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Invasive insect species represent perhaps one of the most significant potential sources of 
economic risk to U.S. agricultural production. Private control of invasive insect species is 
likely to be insufficient due to negative externality and weaker-link public good 
problems. In this study, we compare a system of Pigouvian taxes with tradable permits 
for invasive species control. While the emissions control literature shows that taxes are 
preferred to permits under cost uncertainty, invasive-species control involves correlated 
cost and benefit uncertainty. Hence, we expect a quantity-based system to be preferred. 
Monte Carlo simulations of optimal steady-state outcomes confirm our expectations. 
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Introduction 

 
Invasive insect species represent a significant economic risk to both the financial viability of 
agricultural producers and the sustainability of U.S. agriculture more generally. With the 
rapid growth of international trade in agricultural commodities of all types, agricultural 
systems in the United States are under constant threat from new species thriving in 
environments lacking natural predators. Pimentel, Zuniga, and Morrison (2005) claim that 
insects alone are responsible for losses amounting to 13% of total U.S. crop production, 
valued at $33 billion.1 According to these authors, 40% of all insects can be regarded as 
invasive. Therefore, including the indirect costs associated with control, the total damage 
attributable to invasive insect species in the United States is $13.5 billion in 2001 dollars. 
 In the absence of alternative institutional mechanisms, private market incentives to control 
invasive species are likely to be insufficient from a social perspective for two reasons: 
(a) control provides a positive externality to others (or a lack of control confers a negative 
externality), and (b) pest-free environments are public goods (Knowler and Barbier, 2005; 
Burnett, 2006). First, if one grower does not control his or her insects, others will experience 
higher control costs. The fact that these external costs are not reflected in the grower’s decision 
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regarding the level of suppression means each grower will invest in too little pest manage-
ment. Second, invasive species control is a weaker-link public good in that a grower is likely 
to appropriate some of the pest-reduction benefits from controlling insects on his or her own 
land, but will not achieve ideal control if neighboring growers do not control as well (Cornes, 
1993). In this study, therefore, we investigate two market-based institutional mechanisms for 
invasive species control: a system of taxes on insect population numbers, and a marketable 
permit system that allows each grower only a certain amount of infestation.2 
 Invasive species management programs involving direct government control are neither 
practical, desirable, nor efficient (Costanza and Perrings, 1990; Cornwell and Costanza, 1994). 
Fortunately, a number of market-based options have proven workable. First, as Knowler and 
Barbier (2005) argue, a system of Pigouvian taxes may achieve the optimal balance between 
controlling damage from an invasive species and encouraging the diversity benefits that 
follow from importing non-native species. Yet, taxes are still regulatory in nature, as they 
require a taxation authority to design, administer, and enforce their payment. Costanza and 
Perrings (1990) and Cornwell and Costanza (1994) offer a system of performance bonds 
providing for financial penalties if environmental goals are not met. Shogren, Herriges, and 
Govindasamy (1993), however, point out that bonds suffer from a number of practical limita-
tions, such as moral hazard, liquidity problems, and legality. Horan and Lupi (2005), on the 
other hand, describe a system of tradable “risk permits” written on the probability that any 
ship entering the Great Lakes is likely to import a species which may ultimately become 
invasive. Unfortunately, they conclude the first-best system of permits will not work because 
the cost of ensuring that ships are clean is too heterogeneous. 
 In this study, we consider two of these options: a tax on adult insects measured at a certain 
point in time on each farm, or a permit system that provides for overwhelming penalties if the 
allowed population is breached. Growers, however, will be able to trade permits such that 
those with lower control costs can sell permits to other growers with relatively high control 
costs. 
 There is a large literature that compares the efficiency of taxes and permits as alternative 
means of externality control in the context of carbon pollution and greenhouse gas (GHG) 
accumulation. It is well accepted that, under certainty, taxes and permits produce the same 
outcome in terms of emission control (Baumol and Oates, 1988), but under uncertain control 
costs, Weitzman (1974) finds taxes are preferred when the marginal social benefit of 
controlling emissions is relatively flat and the marginal cost of abatement steep. In contrast, a 
quantity-based system of controls, such as a permit-based system, is preferable if the marginal 
social benefit curve is steep and marginal control costs relatively constant. 
 Importantly, uncertainty regarding marginal benefits is irrelevant to the choice of instru-
ment. Other researchers extend this logic to the case of stock externality where regulation 
takes place in a dynamic environment (e.g., Hoel and Karp, 2001, 2002; Pizer, 2002; Newell 
and Pizer, 2003; Karp and Zhang, 2005). These studies confirm the Weitzman (1974) 
intuition in analytical models of quadratic abatement cost and multiplicative uncertainty and, 
moreover, conclude that a price-based policy (taxes) is preferred over permits in a welfare-
metric sense. In a static framework, Stavins (1996) reports that correlated cost and benefit 
uncertainty reverses this result, leading to a preference for a quantity-based system under 

                                                 
2 Accurate on-farm monitoring is clearly important in implementing either the tax or the permit policy. However, sweep-

monitoring such as that used to gather data for this study and pheromone traps are both highly accurate sampling methods, not 
subject to strategic manipulation by growers, and are well understood by insect management practitioners (Naranjo et al., 1998).  
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realistic parameter assumptions. Here, we extend Stavins’ logic to the case of spatial-temporal 
uncertainty and also show that the Weitzman result is reversed. In this case, a quantity-based 
system of regulation is preferred to a price-based system. This outcome is fortuitous from a 
regulatory perspective, because a permit system is likely to be both politically and adminis-
tratively easier to implement than a system of taxes. 
 The objective of this study is to investigate whether taxes or permits are preferred for 
controlling spatial-temporal externalities that arise in the management of invasive insect 
species. We apply our model to a specific insect—Bemisia tabaci, or whitefly, in Arizona. 
Welfare outcomes are compared under scenarios of only privately-optimal insect control, 
private control with taxes, and private control with permits relative to a socially-optimal 
benchmark. We compare steady-state solutions and social welfare under both certainty and 
uncertainty to determine whether the insights of Weitzman (1974), Stavins (1996), Hoel and 
Karp (2001, 2002), and Newell and Pizer (2003) hold in a model of spatial-temporal insect 
movement and dispersion. 
 
Background on Whitefly: Q-Biotype B. tabaci  

We focus on one of the most notorious invasive insect species in Arizona, the whitefly 
(Q-biotype Bemisia tabaci). While the B-biotype B. tabaci is arguably not invasive, having 
been identified as a significant economic pest at least since 1981 (Oliveira, Henneberry, and 
Anderson, 2001), the Q-biotype was discovered in a commercial greenhouse in Tucson in 
2005 (Dennehy et al., 2006). 
 Q-biotype B. tabaci is particularly troublesome due to its resistance to a number of insecti-
cides that have proven effective in controlling B-biotype. B. tabaci, in general, is a uniquely 
harmful insect to cotton and nursery crops. First, B. tabaci is polyphagous, meaning it feeds 
on many types of food, so is able to move from host to host as cropping cycles evolve 
(Watson et al., 1992; Oliveira, Henneberry, and Anderson, 2001). Second, the whitefly has 
proven to be remarkably adaptable to poor host plant conditions through natural selection 
over only a few generations (Basu, 1995) and travels rapidly from host to host, often over 
considerable distances through commercial transportation or weather patterns (Ellsworth and 
Martinez-Carrillo, 2001). Third, it is an important vector for a range of viruses known to be 
the source of several common diseases in tomatoes, beans, cassava, and—most critical to 
Arizona—cotton and lettuce (Watson et al., 1992; Oliveira, Henneberry, and Anderson, 
2001). Fourth, Dittrich et al. (1990) document the ability of B. tabaci to develop resistance to 
common insecticides and to increase egg-laying rates when under stress from insecticides. 
Finally, the destructive nature of B. tabaci can mean the elimination of entire cropping systems 
once infestation occurs. Finding an effective and efficient means of control is therefore an 
economic imperative for Arizona agriculture. 
 

Economic Model of Whitefly Control 

Invasive species control is inherently spatial-temporal because two forms of externality are 
involved: (a) a dynamic externality that arises as a result of population growth over time, and 
(b) a spatial externality resulting from migration. Unlike the case of pollution control, 
invasive species cause damage both to farms that serve as hosts and to the more general 
growing community. The externality arises when insects migrate from one farm to the next, 
and this migration causes population growth to accelerate. Therefore, a level of control 
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considered to be optimal from a private perspective is not likely to be optimal from the 
perspective of the community as a whole. As in the fisheries model of Smith, Sanchirico, and 
Wilen (2009), “adding up” must hold—i.e., the sum of all out-migrations from all locations 
must, by definition, be equal to the sum of all in-migrations. Growers responsible for out-
migrations therefore impose an externality on those who experience net in-migration, so the 
former should bear the cost in a first-best, socially-optimal outcome. This is the essence of the 
community-based management programs described by Ellsworth and Martinez-Carrillo 
(2001), but with incentives provided by economic means and not through a sense of altruism 
and community responsibility. 
 We assume there is one firm located at each location (s) in a grid structure in which 
distances between firms are measured from centroid to centroid.3 From the firm’s perspective, 
the optimization problem is written as: 

(1)  
0

Max ( ) ( ) ( , ) , ,
st

f t
t st st st stx

V e p c y b k b x dt s
       

where V f is the present value of the firm, δ is the discount rate, pt is output price, cst is 
marginal cost of production, y is yield, bst is insect population at location s and time t, xst is 
level of control, and k is the control cost function. Control costs are convex in the population 
level and control such that: kb > 0, kx > 0, kbb > 0, kxx > 0, and kbx < 0. Equation (1) is solved 
subject to the equation of motion for bst, which is given below. 
 

Solving the Planner’s Problem 
 
The planner’s problem, on the other hand, is to maximize the value of production across all 
locations, net of control and social damage costs, Vm , by choosing control activity levels at 
each point in space and continuously over time according to: 

(2)  1 20
Max ( ) ( ) ( , , , )

( , ) ,

[

]
st

m t
t st st s t t stx

s

st st

V e p c y b D ND b b b

k b x dt

 


  



   

where D is a “social damage function” that reflects the damage inflicted on others’ crops from 
net dispersion (NDs) from location s to all other locations (Smith, Sanchirico, and Wilen, 
2009). For simplicity, we assume the industry is comprised of n identical firms so we can 
aggregate the solution to (1) to compare directly to the socially-optimal solution. Both the 
firms and the regulator are assumed to take output and input prices as parametric. All firms 
are located at different points in a discrete space transcribed by the set of grid points θ. 
 Entomologists recognize that invasions of new pest populations tend to follow a three-
phase process: (a) arrival, (b) establishment, and (c) spread (Hof, 1998; Liebhold et al., 1995). 
Therefore, equation (1) is solved subject to spatial-temporal equations of motion that govern 
B. tabaci growth and dispersion within the sample data set. 
 The equation of motion for insects at each point (on one farm) is relatively simple. Insect 
numbers grow as a function of the existing population, less removals due to control activities:

                                                 
3 Clearly, this assumption is necessary to make the problem analytically tractable, but ignores border issues, nearest-neighbor 

effects, and the likelihood that insects are distributed more continuously over the relevant geography than a grid structure would 
imply.  
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(3) ( ) ,st
st st st

b
g b x

t


 


 

where the specific form of the growth function, gst(bst), is specified below. The planner, 
however, must also take into account the spatial externalities associated with movement from 
one location to the next. The random nature of the spatial-temporal diffusion of B. tabaci is 
described using a general diffusion model, wherein the rate of population growth at a point 
consists of an autonomous growth component, migration from other locations, and planned 
removals through control activities. The rate of diffusion, in turn, depends on the population 
at the point, its distance from an initial point, and the rate of diffusion. The general form of 
the state equation is therefore written as: 

(4)   
2

2
( ) ( ) ,st st st

st st st st st st
b b b

g b G x g b G x
t s s s

  
     

   
 

where G is the diffusion coefficient governing the rate of spatial movement. Equation (4) is 
Fisher’s reaction-diffusion equation in general, continuous notation. In our application of this 
model, we approximate the diffusion process in (4) using a discrete-time analog. 
 Consistent with the discrete nature of the space described in (2), we follow Sanchirico and 
Wilen (2005) by assuming that whitefly make discrete movements from one location to the 
next, on the assumption that each grower is located at one point on the spatial grid defined by 
the set θ. The change in population from one period to the next at each point in space 
therefore consists of autonomous growth, net dispersal (in-migration less out-migration), and 
insect removals: 

(5) 1 2( ) ( , , , ) ,st
st st s t t st st

b
g b ND b b b x

t


  


  

where NDs is the net dispersal function. In Fisher’s equation, growth is governed by a 
relationship that depends on the current population and the population relative to carrying 
capacity: 

(6) ( ) (1 / ),st st s st st sg b r b b K   

where rs is the intrinsic growth rate and Ks is the carrying capacity of location s. Next, we 
approximate the net dispersal function with an additive function which accounts for all in-
migration and out-migration such that: 

(7) 1 2
1

( , , , ) ,
s

s t t st js jt
j

ND b b b d b


   

where the djs are coefficients representing the movement from location j to location s as a 
share of the total population (Sanchirico and Wilen, 2005). Depending on time since intro-
duction and location in space, in-migration can be either positive or negative. 
 We then follow Hof and Bevers (2000) and calculate each of the djs elements using Fick’s 
law. Others combine Fick’s law with an exponential growth component to arrive at a 
continuous-time dispersion and growth model (Skellam, 1951; Liebhold et al., 1995; Hof, 
1998; Burnett, Kaiser, and Roumasset, 2007; Richards et al., 2008). However, exponential 
population growth is not realistic on one plot of land. Therefore, the dispersal coefficients are 
calculated using:  
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(8) 
0 0

2

4

2
st s t

q
e

Gt
b b

Gt

 
 

 
  
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for an initial point in space and time (s0, t0) and an estimated diffusion rate (G) for each 
discrete location during each time period. According to Fick’s law, the spread of an invasive 
insect from a starting point s0 is normally distributed with a dispersion rate given by G. 
Because the rate of dispersion is host-dependent among polyphagous insects, we model the 
ability of B. tabaci to transition between cotton seasons on hosts other than cotton by 
allowing G to depend on the host h, where the variable h is a qualitative indicator that essen-
tially allows the rate of dispersion to vary with the attributes of each location: G(h) (Smith, 
Sanchirico, and Wilen, 2009). Further, the impact of varying crop location relative to a source 
of infestation is modeled through the variable q, which is a continuous measure of the 
distance of a population at point s from one at s0. 
 Including the control activity, the equation of motion then becomes: 

(9) *

1

(1 / )
s

st
st s st st s js jt st

j

b
b r b b K d b x

t 


    

   

for each location s and time t. 
 We first solve the problem from a planner’s perspective. Recall, by defining the problem 
such that each discrete location in space is a “farm,” the planner’s problem internalizes all of 
the spatial externalities implied by insect movement from one location to the next. Although 
highly stylized, this solution captures the nature of the externality we wish to describe and 
control. We first solve the problem under certainty, assuming net dispersal amounts are known 
with certainty, and then move to a stochastic solution in which movement is determined by 
random draws within the Fisher equation structure. We solve the planner’s problem by 
applying Pontryagin’s maximum principle to the objective function above, on the assumption 
that each location represents a different, but connected, subproblem. Specifically, the optimal 
population and control policy will depend on the growers’ location in space. 
 The Hamiltonian for the planner’s problem at each location, s, is written as: 

(10) 

 
( , , ; ) ( ) ( ) ( ) ( , )

( ) ,
st st st t st st s st st

st st st s st

H x b p c y b D ND k b x

g b ND x

     

   

 

in general notation where the arguments of the net dispersion function have been suppressed 
for clarity, where λst is the costate variable associated with the insect population at each 
location s and time period t. Assuming an interior solution, the first-order condition with 
respect to the choice of insect control is given by: 

(11)   0.
stx st

st

H
k

x


    


 

The costate equation created by optimizing with respect to the state variable is denoted by: 

(12)    * ( ) ( ) ( ) ,st st t st b b b st b b
st j

H
p c y D ND k g ND

b

              
   


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where D′ is the incremental external damage associated with the movement of one insect 
from location s to locations j. Subscripts indicate partial differentiation at each location s and 
time period t. Finally, the spatial-temporal constraint on insect growth at each location is 
written as: 

(13) ( ) ( ) ,st st st
H

g b ND b x


  


 

in addition to the usual transversality and nonnegativity constraints. These first-order condi-
tions imply the current value of any increment to future insect populations at each location 
must be equal to the marginal cost of reducing the population by one insect and the marginal 
social damage inflicted on the rest of the growing community associated with migration from 
location s. 
 For purposes of this paper, we are interested only in the characteristics of the steady-state 
solution and the welfare implications of the implied long-run industry equilibrium. The optimal 
steady-state solution for the number of whitefly at location s is expressed as: 

(14) * 1 .s
s s sj j ss

s j s

K
b x d b d

r 

   
        

  
  

The optimal solution for the amount of whitefly control at each location is given by: 

(15)   * (1 / ) ( ) ( ) ( ) ,s sb s b b b x b b xb
j

x k p c y D ND k k g ND k g ND
 

           
 

  

where the x and b subscripts refer to partial differentiation with respect to insect control and 
population levels, respectively. Solving for the steady-state value of the costate variable 
gives: 

(16)   * (1 / ) ( ) ( ) ( ) ,s s b b b x b b s js
j j s

p c y k D ND j k g ND k d


 
            

 
   

which is interpreted as the marginal value of one more unit of control or of reducing the insect 
population at one point in space by one individual. 
 These three sets of equations (3S equations) are solved simultaneously for the optimal 
whitefly population (bs), management policy (xs), and value of the costate variable (λs) in the 
steady state. Because we include net dispersals in this solution, however, it describes the 
socially-optimal solution and not the one expected to be generated by the private market. 
Again, assuming there is one grower located at each point s on the grid, he or she will not 
take into account the externality associated with insect movement to other locations. 
 

Solving the Firm’s Problem 

Clearly, the solutions to the firm’s and the planner’s problems above differ in that the former 
does not take into account the externality created by the spatial migration of insects from one 
property to the next. Each grower only controls insects until the marginal value of damage 
inflicted on his or her own crops is equal to the marginal cost of control, including future 
growth on the grower’s own land. However, other growers are negatively impacted to the 
extent that some of the population growth native to a grower’s own fields ultimately migrates 
to others’ fields according to the net dispersal function. Grower-specific taxes on external 
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damage caused by this migration can provide sufficient incentives for an optimal amount of 
control, as can a direct limit on insect population managed through a system of marketable 
permits. In this case, the permit price in equilibrium will be equal to the optimal Pigouvian 
tax levied on insect numbers above an allowable threshold. In the simplest case, the equiva-
lency of taxes and permits shown by Baumol and Oates (1988) and others holds exactly. 
 However, this is no longer the case when pollution reduction costs are uncertain and benefit 
uncertainty is irrelevant (see Weitzman, 1974; Roberts and Spence, 1976; Adar and Griffin, 
1976; Yohe, 1977). Moreover, under uncertainty, which policy is preferred depends on the 
relative slopes of the marginal social benefit and marginal social cost curves. If the slope of 
the marginal social benefit function is relatively flat or if the slope of the marginal-abatement 
cost function is relatively steep, then price-based policies will be preferred. If the opposite is 
true, then permit, or quantity-based, policies will be more effective and efficient. The intuition 
is straightforward. If the benefit function is relatively flat, then errors in estimating the 
marginal cost function will cause only small deviations from the optimal solution when a 
policy that fixes the marginal social damage level is used. On the other hand, if permits fix the 
amount of effluent and the realization of the cost function is far different from that expected 
when the policy was put in place, then the deviation in the resulting marginal social damage 
will be large. 
 More recent research extends this reasoning to a dynamic context. These studies show 
there are many reasons why taxes and permits are not equivalent in the control of stock 
externalities (Requate, 1998; Hoel and Karp, 2001, 2002; Karp and Zhang, 2005; Newell and 
Pizer, 2003; and others). It is well understood that in the case of stock externalities, taxes and 
permits will not be equivalent.4 Intuitively, this is because taxes generally do not change over 
time, while permit prices can vary as the cost of abatement changes. Further, Stavins (1996) 
shows that correlated uncertainty between benefits and costs creates a preference for quantity-
based regulation in a static environment. 
 It is our hypothesis that a similar variance outcome arises when the externality is spatial 
and taxes (the first-best solution) are levied on a grower-by-grower basis. In this case, taxes 
are assumed to be location-specific and fixed in a spatial sense. This fixes the marginal social 
damage for each location. In a permit system, however, the allowable insect count is fixed for 
each location and permit prices are allowed to vary, thus allowing the marginal social damage 
to depend on production and infestation conditions at each location. Permits will be traded 
within each period to remove any arbitrage possibilities and thus equate the marginal social 
damage across locations. Consequently, permit trading results in a more efficient outcome for 
the community as a whole and, we expect, greater social welfare relative to a system of 
taxation. 
 We first compare the socially-optimal solution above to the privately-optimal solution with 
a system of taxes. Because the externality arises as a result of net dispersions from each farm, 
we modify the social problem such that the social damage function is no longer part of the 
objective function. The optimal solution under a location-specific (first-best) tax regime is 
found by including a tax on net dispersals (NDs (bst)) in the objective function introduced 
above. With this change, we write the current-value Hamiltonian as: 

(17)    ( , , ; ) ( ) ( ) ( , ) ( ),st st st t st st st st st s st st s stH x b p c y b k b x ND g ND x            

                                                 
4 For example, pollution accumulates over time whereby emissions during each time period add to the stock of pollution, and it 

is the stock of pollution that causes the damage. 
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where τst is the Pigouvian tax for location s at time t. The first-order conditions are modified 
to include the new costate equation: 

(18)    * ( ) ( ) .st st t st b b st b st b b
st

H
p c y k ND g ND

b

               
 

Using the costate equation to solve for the steady-state control level by a private firm facing 
tax rate τst becomes: 

(19)    * (1 / ) ( ) ( )

( ) ,

(
)

st xb t st b b st b x b b

xb st st

x k p c y k ND k g ND

k g ND

        

 

 

again simplifying notation. Analogous changes to the optimal steady-state for insect popula-
tion numbers and costate values are obvious and therefore not reported here. Comparing the 
socially-optimal solution to the solution with tax, the optimal tax is simply stxst k  in the first- 
best solution, as the marginal damage of an insect that moves from one location to the next is 
the marginal cost of controlling that insect once it arrives at its destination. 
 Next, we compare the solution with taxes to a requirement that places a quantitative 
restriction on the number of whitefly at each location and allows growers to trade permits. In 
this case, growers can either control insects that would migrate from their farm to the next, or 
they could buy permits to allow more insects to remain on their land. Assuming the location-
specific limit on insects is given by ,stND the Hamiltonian above is replaced by: 

(20)    ( , , , ; ) ( ) ( ) ( , )

( ) ,( )
st st st st t st st st st

st st st st st st st

H x b p c y b k b x

g ND x ND ND

     

      

 

where πst is the multiplier associated with insect restriction or the marginal value of obtaining 
one more license for whitefly. Solving this problem for the optimal amount of whitefly 
control, the costate equation now includes: 

(21)    * ( ) ( ) .st st t st b b st b b st b
st

H
p c y k g ND ND

b

               
 

The steady-state solution for the control variable now becomes: 

(22)   * (1/ ) ( ) ( ) ( ) .( )st xb t st b b st b x b b xb st stx k p c y k ND k g ND k g ND            

The equivalence between taxes and permits is apparent from comparing (22) and (19) and 
noting that πst = τst in equilibrium. 
 Despite these equivalent results, it is unclear whether the similarity of the steady-state 
solutions means they provide the same welfare results when we explicitly account for the 
uncertainty inherent in the spatial-temporal movement of insects, and the correlation between 
the uncertainty in the cost of control in the benefits. Newell and Pizer (2003) and Hoel and 
Karp (2001, 2002) conclude uncertainty in stock regulation is introduced through the cost of 
control. This is reasonable in the case of effluent regulation, as the amount of production is 
under managerial control, and managers are presumably aware of the relationship between 
output and effluent from their plant. Uncertainty is attributed to regulators’ imperfect know-
ledge regarding this relationship and is thus understandable.  
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 In the invasive species case, however, the nature of the externality is fundamentally dif-
ferent. Specifically, both the benefit and cost of control depend on the biology of insect 
movement, so both are inherently uncertain and, because both are largely driven by weather 
events, likely to be correlated.5 First, the arrival time of an invasive insect is never known 
with certainty. Typically, this type of a priori uncertainty is modeled using a hazard function 
approach in which the probability of arrival increases the longer the particular area has been 
insect free. Second, once arrival occurs, movement involves both dynamic and spatial uncer-
tainty. The diffusion model developed above captures this uncertainty directly and implicitly 
as the insect population at any given location is known only up to the normal probability 
distribution that characterizes the Fisher equation. Third, conditions leading to favorable 
yields are also conducive to insect growth. Therefore, both the benefits of controlling insects 
and the costs of doing so rise in high-yield years. 
 Consequently, while the uncertainty in Weitzman (1974), Hoel and Karp (2001, 2002), 
Karp and Zhang (2005), and Newell and Pizer (2003) derives from the cost of pollution 
abatement, the uncertainty in the current model comes from both the cost of control and the 
movement of insects from one location to the next. As long as insects arrive and move 
according to biological growth processes, problems of invasive species management will 
always be subject to a significant amount of uncertainty, affecting both the benefit and the 
cost of regulation. Moreover, because the impact of population uncertainty on both the cost 
and benefit sides is likely to be correlated, Stavins’ (1996) analysis applies to the invasive 
species problem in a spatial-temporal, rather than static, context. For this reason, we consider 
the welfare effects of taxes and permits when whitefly dispersion is subject to correlated 
uncertainty, conditional on their having already arrived.6 
 Because of the complexity of our solution, a closed-form solution under uncertainty is not 
available. Therefore, we follow the common empirical approach in this literature and assume 
linear-additive uncertainty in both costs and benefits of control (Stavins, 1996). We then 
create a welfare differential metric similar to Weitzman (1974) and Newell and Pizer (2003) 
and simulate expected values using numerical Monte Carlo techniques. Essentially, their “net 
benefit” measure compares the present value of the economic surplus generated from a first-
best, socially-optimal solution to that resulting from the regulated outcome under a location-
specific tax regime and a location-specific system of tradable permits. The net benefit 
comparison in the current application is given by: 

(24)   , , ,st st tax st permitE NB E NB          

where E[•] is the expectation operator, taken over the assumed distribution of uncertainty 
governing net dispersion. 
 In comparing welfare outcomes, we assume the output market is perfectly competitive, so 
all welfare effects are captured by producer’s surplus. In this regard, the benefit function in 
each regime is given by the objective function described above—the maximum total surplus 
to society over the cost of producing cotton and controlling whitefly spread. Once optimal 
values for x and b are found, we substitute back into the specifications for optimal firm (V  

f
 ) 

and social value (Vm) in equations (1) and (2), respectively, to find the maximum welfare 
associated with the social solution, and each of the regulated firm solutions.  

                                                 
5 Weather is also the most common source of benefit/cost correlation described by Stavins (1996). 
6 Whereas Kim et al. (2006) consider the probability of arrival as another source of uncertainty, adding this to the uncertainty of 

dispersion is beyond the scope of the current research and is a fruitful topic for future research in this area. Further, another source 
of uncertainty is not likely to change our conclusions in a qualitative way.  
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Empirical Model of Whitefly Diffusion and Optimal Control 
 
We use experimental B. tabaci data from field insecticide trials conducted by Agricultural 
Research Service (ARS) researchers in Brawley, CA, to estimate the diffusion equation 
(Naranjo, Chu, and Henneberry, 1996; Naranjo et al., 1998). These data represent two 13-
week years of insect counts, yield measurement, and whitefly control experimentation (for a 
detailed description see Richards et al., 2009). Table 1 summarizes these data. Because the 
grid cells in the experimental plot were adjacent to each other in a 5×5 design, insects had 
the opportunity to move from cell to cell and interact with insects in other locations as if each 
grid location was an individual farm. To simplify the spatial-dynamic model, we estimate the 
diffusion process for all 25 cells but use the dispersion parameters from only the upper-left 
nine cells of the entire matrix. Although simplified, the estimation and optimization procedure 
is still very complex, as the 3×3 structure consists of 81 distinct interaction parameters that 
must be estimated. 
 With these data and the objective of finding optimal control solutions across a set of 
geographically-contiguous locations, we parameterize each component of the optimal control 
model described above. The data are pooled from each spatial location, s, over all 13 weeks 
and both years, and the equation of motion is estimated using a location-fixed effects 
procedure. Because observed control activities are endogenous, we estimate the constraint 
equation using an instrumental variables procedure (2SLS) where the set of instruments 
includes the time of year, weather, and lagged endogenous variables. The control variable, 
however, does not measure removals directly, but is a count variable that indicates the number 
of applications of a particular insecticide. Therefore, in the econometric model, we estimate 
the apparent amount of control as a function of the number of insecticide applications, 
interactions between applications and population levels, cooling degree days (CDD), rainfall, 
and a binary variable for the year 1994. Further, we define the change in insect population in 
discrete terms as the current population less the population observed last period. 
 To obtain estimates of the growth parameter from Fisher’s equation, we first need 
estimates of the dispersion coefficients that define the amount of population growth due to in-
migration less out-migration. Accordingly, the constraint equation is estimated using a two-
step procedure—first estimating the dispersion coefficients using Fick’s law and nonlinear 
least squares and then, using the estimates of dsj, estimating the growth parameter, the loca-
tion fixed effects, and parameters of the control function in a second stage. More formally, the 
estimation equation is given by: 

(25) ,
, , 1 , , ,

1

1 ,
s

s t
s t s t s s t s j j t s t

s j

b
b b r b d b x

K


 
     

 
  

where the dsj are estimated using Fick’s law as: 

(26)  0 0

2
, ,ln ( ) ln ( ) (1 / ) / 4 ln 2 ,s t s tb b G q r Gt     

and the only parameter to be estimated is the rate of diffusion, G, from location j at distance 
q. In these data, dispersion declines in distance from the origin. However, the difference in 
dispersion between populations located near to and far from the origin declines with time as 
insects are able to reach the farther distances. Control costs are determined by the marginal 
effect of control activities on insect numbers; thus, the elements of k(•) are estimated through 
equation (25) from the control function described above. Damage estimates are obtained 
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Table 1. B. tabaci Summary Data: Brawley, CA, Field Experiments 

 
Variable 

 
Definition 

 
N 

Mean 
(Std. Dev.) 

 
Minimum 

 
Maximum 

Treatment No. of insecticide applications per 
season 

975 3.000 
(1.414) 

1.00 5.00 

Eggs No. of eggs per cm2 975 6.830 
(11.270) 

0.03 104.54 

Nymphs No. of immature insects per cm2 975 1.486 
(2.715) 

0.00 25.97 

Adults No. of adult insects per leaf 975 12.793 
(27.720) 

0.00 241.00 

Temp. Max. Maximum daily temperature (F) 975 100.720 
(10.470) 

73.00 115.00 

Temp. Min. Minimum daily temperature (F) 975 67.564 
(10.140) 

47.00 82.00 

CDD Cooling degree days (H − 65F) 975 19.538 
(9.642) 

0.00 34.00 

Rain Amount of rain received on one day 
(inches) 

975 0.002 
(0.016) 

0.00 0.10 

CCDD Cumulative no. of cooling degree 
days over the sample period 

975 1,216.500 
(853.100) 

116.00 3,017.00 

CRain Cumulative rainfall over the sample 
period (inches) 

975 1.644 
(0.294) 

1.30 1.96 

Yield Measured cotton output on the 
experimental plots (kg/ha) 

 50 1,553.000 
(394.220) 

660.00 2,380.00 

 

using the econometric model described in Richards et al. (2009). Because population density 
is measured on a per plant basis and the objective function is in terms of dollars per hectare, 
estimating the damage model in this way ensures the marginal value of an additional insect is 
measured in the appropriate units. 
 We then use the parameters estimated from (25) and (26) to populate the spatial-temporal 
optimal control model (all parameter definitions are summarized in table 2). Because insect 
movements are inherently random, the nine equations in nine unknowns are solved using 
Monte Carlo simulation with 1,000 draws from a standard normal distribution. Our primary 
interest lies in characterizing the steady-state solutions, so we calculate the solution for each 
location and compare welfare results by summing over all nine grid locations. 
 

Results and Discussion 

In temporal econometric models, the nature of time is well understood. However, in spatial 
models, or spatial-temporal models, it is important to understand the specific context of space 
under study. Table 3 provides a description of the grid structure of the experimental farm-
community used in this study in terms of the distances between each cell. Table 4 focuses on 
the nine grid locations that form the basis of the optimization model and shows the dispersion 
rates, normalized across each row, between each pair of locations. From this table, it should 
be clear how the dimension of the problem expands with the complexity of the geography 
involved. These dispersion rates are calculated using the parametric estimates shown in table 5.
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Table 2. Parameters Required for Whitefly Simulation Model 

Variables Unit                 Source Value 

1. State variable: bst no./ leaf Endogenous  

2. Control variable: xst no./ leaf Endogenous  

3. Costate variable: λst $ / insect Endogenous  

Parameters    

1. Ks = carrying capacity no./ leaf Estimate from ARS data 241.0 

2. rs = growth rate no./ leaf Estimate from ARS data 0.0823 

3. dsj = dispersal no./ leaf Estimate from ARS data [see below] 

4. pt = cotton price $ / kg Arizona Agricultural Statistics $1.32/kg 

5. cst = marginal cost $ / kg Univ. of Arizona Farm Budgets $0.70/kg 

6. yb = marginal damage kg / ha Estimate from ARS data 4.656 kg/ha 

7. k (bst, xst) = control cost $ / ha 
$ / ha 
$ / ha 
$ / ha 

Estimate from ARS data 
kx 
kb 
kbx 

 
$37.37 + 0.101 b 
−$1.73 + 0.101 x  

$0.101/ha 

8. δ = discount rate % Federal Reserve 0.05 

Notes: The marginal damage estimate is taken from Richards et al. (2009). Infestation intensity is commonly measured 
using sampling methods on a per leaf basis. The control cost function is estimated in yield units (kg/ha) and multiplied by 
the assumed grower margin. 

 
Table 3. Distances Between Cells of Experimental Plot, in Index Measure 

  Cell Column Address 

  1 2 3 4 5 

 1  0.000 0.100 0.200 0.300 0.400 

 2  0.143 0.000 0.143 0.286 0.429 

Cell Row Address 3  0.333 0.167 0.000 0.167 0.333 

 4  0.429 0.286 0.143 0.000 0.143 

 5  0.400 0.300 0.200 0.100 0.000 

 

The estimates in table 5, in turn, result from estimating Fisher’s equation and Fick’s law 
under the assumptions described above. Although we estimate this model using a location-
fixed-effects procedure, we do not show the location effects here as there are a number of 
parameters in the full model.7 
 Control costs are inferred from the control function estimated as part of equation (25). As 
shown by the results in table 5, the control function is quadratic in the number of insecticide 
applications, and the marginal effectiveness of control increases in the insect population, both 
as expected. Further, insect numbers fall with the number of cooling-degree days (warmer 
temperatures reduce population levels), but are unaffected by either rainfall or the yearly fixed 
effect. Using the assumption that marginal cost must equal marginal value in equilibrium, 
marginal control costs are calculated by multiplying the marginal product of control by the 

                                                 
7 Because of the large number of cells in this and any real-world application of this procedure, it was necessary to assume the 

movement parameters are constant across locations. This assumption could easily be relaxed with more detailed agronomic data on 
the conditions prevailing at each location.  
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Table 4. Normalized Dispersion Rates After Imposing Adding-up Condition 

(Row, Col.) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) 

(1, 1) 0.000 1.444 0.780 1.444 1.169 0.623 0.780 0.623 0.229 

(1, 2) 1.143 0.000 1.143 0.868 1.143 0.868 0.322 0.479 0.322 

(1, 3) 0.376 1.041 0.000 0.219 0.765 1.041 −0.174 0.219 0.376 

(2, 1) 1.143 0.868 0.322 0.000 1.143 0.479 1.143 0.868 0.322 

(2, 2) 0.536 0.811 0.536 0.811 0.000 0.811 0.536 0.811 0.536 

(2, 3) −0.123 0.423 0.698 0.034 0.698 0.000 −0.123 0.423 0.698 

(3, 1) 0.376 0.219 −0.174 1.041 0.765 0.219 0.000 1.041 0.376 

(3, 2) −0.123 0.034 −0.123 0.423 0.698 0.423 0.698 0.000 0.698 

(3, 3) −0.634 −0.240 −0.083 −0.240 0.306 0.581 −0.083 0.581 0.000 

Note: Own-dispersion is not defined in this model. The nine cells represented here are drawn from a larger 25 × 25 matrix of 
dispersion rates throughout the entire sample plot. 

 

Table 5. Estimates of Whitefly Diffusion Model: Fisher’s Equation / Fick’s Law 

— First-Stage Estimates of Diffusion Parameters — 

Parameter Definition Estimate  t-Ratio 

G Diffusion Rate 166.281* 9.034 

Log-Likelihood Function  −2,134.553  

— Second-Stage Estimates of Growth Model Parameters — 

Parameter Definition Estimate t-Ratio 

r Growth Rate 0.087* 6.518 

bst Population 13.347* 3.948 

bst  qst Population  Distance −0.664 −0.549 

xst Control Level 2.239 1.859 

bst  xs t Population  Control 0.211* 11.096 

(xst)
2 Control 

2 −0.673* −2.876 

CDD Cooling Degree Days −0.305* −4.039 

Rain Rainfall 44.975 1.189 

D94 1994 Binary 1.759 1.442 

Log-Likelihood Function  −4,031.347  

Notes: An asterisk (*) denotes statistical significance at the 5% level. Estimates in this table are obtained with the ARS 
experimental data using a two-stage procedure. Plot-specific effects in the growth model are available from the authors upon 
request. 

 
per insect impact on gross margins (marginal yield multiplied by per pound price-cost margin, 
table 1). With the objective function and equations of motion thus parameterized, we then 
solve both the socially- and privately-optimal problems using Monte Carlo simulation. 
 Table 6 shows the optimal steady-state control and whitefly population values for each 
location in the socially-optimal solution relative to the privately-optimal result. In each case, 
the difference between the privately- and socially-optimal solutions is considerable; on aver-
age, the privately-optimal control amount is 24.02% larger than the socially-optimal amount 
and the population level 54.41% greater. Moreover, recall that the metric for infestation levels
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Table 6. Steady-State Solution to Spatial-Temporal Control Problem: Socially- versus 
Privately-Optimal Control and Population Levels, Baseline Assumptions 

 Socially Optimal  Privately Optimal 

Location (Row, Col.) Control Level Population  Control Level Population 

 (1, 1) 4.000 6.687  4.960 10.095 

 (1, 2) 3.876 6.366  4.800 9.759 

 (1, 3) 3.420 5.814  4.240 8.900 

 (2, 1) 3.875 6.363  4.799 9.757 

 (2, 2) 3.694 6.005  4.575 9.371 

 (2, 3) 3.045 5.382  3.784 8.381 

 (3, 1) 3.381 5.779  4.200 8.863 

 (3, 2) 3.042 5.378  3.782 8.377 

 (3, 3) 0.862 4.247  1.599 6.820 

Objective Function   $69,674.391    $64,321.862 

Notes: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution under base-case parameter 
assumptions. Optimal population and control levels are measured in adult insects per leaf. 

 
is number of adults per leaf; hence, aggregated to an entire field, these values imply large 
absolute numbers of insects. Further, the difference in objective function values implied by 
these differences is significant in an economic sense—the socially-optimal solution generates 
8.32% more surplus than the privately-optimal solution. However, relative to the number of 
adults in the sample data, both the privately- and socially-optimal results show considerably 
lower infestation levels, suggesting the market fails in some other important way that the 
model is not capturing. With these benchmark results, it remains to be seen which policy tool 
is able to restore the socially-optimal result in the most efficient way. 
 To show the effect of using either policy tool on whitefly control strategies, we first con-
sider the certainty case, where the policy maker is omniscient and is able to know exactly the 
amount of net dispersion from each cell to the others. In either case, however, it is a simple 
matter to design an optimal policy that restores the first-best result, so this solution is of little 
interest. Yet, under uncertainty, each of these tools is expected to generate different control 
solutions and different levels of aggregate welfare. These differences are of interest to policy 
makers and are reported in table 7. Based on 1,000 random draws for each dispersion coeffi-
cient, the expected present value cotton production is fully 45.8% higher under a quantity-
based permit system relative to a price-based tax system. Further, a simple t-test of the 
difference in mean values between the two easily rejects the null hypothesis of equality at a 
5% level. Clearly, therefore, permits are preferred in this case. This result, however, supports 
Stavins’ (1996) conclusions and is exactly the opposite to the findings reported by Hoel and 
Karp (2001, 2002), Newell and Pizer (2003), and Karp and Zhang (2005). In designing stock-
externality control programs, policy makers need to understand the source of uncertainty—
whether it derives from the demand side or the supply side and the correlation between the 
two—as much as they need to know that uncertainty matters. 
 As in any policy-design problem, policy makers also need to know the parameters govern-
ing the slopes of the marginal social benefit and cost curves, because welfare calculations are 
critically dependent upon them. In table 8, we show the effect of varying the slope of the 
marginal damage (marginal benefit) and marginal cost functions. In the upper panel, causing 
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Table 7. Comparison of Welfare Under Taxes versus Permits: Baseline Assumptions 

 V0 V Minimum Maximum   t-Ratio 

Taxes 688.330 110.960 387.920 958.750 −40.957 

Permits 1,003.700 201.780 608.440 1,399.400  

Note: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution under base-case 
parameter assumptions. 

 
Table 8. Comparative Statics: Effect of Marginal Damage/Marginal Cost Variation 

 Taxes  Permits 

    yb V0 V  V0 V 

 2.500 527.060 55.640  1,532.200 533.420 

 3.500 634.580 71.420  1,533.600 531.170 

 4.656 742.380 89.451  1,524.900 478.570 

 5.500 809.530 102.530  1,510.700 440.180 

 6.500 876.010 118.060  1,483.800 396.410 

 Taxes  Permits 

   kx V0 V  V0 V 

 0.050 533.000 71.672    913.490 280.580 

 0.075 636.200 79.920  1,151.300 358.270 

 0.101 742.380 89.451  1,524.900 478.570 

 0.125 855.170 96.269  2,016.300 639.640 

 0.150 982.360 100.940  2,697.700 865.820 

Notes: Solutions are means of Monte Carlo simulation with 1,000 draws from normal distribution. Base-case parameter 
assumptions appear in italics. 

 
the slope of the damage function to rise from $2.50 per insect to $6.50 per insect causes the 
optimal value of cotton production, net of damage costs, to rise by 66.2% under a system of 
taxes and to fall by 1.5% under a system of permits. Thus, steeper marginal social benefits 
favor taxes, not permits. On the other hand, causing the slope of the marginal control-cost 
function to rise from $0.05 per insect to $0.15 per insect—a range that brackets the estimated 
value—causes the net benefit to rise by 84.3% under taxes and 195.3% under permits. 
Therefore, steeper marginal costs favor a system of permits relative to taxes. Both of these 
results are, again, opposite to those found in the greenhouse-gas (GHG) regulation literature. 
 This raises the obvious question: Which scenario is likely to prevail? Unlike the GHG 
literature, where the difference in social value between taxes and permits was found to be an 
order of magnitude different, the values in this case are sufficiently close, and sufficiently 
sensitive to variation in the key parameters, that extreme variation in one curve or the other 
could reverse our conclusions. However, in the case at hand, and in the neighborhood of infes- 
tation levels that growers will realistically allow to occur, an additional insect is not likely to 
increase the amount of damage over what has already occurred. On the other hand, Q-biotype 
whitefly promise to be sufficiently difficult to kill that the incremental cost—perhaps an 
additional treatment per season—could be substantial.  
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Conclusions and Implications 
 
Should it be allowed to spread, the Q-biotype whitefly promises to be one of the most impor-
tant invasive insect species to agriculture in the U.S. Southwest. Government control efforts 
are unlikely to be forthcoming. Hence, this study investigates preferred institutional arrange-
ments for addressing externality issues that prevent a system of private control from being 
fully efficient. Similar policy tools proposed for the control of GHG emissions find that a 
price-based system (taxes) is preferred to a quantity-based system (permits), but these 
findings are based on the assumption that regulators are uncertain about the slope of the cost-
of-control function and that the benefits of control are irrelevant. If uncertainty arises on both 
sides of the equation, however, regulator preferences are likely to change to a quantity-based 
system of regulation. In the invasive species case, uncertainty is endemic to both the benefit 
and cost sides, since the growth and diffusion of insects from one farm to another are driven 
by biological processes. 
 We construct a spatial-temporal model of optimal insect control to investigate which policy 
tool is preferred. Using realistic parameter assumptions, a system of permits is found to be 
preferred to a system of taxes. This result contradicts the conclusions reported in the GHG 
literature. Moreover, we show that a steeper marginal social damage function favors the use 
of taxes, while a steeper control-cost function favors permits. Again, this result is opposite to 
previous results that assume only cost-based uncertainty. Based on the evidence provided by 
negotiations on climate change legislation in the United States, this outcome is fortunate for 
insect regulators because permit-based systems of control are evidently more politically 
acceptable than tax-based systems. 
 Our findings are likely to generalize beyond the invasive species case. In the GHG regula-
tion literature, uncertainty is assumed to lie on the cost side because it is highly plausible that 
regulators will not know the state of technology faced by polluters. However, given the 
unsettled science on this issue, uncertainty in the GHG case could just as easily come from 
mis-estimates of marginal social damage as well. Similar debates will arise in other forms 
of externality regulation, from water pollution to SO2 control, and even to the case of whether 
to force citizens to immunize themselves against influenza in the case of a threatened 
pandemic. 
 As in the climate-change regulation case, there are many institutional details that would 
need to be resolved. Because the taxes and/or permits in our model are location-specific, the 
data-gathering effort required to implement any regulatory system would be difficult and 
costly. Nonetheless, most growers monitor insect infestations through either pheromone trap 
or sweep technologies, so the burden of an additional requirement may be small. Advanced 
monitoring technology, which would surely arise in the face of increased regulation, would 
likely reduce the cost of more intensive on-farm insect monitoring practices. 
 Concerning the technology issue, future research in this area is necessary to investigate the 
relative incentives to develop innovative insect-control technologies if either a system of 
taxes or permits is put in place. Does a system of permits favor either chemical or biological 
control? Would growers instead have incentives to develop better management technologies 
in order to conserve permits? Are the assumptions put forward by Requate (1998) in 
answering these questions for the emissions case similarly critical to the invasive species 
example? Each of these questions offers a potential avenue for future research. 
 

[Received June 2010; final revision received October 2010.]  
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