat 26,142 ha | 2007-2009 average from USDA-NASS
Alfalfa 26,828 ha

Canola 0 ha

Silage corn 9,186 ha |

Transport cost parameters .

Loading and unloading 3.37 $/Mg

Hauling distance cost 0.09  $/Mg-km [ Updated from Graham et al. (2000)
Hauling time cost 4.26 $/Mg-h |

Simulated EPIC mean yields

Corn 6.14 Mg/ha ]

Soybeans 1.96 Mg/ha

Wheat 2.98 Mg/ha

Alfalfa 5.82 Mg/ha

Canola 1.96 Mg/ha

Corn Silage 12.18 Mg/ha

Switchgrass 14.29 Mg/ha 1986-2009 average simulated from EPIC
Poplar 4.65 Mg/ha

Miscanthus 19.53 Mg/ha

Native prairie - cool season 8.38 Mg/ha

Native prairie - warm season 7.82 Mg/ha

Grass mixes of 5 types 12.15 Mg/ha

Grass mixes of 6 types 12.75 Mg/ha
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4. Validation and Calibration of the Empirical Models
4.1 EPIC output validation

The algorithms in EPIC have been tested on numerous occasions using site specific data [39].
In this study, EPIC was used to make regional predictions of biomass yields and environmental
variables for which few databases are available for comparison. For corn and wheat grain yields,
soybean seed yields, and corn silage yields, we compared the yearly results simulated by EPIC
for 1986-2009 aggregated at county scale against yearly county-scale data reported by the
USDA- NASS. For new biofuel crops not reported by USDA-NASS and other environmental
variables, we compared our simulation results with observations from the Long-term Ecological
Research experiment in place since 1988 at the Kellogg Biological Station of Michigan State
University.

4.2 Bioeconomic Model Calibration

The bioeconomic model is calibrated using 2007-09 average prices and land use to mitigate
problems that often arise from calibration to a potentially anomalous single year. The model
calibration follows the usual three steps described in previous PMP research works [34, 35]. In
the first step a raw linear model was run and we found that only alfalfa, corn and soybeans were
grown in two different cropping systems across all the 71 pieces of land. To bring the model to a
realistic representation of the variety of crops that are grown in the region, we ran a second
model in which land use was constrained by the observed land data from USDA-NASS. The
final calibrated model is a nonlinear model that runs under the assumption of decreasing linear
marginal yields. The goal of this assumption is to account for nonlinearity that arises from
declining yield at the extensive margin, first formalized by David Ricardo but often omitted in
quantitative models [40].The coefficients of each of the linear marginal yield functions are
calculated using information on shadow prices calculated in the preceding model. The calibrated
model has a percentage absolute deviation (PAD) of 14.5%. Previous literature on agricultural
sector models have been considered valid for forecasting purposes if their PAD values do not
exceed 15% [33, 35].

5. Empirical Results
5.1 Evolution of biomass supply in response to price

Considering that bioenergy crops are scarcely grown in southern Michigan at this time, our
initial research question was: Under what price conditions would biomass production becomes
attractive to profit-oriented farmers? To answer this, the bioeconomic model was solved
sequentially using biomass prices from $1/Mg to $200/Mg. The corresponding biomass supply
and sources, environmental outputs and land use change were recorded and graphed in Figure 3.
We found that the first biomass sources offered are byproducts of grain production, corn stover
at a biomass price of $21/Mg, followed by wheat straw at $27/Mg. These biomass sources need
only cover the added costs of harvest and transport, because they are byproducts of crops already
produced for their grain. However, the total amount of biomass available from crop residues
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(corn stover and wheat straw) is quite limited in the region, only 6 x 10° Mg. Crop residues begin
to be supplemented by switchgrass when the biomass supply price reaches $46/Mg, and they are
completely replaced by switchgrass at $61/Mg. Switchgrass is the sole source of biomass supply
for prices from $61 to $118/Mg, creating a regional biomass supply plateau at 7.0 x 10°® Mg.
When the biomass price reaches $118/Mg switchgrass is supplemented by biomass from small
amounts of mixed grasses (only 80 Mg total from mixed grasses), making little difference to the
overall biomass quantity up to a price of $154/Mg. Finally, at this price, miscanthus giganteus®,
the highest yielding biomass crop, becomes profitable. As biomass prices rise even higher,
miscanthus compensates its exceptionally high establishment cost and gradually displaces
switchgrass and mixed grasses.
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Figure 3: Predicted sources of regional cellulosic biomass supply as function of biomass price
($/Mg), nine county area of southwest Michigan.

Our biomass supply response predictions fall in the range of recent published estimates.
Differences are attributable to yield variability in various geographical regions of study and the
fact that our model accounted for opportunity cost that these previous research have not
included. Recent studies have found the delivered cost of switchgrass to range from $30 to
$43/Mg, including $37/Mg in the southern plains of the United States [13], a mean of $39/Mg in
Tennessee, and between $30/Mg and $43/ Mg in the Midwest region [41]. Previous studies on

* Note that although miscanthus has the highest yield among all the cellulosic energy crops
grown in the study. It has also the highest establishment cost that makes it less competitive in the
current setting. Future rhizomes cost decreases may make it more profitable as studies in James
et al. [9].
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miscanthus range from a high biomass price to breakeven with corn net revenue of about
$200/Mg for southwest Michigan [9] to a delivered cost of $44-80/Mg in Illinois [42]. There are
only a few studies on biomass supply from crop residues. A study of biomass supply from crop
residues including corn, wheat, sorghum , barley, oats and rice residues [43] found that the
delivered supply price lies between $15/Mg and $42/Mg depending on the region (Corn Belt,
Great Plains, Delta or Southeast). The supply prices are lower in the most fertile regions such as
the Corn Belt. Our estimated prices for corn stover and wheat straw are within this range of
prices. Another study on corn stover supply and availability estimated the delivered cost at $48/
Mg without storage and preprocessing costs [44].

5.2 Land use and grain crop level change as function of biomass price

Our second research question asked: What is the sequence of crop production systems and
associated land uses as biomass supply is increased? Land use change, crop grain production and
biomass supply are all linked. This link can be explained following the various changes observed
in the biomass supply, as illustrated in Figure 4. As farmers start supplying crop residues for
biomass (at $21/Mg for corn stover and $27/Mg for wheat straw), wheat production and
associated land use increase. The reason for the increase is that the wheat production systems (a
corn-soybean-wheat rotation) supplies crop residues from both corn and wheat and therefore
becomes more profitable for farmers. The switchgrass production at $46/Mg causes a sharp
increase in switchgrass land use and a decrease in the crop grain production and land use. When
biomass prices reach $61/Mg, switchgrass has displaced all crop grain production, so all land use
becomes dedicated to switchgrass. At biomass prices above $61/Mg, land use can only switch to
other sources of biomass.
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Figure 4: Predicted land use change for crops in response to changing biomass price ($/Mg),
nine county area of southwest Michigan.

5.3 Environmental impact of biomass production activities

Our third research question was: What are the environmental consequences of the changing
crop production systems as biomass production increases? To understand the impact of biomass
supply activities on the environment, we illustrate trade-offs between profitability and
environmental outputs in a series of charts in Figure 5. We found that the changes in all
environmental outputs follow a similar trend. Crop residue removal increases losses of soil, NOs,
and soil C, while reducing P losses and emissions of N,O. When perennial cellulosic energy
crops begin to displace annual crops, we see a gradual improvement in environmental outputs.
Since all these cellulosic energy crops are perennial and need no tillage after planting and only
modest levels of nitrogen fertilizer, an increase of their production leads to reduced greenhouse
gas emissions (CO; and N,0) and improved water quality by reducing soil erosion as well as
NOs; and P losses.
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Figure 5: Profitability-environmental quality trade-offs as cellulosic biomass production rises,
nine county area of southwest Michigan.
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Our results on the environmental impacts are comparable to previous research. State level
environmental impact study of producing switchgrass in Tennessee found that replacing
conventional field crops by switchgrass may result in less soil erosion and soil nutrient loss [12].

5.4-Impact of biomass crop assistance program (BCAP) on biomass supply

The final research question was: How are these results altered by the provisions of the
Biomass Crop Assistance Program (BCAP), a feature of the Food, Conservation and Energy Act
of 2008. Biomass crop establishment costs represent a large proportion of their production costs,
and the BCAP policy offers growers a cost share of 75 % of seed and planting costs. To evaluate
the impact of this policy on biomass supply, we simulated a scenario of biomass production
under BCAP by granting 75% subsidy for seed and planting costs on all energy crops production.
(We did not explicitly simulate the BCAP sale price cost share, because this is implicitly covered
by the model’s sequential changes in biomass price). As illustrated in Figure 6, we found that
supply schedules for corn stover and wheat straw are unchanged. However, perennial grass crop
supply is sensitive to the BCAP establishment cost share provision. Predicted switchgrass
supply starts at $45/Mg instead of $46/Mg. More important, miscanthus giganteus, which has the
largest establishment cost due to expensive rhizomes, comes into production with BCAP at
$63/Mg instead of $154/Mg. Grass mixes are not produced under this policy scenario because of
their lower yields relatively to switchgrass and miscanthus. The maximum quantity of biomass
produced under BCAP is higher and reached at lower supply price (9.5 million Mg reached at
$89/Mg), whereas the maximum biomass supply modeled without BCAP was 8.8 million Mg
reached at $200/Mg. Clearly, the BCAP policy has the potential to impact the supply, acceptable
price and lowest cost source of biomass. There is no major change in the trend of land use
change under BCAP, only the threshold points where changes occur. Consequently, the
environmental outputs follow the same trend as before except that they start improving at lower
profit level when switchgrass and miscanthus production begin.
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Figure 6: Predicted sources of regional cellulosic biomass supply under the USDA Biomass
Conversion Assistance Program (BCAP) as function of biomass price ($/Mg), 9 county area of
southwest Michigan.
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6. Conclusion

This paper describes a new, spatial bioeconomic model to study the potential regional supply
of cellulosic biomass by representative, rational, profit maximizing farmers. Having been
calibrated to fit with observed farmer behavior, the calibrated model captures the typical farmer
decision making process and enables study of likely responses to unfamiliar market prices and
public policies. The model can predict changes in crop production, cropland use and
environmental quality at the regional landscape level with greater detail and depth than existing
national models. While currently designed for mean values of key parameters, the model can be
adapted to accommodate dynamics and risk through recursive programming and adjustment of
yield and price parameters.

An empirical application of the model to southwest Michigan predicts that as biomass price
rises, farmers are likely to supply biomass initially in the form of crop residues (corn stover and
wheat straw). Corn stover production starts at $21/Mg and wheat straw production starts at
$27/Mg (delivered price at the biorefinery or similar demand point). However, biomass supplies
from crop residues are predicted to increase greenhouse gas emissions (CO; and N,O) and
deteriorate water quality with increased nutrient loss (P and N losses). Biomass supplied from
perennial, dedicated energy crops will become attractive starting at higher prices ($46/Mg for
switchgrass, $118/Mg for grass mixes and $154/Mg for miscanthus giganteus) but with better
environmental outcomes. Greenhouse gas emission levels and soil nutrient losses are predicted to
improve with perennial energy crop production. The paper also evaluates the impact of the farm
bill’s Biomass Crop Assistance Program on biomass supply and predicts that the 75 % subsidy
on energy crop establishment costs will lower the minimum biomass supply prices for
switchgrass to $45/Mg (from $46/Mg) and for miscanthus to $63/Mg (from $154/Mg). The
BCAP impact is significant for miscanthus, which currently has much higher establishment costs
than the other bioenergy crops. Land use and environmental outputs trend are found to not
change under BCAP.

This bioeconomic model represents the integration of spatially and temporally detailed
biophysical simulation with economic decision making. The model’s integrated assessment
builds on knowledge from plant and soil sciences, geography and economics. The bioeconomic
model provides a valuable tool for exploring a number of important research questions related to
biomass production and environmental consequences at the regional level. Examples of such
questions include, a) How could environmental policy incentives be designed to encourage more
sustainable biomass cropping practices? b) How would the siting of a biorefinery or biomass
fueled power plant affect the spatial patter of crop biodiversity? and ¢) How would future
bioenergy, agricultural or agro-environmental policies affect profitable crop production and
environmental consequences at the regional level? Such questions will be the focus of future
analyses based on this model.
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