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When Should Uncertain Nonpoint Emissions be Penalized in a 

Trading Program? 
 

Abstract 

When nonpoint source pollution is stochastic and the damage function is convex, intuition might 

suggest it is more important to control a nonpoint pollution source than a point source.  Earlier 

research has provided sufficient conditions such that the permit price for a unit of ex-ante 

expected emissions should be higher than the permit price for a unit of certain emissions.  Herein 

we provide a set of necessary and sufficient conditions such that this is the case.  An approach to 

testing for the validity of the condition set is available, and has been applied to a related problem. 

 

Keywords: agricultural pollution, multiple inputs, permit trading, social optimality, trading ratio, 

water quality.  

 

JEL classification: Q1, Q2, D2, D8



The categorization of pollutant emission sources into point and nonpoint has proven to be useful 

in large part because point sources are generally viewed as being more certain, more readily 

monitored, and more readily controlled.  Nonpoint sources, such as nitrogen and phosphorus 

entering waterways from cropland, can depend on such random events as rainfall and 

temperature.  A question that has been raised in the literature is how these distinctions should 

affect the use of instruments to optimally manage the expected damage from pollution.  In 

particular, suppose point source emissions and expected nonpoint source emissions are both 

subject to permit requirements where free trade in permits is allowed.  Then should the permit 

price for a unit of expected emissions from a nonpoint source exceed the price for a unit of 

emissions from a point source? 

The issue is important because nonpoint emissions can dominate loadings in watersheds.1  A 

focus on point sources creates economic distortions and can severely limit the ability to control 

overall emissions.  A variety of point-nonpoint trading schemes have been implemented over the 

years.  These have achieved only limited success, in part because of problems with specifying 

what is to be traded and the terms of trade.2  The issue is also important because, in practice, the 

implemented point-nonpoint trading ratio has tended to place a higher price per unit of pollution 

on point source emissions permits.3  By contrast, theoretical models to date lean toward a higher 

price per unit (expected) pollution on nonpoint source emissions permits (Horan 2001). 

Aspects of the impact of the existence of emissions uncertainty on optimal incentives have 

been addressed in Shortle (1990, p. 794), in Malik, Letson, and Crutchfield (1993, p. 964), in 

Zhang and Wang (2002, p. 171), in Horan and Shortle (2005, p. 346), and elsewhere.  The intent 

of this article is to provide definitive conditions under which emissions uncertainty should 

induce a larger price on expected emissions from nonpoint sources.  To make our point we study 

                                                 
1 See Table 2 in Horan, Shortle, and Abler (2002) on nitrogen loads in the Susquehanna River 
Basin. 
2 Further discussions on design issues can be found in Horan et al. (2001), Horan, Shortle, and 
Abler (2002) and Farrow et al. (2005). 
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a version of the standard model (Shortle 1990; Horan and Shortle 2005). 

 

Model 

Our model is as in Horan and Shortle (2005).  In it there is a single point source, labeled as 

‘firm,’ and a single nonpoint source, labeled as ‘farm.’  The regulator seeks to minimize the 

expected total cost to society as represented by the sum of the i) cost of reducing point source 

emissions, ii) cost of reducing the level of an input associated with nonpoint source emissions, 

and iii) expected damage done by emissions.  The regulator controls emissions by imposing a 

binding maximum total level of point source emissions, imposing a binding maximum total level 

of expected nonpoint source emissions, allocating permits as property rights and allowing trade in 

these permits.  Permits in point source and nonpoint source markets can be converted to the other 

at an exchange rate determined by the regulator.  As a special case of the Horan-Shortle (H&S) 

framework, we assume that the total levels of point source and nonpoint source expected 

emissions permits are set at their socially optimal levels.  Equilibrium permit prices can be 

compared to identify the regulator-determined exchange rate, what is known in the literature as 

the trading ratio. 

The firm produces point source pollution to the amount e .  This firm can control the extent 

of emissions, but at cost ( )c e .  It is costly at the margin to do so but the marginal cost of control 

decreases as the emission level increases, i.e., ( ) 0 ( )e eec e c e< <  where subscripts indicate 

derivatives.  The farm’s emissions are stochastic, but do depend on a single input choice made by 

the farm.  Actual emissions cannot be observed by the regulator.  With input choice level 0x ≥ , 

farm emissions amount to ( , )r x θ .  Here θ  is a reference random variable with finite support 

[ , ]l uθ θ , distribution ( )F θ  and density ( )f θ .  The consequence of an increase in θ  for nonpoint 

emissions is held to be adverse, or ( , ) 0 [ , ], 0l ur x xθ θ θ θ θ≥ ∀ ∈ ∀ ≥ .  

                                                                                                                                                             
3 Horan (2001) provides evidence on this and suggests a reason why it is so. 
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The input-conditioned mean value of farm emissions is ( ) [ ( , )] ( , ) ( )u

l

x E r x r x dF
θ

θ
μ θ θ θ= = ∫ .  

Quantity ( )xμ  is the expected load from the nonpoint source and it is assumed that the input 

increases expected load, ( ) 0x xμ > .  The nonpoint source can reduce use of the input in order to 

reduced expected emissions, but at profit loss ( )g x  where ( ) 0 ( )x xxg x g x< < .  The social 

damage function is of form ( )D z , ( , )z e r x θ= + , where the argument is the additive sum of 

point and nonpoint emissions.  Damage is strictly increasing and weakly convex in emissions, or 

( ) 0zD z >  and ( ) 0zzD z ≥ .  

The regulator sets point emissions and expected nonpoint emissions permit levels such that 

the equilibrium permit prices are q  and p , respectively.  These prices are set to support the 

socially optimal point and expected nonpoint emissions levels.  Price ratio /p q  can be viewed as 

the number of units of point emissions that can be exchanged for one nonpoint emission in permit 

markets that allow these permit conversions.4  

Suppose the point source has initial allocations amounting to 0e  units of point source 

emissions permits and zero units of nonpoint source expected emissions permits.  Suppose too 

that the nonpoint source has initial allocations amounting to 0r  units of nonpoint source expected 

emissions permits and zero units of point source emissions permits.  The private optimality 

problems under permit market price-taking are:  

(1) 
0

0

min ( ), ( ) ( ) ( );

min ( ), ( ) ( ) ( ( ) ).

pt pt
e

npt npt
x

S e S e c e q e e

S x S x g x p x rμ

= + × −

= + × −
 

The regulator seeks to align incentives with the social optimality problem of minimizing the sum 

of private costs and expected social damage.   

The social objective function and first-order optimality conditions are:5 

                                                 
4 For example, were / 1.1p q =  then eleven units of point source pollution emissions would trade 
for ten units of nonpoint source units of pollution emissions. 
5 An alternative objective function that appears to find favor with policy makers is the 
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(2) 

*

* * * * *

( , ) ( ) ( ) ( ) ( );

( ) ( ) ( ) 0; ( ) ( ) ( , ) ( ) 0;

u

l

u u

l l

uncer

e z x z x

T e x c e g x D z dF

c e D z dF g x D z r x dF

θ

θ

θ θ

θ θ

θ

θ θ θ

= + +

+ = + =

∫

∫ ∫
 

where * *( , )e x  is the socially optimal choice vector, * * *( , )z e r x θ= + , and *( )ec e  is understood 

to mean the obvious derivative evaluated at the point *e e= .  Bear in mind that choosing x  is 

equivalent to choosing ( )xμ .  From (1) and (2) it is clear that the socially optimal permit prices, 

*q q=  and *p p= , and optimal trading ratio, * * */p qτ = , are6  

(3) 
( )

* *
*

* * * *
* *

* * * ***
*

* * * * * * *

( ) ( , ) ( ) ( )( ) ( ) ( ); ;
( ) ( )

( ) ( , ) ( ) Cov ( ), ( , )( ) 1 .
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

u

u l

l

u

l

u u

l l

z x
x

z e
x x

z x z xx

x e x z x z

D z r x dF g xq D z dF c e p
x x

D z r x dF D z r xg xp
q x c e x D z dF x D z dF

θ

θ θ

θ

θ

θ
θ θ

θ θ

θ θ
θ

μ μ

θ θ θ
τ

μ μ θ μ θ

= = − = = −

= = = = +

∫
∫

∫
∫ ∫

 

By contrast, the objective function to be minimized and first-order conditions under certain 

nonpoint pollution at level ( )xμ  are 

(4) 
( )

( ) ( )* * * * * * *

( , ) ( ) ( ) ( ) ;

( ) ( ) 0; ( ) ( ) ( ) 0.

cer

e z x z x

T e x c e g x D e x

c e D e x g x D e x x

μ

μ μ μ

= + + +

+ + = + + =
 

In this case the optimal trading ratio is  

(5) 
*

* *

( )ˆ 1,
( ) ( )

x

x e

g x
x c e

τ
μ

= =  

so that  

(6) 
( ) ( )

* *
* * * *

* *

Cov ( ), ( , )
ˆ 1 Cov ( ), ( , ) .

( ) ( ) ( )u

l

signz x
z x

x z

D z r x
D z r x

x D z dF
θ

θ

θ
τ τ τ θ

μ θ
− = − = =

∫
 

                                                                                                                                                             
minimization of costs subject to a maximum specified probability of exceeding a threshold 
damage level.  We chose to follow the present specification because the threshold model will 
only maximize social welfare under certain circumstances.  
6 In other studies the trading ratio is defined as * * */t q p= , but the algebra and intuitive 
interpretations are more direct under the inverse ratio we consider. 
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So whenever the covariance is positive then * 1τ ≥ .  This means that the optimal ratio of the 

permit price for an expected unit of uncertain nonpoint emissions to the price for a unit of certain 

point emissions exceeds that when nonpoint emissions are certain.  That is, if * 1τ >  then 

comparatively stronger incentives are provided to control nonpoint sources.  Whenever the 

covariance is negative then the reverse is true.  

To summarize, our structural assumptions are:  

SA: i) ( ) 0 ( ) 0e eec e c e e< < ∀ ≥ , ii) ( ) 0 ( ) 0x xxg x g x x< < ∀ ≥ , iii) damage is of form ( )D z , z =  

( , )e r x θ+ , where ( ) 0zD z >  and ( ) 0zzD z ≥ , iv) nonpoint pollution level ( , )r x θ  satisfies 

( , ) 0 [ , ], 0l ur x xθ θ θ θ θ≥ ∀ ∈ ∀ ≥ , and v) θ  has distribution ( )F θ  such that ( , ) ( ) /u

l

d r x dF dx
θ

θ
θ θ∫  

0 0x> ∀ ≥ .   

 

Results in the Literature 

Our eqn. (6) is a variant of eqn. (10) in H&S.7  Although the model is slightly different, our eqn. 

(6) is analogous to the expressions given in (6) and (7) of Shortle (1990).  The well-known 

covariance, or Čebyšev, inequality (Mitrinović 1970) asserts the following sufficient conditions 

to sign covariance; if ( )m θ  and ( )n θ  are increasing functions of random variable θ  then 

Cov[ ( ), ( )] 0m nθ θ ≥ .  We will present findings from the literature in context with the covariance 

inequality. 

With * *( ) [ ( , )]zm D e r xθ θ= +  then * * * *( ) [ ( , )] ( , ) ( , )
sign

zzm D e r x r x r xθ θ θθ θ θ θ= + = .  With 

*( ) ( , )xn r xθ θ=  then *( ) ( , )xn r xθ θθ θ= .  So, given assumptions SA, eqn. (6) implies that * 1τ ≥  

at equilibrium choices whenever Ri) *( , ) 0 [ , ]x l ur xθ θ θ θ θ≥ ∀ ∈ .  On the other hand, * 1τ ≤  at 

equilibrium choices whenever Rii) *( , ) 0 [ , ]x l ur xθ θ θ θ θ≤ ∀ ∈ .  This captures the essence of 

                                                 
7 Bear in mind that * *1/ tτ = , see footnote 6. 
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statements made in Shortle (1990), H&S and others on the role of emissions uncertainty in 

determining whether some penalty should be placed on expected emissions.  Appendix A 

provides further details, as well as some clarifications, on conclusions in the literature.   

Ri) and Rii) are sets of sufficient conditions to sign * 1τ −  for all increasing and convex 

damage functions.  But they are not necessary conditions since, as we shall show, monotonicity 

on *( , )xr x θ  in the sense of (say) *( , ) 0 [ , ]x l ur xθ θ θ θ θ≥ ∀ ∈  is not required.  Neither are they 

particularly weak conditions since, for example, condition set Ri) is likely to be quite onerous in 

practice.  The main intent of this article is to provide a complete characterization of conditions 

such that * 1τ −  can be signed for all increasing and convex damage functions.  We will also 

point to empirical methods for doing so.  

 

Analysis 

With * ˆ[ ( , ) | ]xE r x θ θ θ≤  as the expected value of *( , )xr x θ  given that ˆθ θ≤ , the following is 

demonstrated in Appendix B: 

Proposition 1.  Under SA, then the optimal trading ratio satisfies * ( )1τ ≥ ≤  for all considered 

damage functions if any one of the three condition sets i)-iii) are satisfied: i)  

(7) * *ˆ ˆ[ ( , ) | ] ( ) [ ( , )] [ , ].x x l uE r x E r xθ θ θ θ θ θ θ≤ ≤ ≥ ∀ ∈  

ii)  * *ˆ ˆ ˆ( , ) ( ) [ ( , ) | ] [ , ]x x l ur x E r xθ θ θ θ θ θ θ≥ ≤ ≤ ∀ ∈ . 

iii) *( , ) ( ) 0 [ , ]x l ur xθ θ θ θ θ≥ ≤ ∀ ∈ . 

Condition set i) is both necessary and sufficient.  Condition set iii) implies condition set ii) 

and ii) implies condition set i). 

 

For * *ˆ ˆ[ ( , ) | ] [ ( , )] [ , ]x x l uE r x E r xθ θ θ θ θ θ θ≤ ≤ ∀ ∈ , the interpretation of (7) is that the 

expected marginal nonpoint emissions conditional on ˆθ θ≤  is less than the unconditional 
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expected marginal nonpoint emissions.8  The condition captures a weak form of conditional 

dependence between the nonpoint emission and the source of randomness.  So, for the ≤  

direction, at low θ  values the marginal contribution of input x  to nonpoint emissions is low on 

average.  This is unfortunate, bearing in mind the convex damage function.  The marginal 

contribution of the input to nonpoint emissions tends to be low when marginal damage is low 

(when θ  is low) and high when marginal damage is high.  So the input tends, on average, to 

cause more emissions under states of nature such that additional damage at the margin is more 

costly.  Relation (7) is necessary in the following sense.  If the inequality in the ≤  direction does 

not apply for some interval on [ , ]l uθ θ  then there exists an increasing and convex damage 

function such that * 1τ < .  Part iii) is the standard application of the covariance inequality, as 

discussed earlier.  

From a policy perspective, Proposition 1 is interesting because it is not clear to the authors 

why (7) in the ≤  direction should be considered to be more reasonable than in the ≥  direction.  

If (7) is true in the ≥  direction, then * 1τ ≤  and the socially optimal price of a permit to emit an 

expected unit from a nonpoint source is lower than the socially optimal permit price to emit a 

unit from a point source.  Suppose, for the sake of concreteness, that θ  is rainfall and that x  is 

nitrogen.  Using iii), the case could be put forward that more nitrogen makes nonpoint emissions 

more sensitive to rainfall so that ( ) 0 [ , ]x l ur θ θ θ θ⋅ ≥ ∀ ∈  and * 1τ ≥ .  But the case is very much 

dependent upon context.  If nitrogen promotes plant survival then more plants survive to absorb 

soil nitrogen in high rainfall states and less nitrogen enters waterways. 

A special damage function warrants attention.  Suppose that 2
0 1 2 1( ) , 0D z z zα α α α= + + > , 

2 0α > , so that ( ) ( )* * * *Cov ( ), ( , ) Cov ( , ), ( , )
sign

z x xD z r x r x r xθ θ θ= .  The latter is the condition 

studied in Shortle (1990).  Although ( , ) 0r xθ θ ≥  has been assumed, the covariance still cannot be 

                                                 
8 From a study of Shaked and Shanthikumar (2007) and elsewhere, we cannot identify a 
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signed unless further assumptions are made on how *( , )xr x θ  changes with θ .  Turning to when 

(7) does not apply in either direction over all ˆ [ , ]l uθ θ θ∈ , then the only recourse is to attempt to 

refine one’s beliefs about ( )D z  and ( , )r x θ .  Stronger conditions can allow for a weaker 

condition set to replace (7).9  The authors do not have beliefs about ( )D z  and ( , )r x θ  beyond 

those outlined in SA.  

Plural different inputs are generally applied in nonpoint production activities, so it would be 

reassuring to establish that condition (7) has multivariate analogs.  We will confirm this to be true 

for just two inputs, where the multi-input extension is then straightforward.  Let there be a second 

nonpoint input labeled as y .  The input-conditioned mean value of farm emissions is now 

( , ) [ ( , , )] ( , , ) ( )u

l

x y E r x y r x y dF
θ

θ
μ θ θ θ= = ∫ , with the obvious extension in notation.  The second 

input also increases expected load, 0yμ > .  The profit decline associated with this second 

nonpoint source is ( , )g x y  where 0y yyg g< < .  The social objective function and optimality 

conditions become:10 

(8) 

*

* * * * * * *

* * * * *

( , , ) ( ) ( , ) ( ) ( );

( ) ( ) ( ) 0; ( , ) ( ) ( , , ) ( ) 0;

( , ) ( ) ( , , ) ( ) 0.

u

l

u u

l l

u

l

uncer

e z x z x

y z y

T e x y c e g x y D z dF

c e D z dF g x y D z r x y dF

g x y D z r x y dF

θ

θ

θ θ

θ θ

θ

θ

θ

θ θ θ

θ θ

= + +

+ = + =

+ =

∫

∫ ∫

∫

 

The socially optimal permit prices * *, *,( , , ) ( , , )x y x yq p p q p p=  and optimal trading ratios 

*, *, *, * *, *( , ) ( / , / )x y x yp q p qτ τ = , are  

                                                                                                                                                             
stochastic dominance relation that is equivalent to condition (7). 
9 Perform a further integration-by-parts on (B2) in Appendix B. 
10 Second-order sufficient convexity conditions are assumed to hold. 
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(9) 

( ) ( )

* * *

* * *,
* *

* * *

*,
* *

* * * * * *
*, *,

* * * * * *

( ) ( , , ) ( )
( ) ( ); ;

( , )

( ) ( , , ) ( )
;

( , )

Cov ( ), ( , , ) Cov ( ), ( , , )
1 ; 1

( , ) ( ) ( ) ( , ) (

u

u l

l

u

l

u

l

z x
x

z
x

z y
y

y

z x z yx y

x z y z

D z r x y dF
q D z dF p

x y

D z r x y dF
p

x y

D z r x y D z r x y

x y D z dF x y D z

θ

θ θ

θ

θ

θ

θ

θ

θ θ
θ

μ

θ θ

μ

θ θ
τ τ

μ θ μ

= =

=

= + = +

∫
∫

∫

∫
.

) ( )u

l

dF
θ

θ
θ∫

 

A faithful adaptation of the Proposition 1 proof shows that *, ( )1iτ ≥ ≤  for { , }i x y∈  and all 

convex damage functions if and only if * * * *ˆ ˆ[ ( , , ) | ] ( ) [ ( , , )] [ , ]i i l uE r x y E r x yθ θ θ θ θ θ θ≤ ≤ ≥ ∀ ∈  

for the chosen { , }i x y∈ .  It is interesting that, beyond ensuring convexity, interactions between 

x  and y  in ( , )x yμ  are not relevant for these qualitative results. 

 

Discussion 

Can condition set (7) be tested to provide statistical evidence in either direction?  Empirical 

estimates of *[ ( , )]xE r x θ  and * ˆ[ ( , ) | ]xE r x θ θ θ≤  could be arrived at using observations from 

experimental plots.  Or they could be estimated by simulation using agronomic models that seek 

to account for rainfall and nitrogen, such as the Soil & Water Assessment Tool (SWAT).  There 

are, however, likely to be violations of (7) in one direction or the other due to sampling error.  

Some formal structure on errors will be necessary if statistical tests of the hypotheses generated 

by (7) are to be conducted.  Concerning a different problem, signing the marginal risk premium 

of an input under uncertainty, Roosen and Hennessy (2003) have used nitrogen application and 

corn yield data when testing a condition that is almost identical to (7).11  They applied methods 

from the literature on testing stochastic orderings.  These methods have seen significant advances 

in recent years, in particular to allow for dependence across observations.12  Dependence is likely 

                                                 
11 See especially their equations (5) and (7). 
12 Early work includes Tolley and Pope (1988), while Davidson and Duclos (2000), Zheng 
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to exist in any agronomic application.  Thus, tests for (7) are possible if the data are available. 

 

Conclusion 

This article has identified a set of necessary and sufficient conditions under which the existence 

of nonpoint emissions uncertainty motivates a price on a permit to emit a unit of expected 

pollution that is larger than the price on a permit to emit a certain unit of pollution.  The 

condition set is testable using existing empirical methods.  Tests are warranted because in 

practice trading ratios are not consistent with the preponderant belief in the literature that 

emissions from nonpoint sources should be penalized. 

                                                                                                                                                             
(2002), and Linton, Maasoumi, and Whang (2005) have provided increasingly robust models. 
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Appendix A 

Using our model notation, i.e., paraphrasing, Shortle (1990) states (p. 794) “The assumption that 

the damage cost function is convex ( 0zzD > ) implies that the sign of ( )* *Cov ( ), /zD z z x∂ ∂  is the 

same as that of ( )* *Cov , /z z x∂ ∂ .”  This is not true because all convex damage functions must be 

considered.  It is true that statement ‘ ( )* *Cov ( ), / ( ) 0zD z z x∂ ∂ ≤ ≥  for all convex damage 

functions’ implies statement ‘ ( )* *Cov , / ( ) 0z z x∂ ∂ ≤ ≥ .’  This follows because 2( ) ( )D z z= 2  is 

convex.  But statement ‘ ( )* *Cov , / ( ) 0z z x∂ ∂ ≤ ≥ ’ does not imply ‘ ( )* *Cov ( ), / ( ) 0zD z z x∂ ∂ ≤ ≥  

for all convex damage functions.’  This can be demonstrated by counter-example.  Let there be 

three equi-probable states of nature.  In ordinate form the first is * *( , / ) (1,1)z z x∂ ∂ = .  The 

ordinates for the other two states are (2,3)  and (3,0.8) .  Then ( )* *Cov , / 0.066 0z z x •∂ ∂ = − < .  

But consider also some other function, say 3( ) ( )D z z= a .  This is convex on 0z > .  Then 

( )* 2 *Cov ( ) , / 1.133 0z z x •∂ ∂ = > , i.e., the inequality is not valid for a different convex function.   

Appendix B 

Proof of Proposition 1. Part i): To establish sufficiency, write 

(B1) ( ) ( )* * * * * * *Cov ( ( , )), ( , ) ( ( , )) ( , ) [ ( , )] ( ),u

l
z x z x xD e r x r x D e r x r x E r x dF

θ

θ
θ θ θ θ θ θ+ = + −∫  

where ( )* *( , ) [ ( , )] ( ) 0u

l
x xr x E r x dF

θ

θ
θ θ θ− ≡∫ .  Using an integration-by-parts, eqn. (B1) may 

alternatively be written as  

(B2) 

( ) ( )

( )

( )

ˆ
ˆ

* * * * * * *

ˆ

ˆ
* * * * *

* * * * *

ˆCov ( ( , )), ( , ) ( ( , )) ( , ) [ ( , )] ( )

ˆ ˆ ˆ( ( , )) ( , ) ( , ) [ ( , )] ( )

ˆ ˆ ˆ( ( , )) ( , ) ( , ) [ ( , )] ( )

u

l
l

u

l l

z x z x x

zz x x

zz x x

D e r x r x D e r x r x E r x dF

D e r x r x r x E r x dF d

D e r x r x r x E r x dF d

θ θ
θ

θ
θ θ

θ θ

θθ θ

θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ

=

=

+ = + −

− + −

= − + −

∫

∫ ∫
ˆ

,u

l l

θ θ

θ θ
θ∫ ∫
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where ( ) ( )* * * *( , ) [ ( , )] ( ) ( , ) [ ( , )] ( ) 0l u

l l
x x x xr x E r x dF r x E r x dF

θ θ

θ θ
θ θ θ θ θ θ− = − =∫ ∫  has been used to 

simplify.  Thus, from (6) and * * *ˆ ˆ( ( , )) ( , ) 0zzD e r x r xθθ θ+ ≥  (by SA), it follows that * ( )1τ ≥ ≤  if 

( )
ˆ

* * ˆ( , ) [ ( , )] ( ) ( ) 0 [ , ]
l

x x l ur x E r x dF
θ

θ
θ θ θ θ θ θ− ≤ ≥ ∀ ∈∫  or  

(B3) 
ˆ ˆ

* * *ˆ ˆ( , ) ( ) ( ) [ ( , )] ( ) ( ) [ ( , )] [ , ].
l l

x x x l ur x dF E r x dF F E r x
θ θ

θ θ
θ θ θ θ θ θ θ θ θ≤ ≥ = ∀ ∈∫ ∫  

Upon rearrangement, i.e., use of 
ˆ

* *ˆ ˆ[ ( , ) | ] [ ( , )] ( ) / ( )
l

x xE r x E r x dF F
θ

θ
θ θ θ θ θ θ≤ = ∫ , (B3) is shown 

to be as in (7) above.  

The standard approach to demonstrate necessity in i) is taken.  For condition set (7), suppose 

the sign of ( )
ˆ

* *( , ) [ ( , )] ( )
l

x xr x E r x dF
θ

θ
θ θ θ−∫  in (B2) is reversed and non-zero on a positive 

measure set [ , ]l uA θ θ⊆ .  The value of * * ˆ( ( , ))zzD e r x θ+  could be arbitrarily large, but still 

finite, on a positive measure subset of A  such that the sign of the covariance in (B2) is reversed. 

Part ii): Note that * *[ ( , ) | ] [ ( , )]x u xE r x E r xθ θ θ θ≤ =  so that * ˆ[ ( , ) | ]xE r x θ θ θ≤  increasing 

(decreasing) in θ̂  implies * *ˆ ˆ[ ( , ) | ] ( ) [ ( , )] [ , ]x x l uE r x E r xθ θ θ θ θ θ θ≤ ≤ ≥ ∀ ∈ , i.e., relations (7) as 

given in part i).  Differentiation establishes * *ˆ ˆ ˆ( , ) ( ) [ ( , ) | ] [ , ]x x l ur x E r xθ θ θ θ θ θ θ≥ ≤ ≤ ∀ ∈  

whenever * ˆ[ ( , ) | ]xE r x θ θ θ≤  is increasing (decreasing) in θ̂ . 

Part iii): If *( , )xr x θ  is increasing (decreasing) in θ  then it follows that * ˆ( , ) ( )xr x θ ≥ ≤  

* ˆ ˆ[ ( , ) | ] [ , ]x l uE r x θ θ θ θ θ θ≤ ∀ ∈ , as given in part ii). 

As for the statements that iii) implies ii) and ii) implies i), it is clear that condition *( , )xr xθ θ  

0 [ , ]l uθ θ θ≥ ∀ ∈  implies condition * *ˆ ˆ ˆ( , ) [ ( , ) | ] [ , ]x x l ur x E r xθ θ θ θ θ θ θ≥ ≤ ∀ ∈  while we have 

shown above that this latter condition implies * *ˆ ˆ[ ( , ) | ] [ ( , )] [ , ]x x l uE r x E r xθ θ θ θ θ θ θ≤ ≤ ∀ ∈ .  

Implications in the other direction follow similarly.    » 


