

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Measuring and Decomposing the Productivity Growth of Beef and Sheep Farms in New Zealand using the Malmquist Productivity Index (2001-06)

Allan Rae and Krishna G lyer Centre for Applied Economics and Policy Studies, Massey University

Measuring Total Factor Productivity (TFP)

- Traditionally, TFP growth has been considered synonymous with technical change e.g., Growth Accounting, Tornqvist Index, Fisher Index etc.
- An implicit assumption:100 percent efficiency in the utilization of factor inputs, given a level of technology.
- In reality, TFP growth includes not only technological progress but also efficiency changes (technical, scale and allocative) and random disturbances.

Distinguishing Technical and Efficiency Changes

- The determinants of technical change and efficiency may be different.
- For example, exposure to trade may drive farmers to upgrade technology: technical change.
- Productivity may also result from other factors such as enhanced competition or increased returns to scale: these are captured in efficiency.
- Decomposing productivity is important to better identify its determinants.

Methodologies

- Popular Techniques: Data Envelopment Analysis (DEA) - mathematical and Stochastic Frontier Approach (SFA) – econometric.
- Differences, merits and demerits of each well documented.

- DEA assumes all deviations from PPF as inefficiency (no random errors). SFA distinguishes between random error and inefficiency.
- SFA requires specification of a production function; DEA does not. Relatively flexible production function forms such as Translog alleviate the seriousness of the assumption sometimes (but not always).

About the Data (contd..)

- It should be noted that the data were collected for purposes other than the estimation of productivity.
- Hence, they have some shortcomings in terms of how well they measure the physical output and input data that are required to estimate productivity growth.

NZ Sheep and Beef Farms 9 Regions 20 farms each 6 years (2001-06)

- 1. Northland (NTHLND)
- 2. Gisborne Hill Country (GLHC)
- 3. Waikato-Bay of Plenty Intensive Framing (WIF)
- 4. Manawatu-Rangitikei Intensive Farming (MRIF)
- 5. Marlborough-Canterbury Hill Country (MCHC)
- 6. South Island Merino (SIMER)
- 7. Otago Dry Hill (ODH)
- 8. Southland/South Otago Hill Country (SOHC)
- 9. Southland/South Otago Intensive Farming (SOIF)

Output and Inputs (in 000's of NZ Dollars)								
	Sales	Farm Bldg	P&M	Live Stock	Labor	Mater- ials	Servi- ces	
GLHC	817	3571	112	1401	121	91	260	
MCHC	427	2558	100	549	27	60	119	
MRIF	800	3650	124	374	38	68	133	
NTHLND	313	1475	71	392	9	47	71	
ODH	399	2002	137	508	20	64	127	
SIMER	524	3752	187	742	45	82	182	
SOHC	477	2758	142	527	25	73	1 4 5	
SOIF	231	1490	88	201	6	30	70	
WIF	345	1737	58	371	17	59	78	
NZ	481	2555	113	563	34	64	13 <mark>2</mark>	

Hypothesis	Tests	
Null Hypothesis (H ₀)	LR-Test Statistic	Decision
No inefficiency effects	94.98*	Reject H ₀
A Cobb- Douglas function is adequate	259.78*	Reject H ₀
There is no technical change	34.38*	Reject H ₀
Technical change is Hicks Neutral	24.50*	Reject H ₀
* significant at 1 p	ercent.	24

Elasticity of F	
Factor Input	Elasticity
Farm Buildings	0.194*
Plant & Machinery	0.015
Live Stock	0.217*
Labour	0.035*
Materials	0.135*
Services	0.336*

	New	Zealar	nd Aver	age		
	тс	EC	SEC	AEC	TFPC	
2001-02	-1.22	-1.17	-1.00	2.12	-1.26	
2002-03	1.01	-1.22	-2.02	-2.69	-4.92	
2003-04	2.97	-1.27	-2.18	-6.65	-7.12	
2004-05	5.01	-1.33	-2.48	-2.95	-1.7 <mark>5</mark>	
2005-06	6.65	-1.39	-1.39	-14.90	-11.03	
					26	

	Re	gional	Average	es _	
		.			
Region	тс	EC	SEC	AEC	TFPC
GLHC	4.78	-1.28	-2.10	-3.41	-2.01
MCHC	2.64	-1.41	-1.81	-6.97	-7.55
MRIF	0.38	-0.59	-0.43	8.54	7.89
NTHLND	5.58	-1.24	-3.10	-25.19	-23.95
ODH	3.67	-1.49	-2.91	-3.49	-4. <mark>22</mark>
SIMER	2.38	-1.85	-2.72	-0.32	-2.5 <mark>1</mark>
SOHC	2.81	-1.34	-1.34	-4.16	-4.03
SOIF	0.68	-1.28	-0.03	-5.59	-6.22
WIF	3.25	-0.96	-1.92	-4.33	-3.96

	Ran	kings		
Ranking	тс	EC	SEC	
1	NTHLND	MRIF	SOIF	
2	GLHC	WIF	MRIF	
3	ODH	NTHLND	SOHC	
4	WIF	GLHC	МСНС	
5	SOHC	SOIF	WIF	
6	MCHC	SOHC	GLHC	
7	SIMER	MCHC	SIMER	
8	SOIF	ODH	ODH	
9	MRIF	SIMER	NTHLND 28	

DEA Results New Zealand Average						
year	тс	EC	PEC	SEC	TFPC	
2001-02	0.09	-1.29	-1.17	-0.11	-1.20	
2002-03	2.27	-1.90	-1.24	-0.65	0.33	
2003-04	-0.55	0.25	-0.21	0.50	-0.30	
2004-05	-1.15	1.22	0.76	0.47	0.05	
2005-06	-1.65	0.45	0.65	-0.18	-1.10	
					29	

	Reg	gional A	Average	es	
Region	тс	EC	PEC	SEC	TFPC
GLHC	0.43	-0.60	-0.04	-0.54	-0.18
MCHC	-0.09	-0.37	-0.39	0.03	-0.47
MRIF	-0.20	-0.04	-0.11	0.07	-0.24
NTHLND	-0.14	0.51	0.36	0.16	0.37
ODH	-0.83	-0.12	-0.17	0.07	-0.94
SIMER	-0.59	-0.81	-0.75	-0.05	-1.29
SOHC	0.09	-0.56	-0.55	-0.01	-0. <mark>49</mark>
SOIF	0.00	-0.37	-0.51	0.18	-0.3 <mark>8</mark>
WIF	-0.41	0.06	-0.02	0.08	-0.35
					30

	Ran	ikings		
Ranking	тс	PEC	SEC	
1	GLHC	NTHLND	SOIF	
2	SOHC	WIF	NTHLND	
3	SOIF	GLHC	WIF	
4	MCHC	MRIF	MRIF	
5	NTHLND	ODH	ODH	
6	MRIF	MCHC	MCHC	
7	WIF	SOIF	SOHC	
8	SIMER	SOHC	SIMER	
9	ODH	SIMER	GLHC	
			31	

To Sum up..

- The MPI is a less well known index which can be gainfully applied to measure productivity.
- An advantage of the MPI is that it allows decomposing productivity growth into technical change and efficiency change components.
- Since technical change and efficiency change may be driven by a different set of factors, such decomposition is very useful in better understanding the determinants of productivity.
- Common empirical tools applied to compute the MPI include DEA and SFA.

- Using data from 177 farms across 9 regions of NZ over the period 2001-06, this report measured the productivity of sheep and beef farms.
- The data was not completely suitable, given that they were not collected for this purpose.
- Nonetheless, the estimates of productivity arrived at, specially using the DEA, were found plausible.

Contd..

- In the later years (2004-06), farms were observed to catch-up with the frontier resulting in positive efficiency change.
- But the technical change is found negative. This area needs to be explored further.
- Both DEA and SFA, despite being vastly different methods, find one common ground – north island farms are more efficient than the south island ones. This area also needs a look in.

