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2 
Abstract. 

This article presents an empirical approach to correcting for spatial interactions in 
stated preference data when valuing large-scale, spatially variable environmental 
improvements.  This approach is presented in the context of a contingent valuation study 
estimating the benefits of reduced non-point source pollution in Green Bay, Wisconsin. 
The significant spatial variation of water clarity conditions in this large water body was 
captured using satellite-derived GIS data. This article focuses on two significant 
challenges: first, ensuring respondents are adequately informed of how the proposed 
change will impact their individual utility stream; second, dealing with the spatial effects 
within the estimation model. The GIS water clarity data were used to measure the initial 
conditions faced by each individual parcel. Including this information in the analysis 
significantly increased the estimated expected WTP of some individuals but decreased 
that of others. Some of the difference in aggregated benefits is likely due to issues of 
spatial correlation between properties that is unaccounted for in the simpler models. 
 
KEYWORDS: Water quality; non-point source pollution; contingent valuation; spatial 
correlation 
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Valuing improvements in water quality has long been a staple in the environmental 

economist’s toolbox. Countless studies have relied on both revealed and stated preference 

methods to value water quality improvements. The variation in the details of these 

studies, particularly in how the water quality improvement is measured and described, is 

quite impressive. Some examples of quantitative measures that have been used include 

water level (Lansford and Jones 1995; Eisworth et al 2000), abundance of fecal coliform 

in the water (Leggett and Bockstael 2000) and water clarity (Poor et al 2001; Gibbs et al 

2002; Boyle, Poor, and Taylor 1999).  

 Other studies, particularly stated preference studies, have relied on qualitative or 

categorical measures of water quality, with the most common approach being the water 

quality ladder. First developed by Vaughan (1986), and made familiar through Mitchell 

and Carson’s work (Mitchell and Carson 1989; Carson and Mitchell 1993), the water 

quality ladder presents water quality on a scale from 0 (worst) to 10 (best), with each 

level represented as the rungs of a ladder. Various rungs are associated with certain 

recreational uses. For example, fishable water quality is rung 5, but swimmable water 

quality is rung 7. While some researchers have expressed concern about the use of the 

water quality ladder (Magat et al 2000), it remains the dominant method for describing 

water quality improvements in stated preference studies (Johnston et al 2005).  

Despite the long history of water quality valuation studies, there is little guidance 

in how to conduct a valuation study for a large scale environmental improvement whose 

magnitude varies significantly over its spatial range.  This is particularly true when stated 

preference methods are the preferred option. The last decade or so has seen tremendous 
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advancement in the way environmental economists consider spatial data. In a recent 

review of the literature, Bateman et al (2002) identify several areas in which GIS and 

spatial analysis have been used to improve empirical environmental economic studies, 

including hedonic valuation studies and aggregating non-market values. In addition, 

econometric models that allow us to correct for spatial interaction among agents continue 

to be developed and improved (for example, see Anselin 2002). Unfortunately, these 

methods are not yet well developed for discrete choice models which are used to analyze 

stated preference data. In addition, the qualitative measures of water quality typically 

used in stated preference studies, including the water quality ladder, are not easily 

adaptable to large bodies of water in which the spatial variability of water quality and/or 

individual preferences is significant.  

This article describes an attempt to collect and analyze stated preference data 

when faced with a large scale, spatially varied water quality improvement. This is 

presented in the context of estimating the benefits of reduced non-point source pollution 

in the bay of Green Bay, Wisconsin. In this article we focus on two main challenges to 

this type of study. One challenge involves adequately describing to the respondents how 

the proposed change will impact their individual utility stream. The other challenge 

requires that the analyst understands and correctly measures how each individual in the 

larger population will be affected by the change depending on their location relative to 

variations in the improvement.  

The first challenge, creating an effective scenario design, is considered one of the 

most difficult challenges, yet essential components, of designing a contingent valuation 
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(CV) study (Mitchell and Carson 1989). In most studies, the description of the good 

being valued is incomplete; the survey does not completely describe both the baseline 

condition and the conditions that will result from the change presented (Boyle 2003). 

While the water quality ladder has proven to be a very useful tool for evaluating changes 

in water quality, significant spatial variation makes it practically impossible to verbally 

describe how an improvement in water quality will impact different regions in the area. 

We found no obvious way to adapt the water quality ladder or simple maps to address 

this problem.  

The second challenge is to ensure the analyst properly accounts for how each 

individual views and values the improvement. Due to data restrictions, most water quality 

valuation studies use water quality data that is significantly spatially aggregated. This is 

problematic for several reasons. If individual respondents are valuing the impact of the 

pollution reduction near their property, but the water quality information used in the 

analysis cannot distinguish their property from the property 10 miles down the shore, 

there is significant potential for incorrect estimates. Even more troublesome, using 

spatially aggregated water quality information almost certainly correlates the values 

neighbors place on the improvement. Because methods for handling spatial correlation of 

the error terms are not well developed for discrete choice models, this spatial correlation 

is typically unaccounted for in the analysis which leads to biased parameter estimates and 

corresponding benefit estimates. This bias will be compounded when the individual 

willingness to pay (WTP) estimates are aggregated back to the larger population.  
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In this article, we use GIS data to tackle both of these challenges, in the context of 

water quality improvements in the bay of Green Bay, WI. The application and GIS data 

are described in section 2. Section 3 describes our use of GIS-based water clarity maps to 

individualize the scenario design in a contingent valuation (CV) survey. Section 4 

suggests an empirical approach accounting for spatial effects in the survey responses and 

WTP data. Section 5 presents the estimation results and section 6 concludes.  

Study Area and Data Description  

Green Bay connects to Lake Michigan and separates the Door Peninsula from the rest of 

Wisconsin. Several rivers drain into the bay, and the watershed includes a significant 

amount of agricultural land. Runoff from farms, highways, construction sites, and 

residential and urban neighborhoods carries nutrients and sediments into Green Bay and 

its tributaries (WI DNR 2006). In an effort to improve water clarity and reduce algae 

blooms in lower Green Bay, there is a proposal to reduce runoff from all sources. The 

non-market and non-use benefits associated with this proposal are the focus of the 

application described in this article. 

Though many individuals throughout the state are likely to value improved water 

clarity in Green Bay, the study area of this application includes only those 14 townships 

that form the shoreline of the southern portion of Green Bay. This area includes portions 

of four counties (Brown, Door, Kewaunee, and Oconto), and is located south of Sturgeon 

Bay in the east and the Oconto/Marinette County boundary in the west. The decision to 

limit the study area was both logistically and politically based. Logistically, it was too 

costly to maintain a quality sample across the entire state. Limiting the study population 
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to those closest to the resource ensures a basic familiarity with the resource which greatly 

simplifies the scenario design. It is also expected that these individuals have the highest 

values for improving the resource, all else equal. Politically, the cost of environmental 

cleanup is increasingly falling on local governments who must weigh the costs and 

benefits to their own citizens. This is particularly evident in the grant programs 

administered by the Wisconsin Department of Natural Resources to aid local 

governments in their runoff reduction efforts (Heaton-Amrhein and Holden 2005). Based 

on the sample population, the empirical results reported in this study represent a lower 

bound on total benefits. 

 Water clarity data 

Water clarity is traditionally measured with a Secchi disc, an 8-inch metal disc painted 

black and white. The disc is lowered into the lake until it cannot be seen and then raised 

until visible. The average of these two depths is the Secchi depth (Dobson 2004). Secchi 

depth can vary greatly with both time and space, and while the temporal variability is 

easily addressed with seasonal averages, using spatial averages is much less appealing. 

Properly accounting for the spatial variation requires water clarity data that include 

clarity measures at every point in the bay, which cannot be done with traditional 

measurements. 

To address this problem, we used data available from the Environmental Remote 

Sensing Center at the University of Wisconsin-Madison. Chipman et al (2005) developed 

a procedure that uses water clarity maps from the MODIS satellite to calibrate high 

resolution Landsat images to produce high resolution satellite-derived lake water clarity 
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maps. The MODIS based maps have good seasonal averages of mean water clarity, 

measured in Secchi disk transparency and calibrated with actual field measurements, but 

have a low spatial resolution of only 250 to 500 meters. The Landsat images have a much 

higher resolution and comparing the radiance measures from these images to the MODIS-

derived water clarity data results in a water clarity map with a 30-meter spatial resolution. 

In shallow areas, a portion of the observed radiance measured in the Landsat images is 

coming from the bottom of the bay and so is not directly related to water clarity. To 

correct for this, areas believed to be “optically shallow” were assigned a Secchi depth 

equal to the average Secchi estimate from adjacent non-shallow areas (Chipman et al 

2005). These data were provided as a raster data file and viewed using ArcGIS. The 

raster data layer divides the southern portion of Green Bay into 1,325,028 pixels 

measuring 30 m by 30 m each, with Secchi depth reported for each pixel, measured in 

1/16th of a meter.  

Parcel data 

Digitalized parcel maps were obtained from the county land records offices in each of the 

four counties in the study area. Based on the parcel attributes available with these data, 

single family residential parcels less than 35 acres1 located within the townships that 

border the bay were identified. The identification process varied by county depending on 

the attributes available. For example, only the Oconto County data included a residential 

zoning variable, in other counties this information was inferred from the ownership 

                                                 
1 To reduce the probability of including erroneous values from farmers (who are more knowledgeable about 
runoff regulations and might be more skeptical of our general plan that would not single out agricultural 
runoff), we excluded the largest parcels from the study, since they are most likely to be used in agriculture.  
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information available. Details of this process are available in Moore (2006). Once the 

relevant parcels were identified, they were separated into two groups, bayfront and inland 

properties. Table 1 shows the population, total number of parcels, and number of parcels 

considered relevant to this study for each county. 

Conveying spatial variation in a stated preference study 

A mail survey of property owners in the study area was conducted to elicit values for 

reduced non-point source runoff. Each property owner in the sample was mailed a survey 

booklet and two water clarity maps. The booklet included a description of the runoff 

reduction program, a written description of the two maps, a series of attitudinal and 

demographic questions, and a referendum-based CV question. The description of the 

runoff reduction program explained the link between runoff and water clarity and the 

possible negative impacts poor water clarity can have on wildlife and recreation. It also 

explained that runoff does not affect the quality of drinking water and is not a significant 

source of PCBs, a toxic chemical found in Green Bay and its tributaries that has received 

a great deal of attention in the area. 

 Because of the direct link between non-point source pollution and water clarity, 

each property owner was provided with two maps of water clarity. These maps were 

generated with ArcGIS by overlaying the water clarity data described above onto Landsat 

images of the surrounding counties. One map showed current water clarity conditions in 

lower Green Bay. The second map showed the results of a four foot improvement in 

water clarity throughout the bay, the likely result of the proposed runoff control program. 

Each map included a large image of the entire study area and an inset showing a close 
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view of water clarity near the respondent’s property. An example of the two maps 

provided to an individual owning property in the city of Green Bay is shown in figure 1. 

Following the scenario description, respondents were asked the following dichotomous 

choice CV question, 

“If you were voting in a referendum on steps to reduce nutrients and runoff into Green 
Bay and the cost to your household in increased state and local taxes would be $____ per 
year for the foreseeable future, how would you vote?”  
 
The survey booklet and maps were initially mailed to a pretest sample of 30 

property owners. Based on these responses and follow-up phone interviews, a final 

version of the survey was administered during the summer and fall of 2005. Six bid 

amounts of $50, $100, $300, $500, $700, and $1000 were used. To ensure adequate 

coverage of bayfront properties, the sample was stratified so 500 bayfront and 500 inland 

residential properties were included. In addition, the inland properties were stratified by 

county to match the county distribution of bayfront properties. The final sample included 

206 bayfront and 204 inland properties in Door County, 30 of each type in Kewaunee 

County, 158 of each in Brown County, and 107 of each in Oconto County2. Figure 2 

depicts the location of the sampled properties within the study area. Further details of the 

sampling and administration of the survey can be found in Moore (2006). Table 2 shows 

the responses rate by offer amount. Overall, the response rate was high and similar across 

most offer amounts. Bayfront property owners responded at a slightly higher rate than 

inland property owners (66% versus 56%, respectively) and the two counties in the 

                                                 
2 While each property in the sample is located in the study area, the surveys were mailed to the property 
owner at the tax address, many of which were outside the study area, and even outside the state. 
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northern part of the study area, Door and Oconto, had higher response rates than the two 

counties in the south (65% versus 55%, respectively).  

Including the clarity maps allowed us to present the respondent with more 

complete information regarding exactly how a four foot improvement in water clarity will 

impact those areas of the bay of interest to the individual. However, there has been some 

concern among researchers that individuals will not be willing to invest the time 

necessary to understand the additional information provided by complicated maps, and so 

any benefit this information might bring to the individual decision will be lost. In 

addition, if the maps were misunderstood by respondents, use of the maps could have 

unintended negative impacts on the validity of the study (Boyle 2003). To guard against 

this possibility, the survey booklet included a written description of the information 

provided in the map. To test the readability of the map, we asked respondents to compare 

the water clarity information depicted in the map to their own observations of water 

clarity near their property and in the bay as a whole. Responses to these questions suggest 

that respondents found the maps easy to understand and helpful for informing their 

decision regarding the CV question. Only 13% of the respondents answered “I DON’T 

KNOW” when asked to compare the map to their own observations near their property. 

Of the remaining responses, 14% thought water clarity is actually better than the map 

depicts, 68% thought the map was accurate, and 18% felt water clarity is worse than the 

map depicts. Based on these results, we find not only do individuals understand the 

general information provided by the maps, but they are willing and able to process this 

information and relate it to prior knowledge. We do not believe that this added burden 
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reduced our overall response rate or negatively impacted the quality of the responses 

received. Clearly, without a control group, it is not possible to test hypotheses related to 

how the inclusion of the maps impacted responses to the valuation question and further 

exploration of this issue is needed. However, given the increased availability of GIS data 

providing quantitative indicators of environmental quality, the scenario design challenge 

faced by stated preference practitioners could be eased. We present here one example of 

how this might be done. 

Empirical approach to accounting for spatial effects in the estimation of WTP 

The standard approach to estimating WTP for the water clarity improvement based on the 

survey data, would be to model WTP as a function of a vector of individual 

characteristics, Z, and a random component, ε, so that 

WTP Zα ε= +   (1.1) 
 
The individual will respond “Yes” to the referendum question if her WTP exceeds the 

offer amount and “No” otherwise. Assuming the error component of equation (1.1) has 

an iid Gumble distribution across the population, this becomes a standard logit model, 

easily estimated by a variety of software packages. However, if the error terms in this 

model are correlated across observations, this model will produce biased parameter 

estimates. There are many reasons why individuals who own neighboring parcels would 

have similar preferences for improved water clarity and some of these reasons may be 

unspecified in the WTP function due to lack of available data. Unfortunately, this will 

result in spatially correlated error terms which are not easily dealt with in discrete choice 

models. The remainder of this section describes an empirical approach to specifying the 
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spatially correlated components of the WTP function, thus removing them from the error 

term which allows for unbiased parameter estimation. 

The Distance Model 

Consider equation (1.1) as the WTP function specified in the Base Model. We contend 

that this specification, where WTP is only a function of the individual characteristics Z, 

almost certainly leads to spatially correlated error terms and, therefore, biased parameter 

estimates. Consider one neighborhood located one block away from the shoreline and 

another located 5 km from the shoreline. It is easy to see that average preferences for 

water clarity improvements would differ for these two neighborhoods. In fact, previous 

research has shown that distance to the environmental good is inversely related to the 

WTP for that good (see Bateman et al 2002). Because neighbors are (obviously) a similar 

distance from the shoreline while non-neighbors might not be, and distance to shore 

likely affects WTP, it follows that WTP will be positively correlated across space. 

However, in the Base Model specification, the explanatory variables do not account for 

this effect. To correct for this, we develop the Distance Model which expands equation 

(1.1) to include the inverse of distance to bay as an explanatory variable. This model 

relies on the data from the digital parcel maps, but not the water clarity data, and matches 

the level of sophistication seen in recent valuation studies that estimate a distance-decay 

function for WTP (for example Bateman and Langford 1997; Moran 1999; Bateman et al 

2000; Hanley, Schlapfer, and Spurgeon 2003). The distance measured is the Euclidean 

distance from the parcel centroid to the center of the nearest pixel of the bay. For 

bayfront properties, distance to the bay is set at zero, and so for these individuals this 
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model is identical to the Base Model. For inland properties, it is expected that WTP will 

decrease as one moves further from the shoreline. 

The Zone and Radial Models  

While the Distance Model accounts for the spatial distribution of the population relative 

to the bay, it fails to take into account the spatial variation in initial water clarity 

conditions. The initial (before the proposed improvement) water clarity conditions in the 

bay range from 0.5 feet of clarity to over 11 feet of clarity. Diminishing marginal utility 

suggests that the WTP for a four foot improvement in water clarity should be greater for 

individuals facing lower initial clarity levels. Because neighboring parcels face similar 

viewpoints of the initial conditions, but distant parcels might not, the value of the 

improvement should be highly correlated among neighbors. The Base Model and 

Distance Model both treat the initial clarity condition as unobservable, which implies the 

error terms are spatially correlated. To correct for this, we use the water clarity data to 

identify the initial conditions for each parcel in the entire population, leaving the 

unobserved (error) terms uncorrelated. But what is the appropriate measure of initial 

conditions? We propose two general approaches and implement them at multiple scales. 

 The first approach relies on the specific maps that were provided to respondents. 

To create these maps, the near shore portion of the study area was divided in to nine 

zones. These zones are shown in Figure 3. Each member of the sample was assigned to 

the zone that included the area nearest their property. The maps provided to the 

individual included a map of the entire study area and an inset that showed a closer view 

of water clarity in their zone. For all bayfront owners and some inland owners, this inset 
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contained their property. Other inland owners lived farther from shore and so their 

property was outside the area shown in the inset. These zones provide possible measures 

of initial conditions, q0, at several scales, two of which are estimated in this article. In 

Zone Model 1, q0 is the spatial average of the initial clarity within the individual’s own 

zone. In Zone Model 2, the measure includes the spatial average of initial clarity within 

the individual’s own zone and the two neighboring zones. For example, for an individual 

in Zone 5 the q0 used in Zone Model 2 equals the average value for all pixels in Zones 4, 

5, and 6. Zones 1 and 9 are located on the ends of the study area and are considered to 

have only one neighboring zone. 

 The second approach to measuring q0 considers the clarity near the individual 

property. In Radial Model 1, q0 is set equal to the value at the point in the bay nearest to 

the property. For bayfront properties, this is the initial water clarity at the point where 

their own property is located. For inland properties, the nearest point is the point on the 

bay with the smallest Euclidean distance from the centroid of the parcel, as measured 

using the analysis tools of ArcGIS. Radial Model 1 considers only the 30 meter pixel 

nearest the property, but it is possible that some owners, particularly inland property 

owners are more interested in water further from shore. To reflect this, Radial Model 2 

sets q0 equal to the average initial clarity for all points on the bay within a 1 km radius of 

the point nearest the property.  

 There are advantages and disadvantages to both approaches. As noted above, the 

Zone approach relies on the specific maps seen by the individual. Because the respondent 

viewed a close up of their own zone, it is possible that the information in this zone was 
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the primary information used to make the valuation decision. In addition, because the 

zones run along the shoreline of the bay, this approach allows us to expand the scale of 

our measure to include only near shore waters in a fairly straightforward manner. 

However, two problems exist with this approach. First, the Zone measures are not 

specific to individual properties and so they do not incorporate all available spatial 

information. Some properties were located near the border of two zones, but could only 

be assigned to one zone. Second, while all Zones are equal in total area, they differ in the 

percent of the Zone covered in water. In some zones, the area included extends farther 

from shore than in other areas. With the radial approach, the value of q0 is specific to each 

parcel and the size of the area considered is constant across parcels. However, this 

approach relies heavily on the location of the nearest point which may be a problem, 

particularly for inland property owners who are not likely to care about the water clarity 

within 30 m of someone else’s backyard. The two approaches are not necessarily 

mutually exclusive and it is possible that one measure is more accurate for one group 

than another. The objective here is not to create an exhaustive list of all possible 

measures of initial conditions, or to identify the “correct” measure. It is simply to 

illustrate the options available given the availability of GIS data, without which, none of 

these measures could be calculated. 

Empirical Results 

An important observation from the survey data is the significant difference 

between owners of bayfront property and owners of inland property. As seen in Table 3, 

bayfront property owners are more likely to use the bay and shoreline for recreation, be 
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familiar with water clarity and algae in the bay, and be older, more educated, and have 

higher income than inland property owners. In addition, bayfront properties tend to be 

owned for a longer period of time and used as vacation homes, rather than as a primary 

residence. Because of these differences, it is reasonable to assume that bayfront property 

owners have significantly different preferences for clarity improvements. To reflect this 

difference, we estimate separate WTP functions for the bayfront and inland property 

owners in our sample. 

Table 4 presents the parameter estimates and standard errors for the Base Model, 

Distance Model, Zone Models, and Radial Models. Three individual characteristics 

gathered from the survey data were included in the estimation. The first indicates how 

often the individual goes sailboating in Green Bay and the second indicates how often the 

individual walks or hikes along the shoreline of Green Bay. Both of these variables were 

measured on a five point Likert-scale, with “1” indicating “never” and “5” indicating 

“very often”. The third characteristic is household income, recorded as one of three 

income quantiles3.  

Table 4 presents the unscaled coefficient estimates from the logit model which 

includes the offer amount as an explanatory variable. To estimate the parameters of the 

WTP function, divide the coefficient on the WTP explanatory variables by the negative 

                                                 
3 Of the 457 properties considered in the estimation, 110 were missing income data. For these individuals, 
the income response was imputed following Mitchell and Carson (1989). The average response, conditional 
on township and bayfront/inland property, was used as a proxy for this variable. All responses (observed 
and imputed) were then divided into three quantiles, which is the final variable used in the estimation. A 
similar process was used to impute the missing “Boating” and “Hiking” variables for 16 and 11 of the 
observations, respectively. 
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of the coefficient on the offer amount. For example, in the Base Model, the predicted 

WTP of an inland property owner is  

0 ˆ{ | , , }
1.235 0.748 0.059 0.344

0.002 0.002 0.002 0.002

E WTP Z d q Z

Sailboating Hiking Income

α=
− −

= + + +
  (1.2) 

As expected the marginal impact of income on E{WTP} is significantly positive 

for all specifications. The marginal impact of frequent sailing is positive and significant 

for inland owners under all specifications, but only significant for bayfront owners in the 

Base, Distance, and Radial 2 Models. Conversely, the marginal impact of frequent hiking 

is positive and significant only for bayfront owners. The coefficient on the inverse 

distance variable is positive and significant under most specifications, indicating WTP 

decreases as distance from the bay increases. Looking at the different specifications, the 

impact of initial clarity conditions is less obvious, as the coefficient on this variable is 

significant using some measures, but negative using other measures. The implications of 

this result are discussed below.  

The Marginal Utility of Improved Clarity 

Due to the variation in water clarity across the sample, we can estimate the marginal 

utility of an improvement in water clarity for those models that include a measure of 

initial water clarity. Consider two property owners with identical characteristics, whose 

properties are equally distant from the bay. The only difference between the two owners 

is the initial water clarity conditions near their property. In the data, q0 is measured in 

1/16th of a meter and ranges from 4 to 54, so the marginal utility of water clarity can be 

reasonably identified for clarity levels ranging from zero to 4 meters. If one of our two 
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property owners faces one meter of clarity, but the other faces 1.5 meters, the value of 

half a meter of clarity, located one to 1.5 meters below the surface, is equal to the 

difference in the expected WTP of these two individuals. So the value of a marginal 

improvement in q is simply 

1 1ˆ
A B

WTP
q q q

γ
⎛ ⎞∆

= −⎜ ⎟∆ ⎝ ⎠
  (1.3) 

where γ̂  is the coefficient on initial water clarity divided by the negative of the 

coefficient on the offer amount and qA and qB are the new and old values of q. Using the 

parameter estimates given in Table 4, we can compare three aspects of marginal WTP for 

improved clarity.  

The first comparison is between bayfront and inland property owners. According 

to the estimated parameter values, the WTP of inland property owners is not statistically 

dependent on initial water clarity levels for any of the models estimated. The marginal 

WTP of bayfront property owners is always greater than that of inland property owners. 

This implies that a given individual with property along the bayfront will have a higher 

WTP than an individual with the same characteristics who owns inland property, for all 

initial levels of water clarity. This is intuitive, as the bayfront property owner is likely to 

have higher use and non-use values for water clarity simply because of his more 

immediate and constant relationship with the water. 

The second and third comparisons are related to the different measures of water 

clarity used in the models. Comparing the Zone Models to the Radial Models shows that 

the marginal WTP for an additional foot of clarity is higher for the Zone models than for 
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the Radial models. We can also look at the effect of the scale of the water clarity 

measure. Zone Model 1 and Radial Model 1 both consider the water clarity in a small 

area relative to Zone Model 2 and Radial Model 2. The larger scale models imply a 

higher marginal WTP. By definition, the Zone models include a spatial extent larger than 

the comparable Radial measures so it is likely that the observed difference between the 

type of measure and the spatial extent of the measure are related. Regardless, these results 

indicate the impact of measurement approaches and scales in estimating the benefits of a 

water clarity improvement. 

Individual WTP 

 Tables 5 and 6 report the E{WTP}, conditional on county and property type, 

calculated using sample mean data values, and a 95% confidence interval on this value, 

found using the Krinsky-Robb procedure (Krinsky and Robb 1986). The uncertainty 

expressed in the confidence interval is due to the variance of the estimated parameters. 

Because of the differences in mean data values for different counties, we estimated a 

separate value for each county. As a result, for each model, we present eight E{WTP} 

values, a bayfront and inland value for each of four counties. Several interesting 

observations can be made from these results.  

 First, E{WTP} varies significantly between counties for both bayfront and inland 

properties. For every model, owners in Oconto County have the lowest E{WTP}. This is 

to be expected given the rural nature of the county and the relative lack of vacation 

homes. Owners in Brown and Kewaunee Counties have the highest E{WTP}. These 



21 
counties are more urban and located in the southern part of the bay, where water clarity is 

poorest. 

 Including distance from the bay as an observable variable increases E{WTP} for 

Door County owners, but decreases it for owners in the other three counties. This 

difference is likely due to the high density of inland homes very close to the bay in Door 

County. The mean distance to the bay is significantly higher than the median distance for 

homes in Door County. In the Base Model all properties are treated as though they are the 

same distance from the bay. In the Distance Model, the parameter estimates imply that 

WTP is lower for properties farther from the bay and higher for properties close to the 

bay. In Door County, the majority of properties are very close to the bay and so have a 

higher WTP. This drives up the mean WTP for the county. In the other counties, the 

mean distance to the bay is at least twice that of Door County. Also, the properties in 

other counties are more symmetrically distributed about their mean. This decreases the 

E{WTP} for these counties, relative to the base model. 

 Including a measure of the initial water clarity conditions also has a mixed impact 

on E{WTP}. Because distance was included in each of these models, the proper 

comparison is with the results of the Distance Model. The WTP of bayfront property 

owners is more dependent on initial conditions than is the WTP of inland property 

owners. For bayfront owners, conditioning WTP on initial conditions significantly 

increases the E{WTP} of Brown County properties, which are located in the 

southernmost part of the bay where water clarity is the poorest. The E{WTP} decreases 

for properties in Door and Oconto Counties, located in the northern part of the study area 
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where initial clarity is already around 11 feet. The rationale for these differences is 

similar to the discussion of distance above. Assuming WTP does not depend on initial 

conditions, is equivalent to assuming everyone faces the same initial conditions, or that 

there is no correlation between initial conditions and WTP. While this might be a valid 

assumption for a smaller body of water, it is clearly not the case for Green Bay. We 

expect that property owners facing poor initial conditions will have a higher WTP for the 

same absolute increase in water clarity. So when we allow WTP to depend on initial 

conditions, we should find that the E{WTP} should increase for properties with low 

initial clarity and decrease for others. Both the Zone and Radial approaches show this to 

be generally true, however, the pattern is much more consistent and significant for 

bayfront properties. 

Discussion and Conclusion 

Based on the data presented in this application, it is clear that the biased parameter 

estimates that result from spatially correlated error terms can lead to potentially 

significant impacts on final WTP estimates and resulting policy recommendations. 

Further research is needed to compare the different measures of water clarity, as 

statistical comparisons of the goodness of fit of the different specifications used in this 

article do not aid in model selection. These future studies could use survey questions to 

solicit information regarding which attributes of the improvement play the largest role in 

the decision making process. In some ways, using water clarity maps is similar to 

conjoint analysis stated preference studies in which respondents choose between two 

bundles of different attributes, in that the attributes of the choice are unique to each 
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individual. Unlike the conjoint analysis, though, in this study, the analyst cannot observe 

exactly which attributes of the good the respondent is focused on. Is near shore clarity 

more important that clarity in the middle of the bay? Or is the respondent most concerned 

about the worst levels of clarity, regardless of where they are located. Additional survey 

questions addressing this issue would help in model selection. 

This article presents a unique approach to measuring the benefits of water quality. 

The size of the study area and the enormous variation in water quality throughout the bay 

presented major challenges to conducting a valid CV study. The issues addressed by 

environmental and resource economics are unavoidably dependent on space and the 

potential role of GIS in helping to tackle these issues is only just beginning to be explored 

(Bateman et al 2002). This article represents a first step at applying spatially detailed GIS 

water quality data to a stated preference study of water quality improvements.  

The results of this article support previous work that shows WTP for water quality 

improvements is inversely related to the distance to the water body. Previous CV studies 

of water quality improvements have relied on categorical representations of water quality 

that do not lend themselves to valuing marginal improvements in quality. This article 

takes the approach of many revealed preference studies in conditioning WTP on a 

quantitative measure of water quality specific to each observation, allowing for direct 

estimation of the WTP for a marginal improvement in quality. The benefit of this 

approach is avoiding the unnecessary and often untrue assumptions that water quality 

does not vary across the study area or that individual WTP for improved water quality 

does not depend on the water quality currently faced by the individual.  
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In fact, by leaving distance and initial clarity out of the model, we cannot estimate 

unbiased parameter values because the error terms of the model will be spatially 

correlated. First consider the distance variable. If you do not include this in the model, as 

in the Base Model, then the error terms for inland respondents will be spatially correlated 

since distance information ends up in the error term. This variable is significant in the 

other models, suggesting spatial correlation of the error term in the Base Model. Second, 

consider the initial water clarity variable. If this is left out of the model, as in the Base 

and Distance models, then the error term for bayfront properties will be spatially 

correlated because water clarity is spatially correlated. This is also a significant variable, 

which again suggests spatial correlation of the error term in both the Base and Distance 

models. Spatial correlation in discrete choice models leads to biased and inefficient 

parameter estimates and is generally difficult to identify and correct. By using the digital 

water clarity and parcel data, we can identify the spatially correlated variables of distance 

and initial water clarity and separate these from the error term. This controls for spatially 

correlated errors and generates unbiased and efficient parameter estimates. 
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Table 1. Population and number of parcels in study area by county. 

Townships 
located in… 

Population Total 
number of 

Parcels 
 

Total number of 
residential parcels 
less than 35 acres, 

N_parcels 

Percentage of 
N_parcels that are 

located on the 
bayfront 

Door County 

 
4,133 6,227 4,557 32.48% 

Kewaunee 
County 
 

1,553 1,378 838 17.18% 

Brown County 
 

125,771 50,659 40,441 1.99% 

Oconto County 
 

13,138 9,727 3,518 11.65% 

Note: Population data based on January 1, 2005 estimates from Wisconsin State Government Website, 
http://www.doa.state.wi.us, and only includes townships within the four counties that contain bayfront 
property.  

Table 2. Response rate by offer amount and by property type. 

Offer Number Mailed 
 

Response Rate Useable Response Rate 

$50 
 

167 66.7% 64.7% 

$100 
 

168 56.7% 53.5% 

$300 
 

167 65.8% 61.4% 

$500 
 

166 67.3% 63.3% 

$700 
 

166 71.2% 68.6% 

$1000 
 

166 58.1% 54.8% 

Total 
 

1000 64.3% 61.0% 

Bayfront 
  

500 69.6% 66.4% 

Inland 
 

500 58.4% 55.6% 

Total 
 

1000 64.3% 61.0% 

Note: Returned but completely unanswered (unit non-response) are considered as unreturned 
surveys. Returned surveys with item non-response for the CV question are considered “Unusable” 
and left out of the analysis. “Useable” implies a returned survey with a CV response.
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Table 3. Characteristics of bayfront and inland property owners. 

 Bayfront 
 

Inland 

Percent of respondents who 
frequently boat on Green Bay. 
 

 
34% 

 
16% 

Percent who frequently hike  
along the shore of Green Bay. 
 

 
88% 

 
73% 

Average age of property owner. 
 

59.2 53.4 

Median education level. 
 

Trade school 
graduate 

Some college or trade 
school 

Median income level. 
 

$70,000 - $79,999 $50,000 - $59,999 

Percent retired. 
 

45% 30% 

Average time owner has  
owned their property. 
 

 
19.6 years 

 
16.4 years 

Percent of properties used  
as vacation homes. 
 

 
44% 

 
11% 

 



        

         

30
Table 4. Unstandardized parameter estimates. 
 Base Model Distance Model Zone Model 1 Zone Model 2 Radial Model 1 Radial Model 2 

Parameter 
Estimates 

(Std. Error) 
Bayfront Inland Bayfront Inland Bayfront Inland Bayfront Inland Bayfront Inland Bayfront Inland 

Constant 
 
 

-0.910* 
(0.503) 

-1.235** 
(0.476) 

-0.910* 
(0.503) 

-1.158** 
(0.480) 

-1.300** 

(0.545) 
-1.528** 
(0.538) 

-1.816** 
(0.612) 

-1.697** 
(0.615) 

-1.356** 
(0.544) 

-1.642** 
(0.562) 

-1.198 
(1.082) 

0.916 
(1.087) 

Sailboating 
 
 

0.227* 
(0.121) 

0.748** 
(0.231) 

0.227* 
(0.121) 

0.681** 
(0.234) 

0.196 
(0.123) 

0.676** 
(0.238) 

0.172 
(0.124) 

0.677** 
(0.239) 

0.193 
(0.123) 

0.684** 
(0.238) 

0.230* 
(0.121) 

0.624** 
(0.233) 

Hiking 
 
 

0.229** 
(0.109) 

-0.059 
(0.123) 

0.229** 
(0.109) 

-0.093 
(0.126) 

0.239** 
(0.110) 

-0.061 
(0.128) 

0.252** 
(0.111) 

-0.055 
(0.129) 

0.246** 
(0.111) 

-0.053 
(0.128) 

0.233** 
(0.110) 

-0.052 
(0.128) 

Income Group 
(1=low, 3=high) 
 

0.368** 
(0.161) 

0.344* 
(0.176) 

0.368** 
(0.161) 

0.359** 
(0.178) 

0.377** 
(0.163) 

0.324* 
(0.180) 

0.374** 

(0.164) 
0.314* 
(0.181) 

0.373** 
(0.163) 

0.323* 
(0.180) 

0.368** 
(0.161) 

0.399** 
(0.182) 

d-1 

 - - - 
0.218 

(0.143) 
 

- 
0.264* 
(0.148) - 

0.263* 
(0.149) - 

0.278* 
(0.150) - 

0.208 
(0.143) 

q0
-1; q0 = own zone - - - - 8.218** 

(4.104) 
6.220 

(3.834) - - - - - - 

q0
-1; q0 = own and 

nearest zones 
 

- - - - - - 
20.858** 
(7.671) 

11.670 
(8.081) - - - - 

q0
-1; q0 = nearest 

point 
 

- - - - - - - - 
6.421** 
(2.731) 

5.540* 
(3.180) - - 

q0
-1; q0 = nearest 1 

km radius 
 

- - - - - - - - - - 
12.230 

(32.443) 
98.564** 
(46.853) 

Offer 
 

-0.002** 
(0.0004) 

 

-0.002** 
(0.0005) 

-0.002** 
(0.0004) 

-0.002** 
(0.0005) 

-0.002** 
(0.0004) 

-0.002** 
(0.0005) 

-0.002** 
(0.0004) 

-0.002** 
(0.0005) 

-0.002** 
(0.0004) 

-0.002** 
(0.0005) 

-0.002** 
(0.0004) 

-0.002** 
(0.0005) 

-2LL 374.292 
 

286.517 374.292 284.272 370.203 281.658 366.736 282.188 368.644 281.256 374.150 279.438 

Note: d is measured in kilometers and q0 is measured as 1/16 meters. Asterisk (*) and double asterisk (**) denote variables significant at 10% and 5% respectively. 



  31  

Table 5. Individual WTP for Bayfront Property Owners by county  

 

Base 
Model 

 

Distance 
Model 

Zone  
Model 1 

Zone  
Model 2 

Radial  
Model 1 

 

Radial 
Model 2 

 
E{WTP} 

 
409.55 

 
409.55 

 
341.13 288.45 320.70 408.96 

D
oo

r 95% CIa 

 

 

[298.15, 
517.41] 

 

[299.71, 
519.35] 

[213.96, 
473.94] 

[144.59, 
425.53] 

[178.37, 
447.83] 

[203.35, 
599.97] 

E{WTP} 
 

450.91 
 

450.91 464.51 562.61 390.32 451.85 

K
ew

au
ne

e 

95% CI [343.49, 
567.25] 

 

[343.85, 
566.31] 

[366.79, 
587.05] 

[435.56, 
719.88] 

[273.92, 
506.54] 

[259.95, 
633.37] 

E{WTP} 465.49 
 

465.49 586.78 640.59 624.32 465.73 

B
ro

w
n 95% CI [354.72, 

585.98] 
 

[356.00, 
586.62] 

[428.87, 
779.21] 

[477.82, 
846.60] 

[456.61, 
835.72] 

[270.60, 
652.71] 

E{WTP} 363.37 
 

363.37 326.36 328.20 336.25 364.26 

O
co

nt
o 

95% CI [241.44, 
471.47] 

 

[244.95, 
474.92] 

[203.52, 
440.70] 

[206.22, 
438.03] 

[219.33, 
444.40] 

[138.18, 
557.81] 

aCalculated using the Krinsky and Robb Procedure (Krinsky and Robb 1986), with 10,000 draws of β 

 

Table 6. Individual WTP for Inland Property Owners by county 

 

Base 
Model 

 

Distance 
Model 

Zone  
Model 1 

Zone  
Model 2 

Radial  
Model 1 

 

Radial 
Model 2 

 
E{WTP} 92.46 

 
124.11 66.37 61.85 57.00 101.46 

D
oo

r 

95% CIa [0,243.22] 
 

[0,268.25] [0,223.64] [0, 236.07] [0, 220.38] [0, 248.25] 

E{WTP} 276.49 
 

254.10 244.40 323.10 183.17 203.58 

K
ew

au
ne

e 

95% CI [47.84, 
448.44] 

 

[39.29, 
417.80] 

[19.72, 
401.47] 

[86.43, 
498.64] 

[0, 365.34] 
 
 

[0, 373.79] 
 
 

E{WTP} 103.79 
 

96.80 242.53 221.26 245.71 109.01 

B
ro

w
n 

95% CI [0, 248.64] 
 

[0, 234.63] [0, 438.65] [0, 417.82] [0, 447.15] 
 

[0, 243.31] 
 

E{WTP} 24.14 
 

16.19 0.00 0.00 0.00 
 

24.08 
 

O
co

nt
o 

95% CI [0, 182.40] 
 

[0, 167.00] [0, 141.70] [0, 146.89] [0, 148.25] 
 

[0, 174.25] 
 

aCalculated using the Krinsky and Robb Procedure (Krinsky and Robb 1986), with 10,000 draws of β 
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Figure 1. Sample water clarity maps for a property owner in the city of Green Bay, 
WI 

 
Note: The actual maps used in the survey were 8.5 x 11 inches each and in color and were created 
using water clarity data provided by Jonathan Chipman at the Environmental Remote Sensing 
Center, University of Wisconsin-Madison. Details of the process used to create that data are 
available in Chipman et al (2005).  
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Figure 2. The distribution of sampled properties within the study area. 
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Figure 3. Boundaries of the zones used for the Zone Models. 

 


