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Estimation and Analysis of Rational
Expectations Model of International
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Abstract

The paper outlines an approach to estimation and analysis of rational ex-
pectations international cotton market. A multiple model bootstrap filter is
used to compute unobserved market expectations and their distributions. Esti-
mation results are used to analyze the welfare effects of exogenous trade shocks
and government programs, with application to the national market security.

Research in progress. Do not quote without authors’ permission.

Introduction

The contemporary theory of commodity markets attempts to model the behavior

of commodity prices in order to explain the factors that generate price fluctuations

and thus to make predictions of future prices. Assumptions about rationality of

price expectations have been widely used in empirical studies. Although the rational

expectations of market prices are often approximated through the observed futures

prices on the relevant commodities, this approach is more appropriate to studying

of contemporaneous or past market response to policy changes. On the other hand,

endogenous modeling of market expectations allows one to estimate the effects of

†Authors thank Nando de Freitas for graciously providing his computer codes.
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structural changes in the model and thus analyze market performance under alter-

native policies (e.g. Miranda and Helmberger (1988)). In addition, in international

trade studies, it is often impossible to use futures prices due to aggregation issues or

simple data unavailability. Applications of endogenous rational expectations models

to the analysis of agricultural commodity markets in a fully stochastic-dynamic set-

ting can be found, for example, in Miranda and Glauber (1993) and Peterson and

Tomek (2005). The main issue with this class of models is using parameterized ex-

pectations as a function of the current value of state variables, such as carryover of

commodity. Most of the existing models typically analyze closed single region mar-

kets as computational complexity increases dramatically with the dimensionality of

the model due to parametrization. In international trade analysis, this often hap-

pens as the number of regions increases. Makki, Tweeten and Miranda (1996, 1998)

present studies that explain the behavior of a real market in a three region model.

However, only two of regions are active market participants while the third serves

as the balancing price taker. In order to make the rational expectations framework

more applicable for applied analysis of international trade, we propose to treat the

values of future prices as unobserved, thus following the idea behind the state-space

approach to time-series analysis. In such a framework expected values of prices at a

future period can be learned through the information available in the current period.

We impose the weaker condition for rationality of the model behavior (such as con-

sistency of price expectations) that will allow for stochastic differences in values of

expected and realized prices at any given point in time as long as the both processes

converge.
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Objectives

The objectives of this paper are to develop an alternative estimation algorithm for

the international commodity market model with nonlinear rational expectations, and

to use the underlying structural model to assess the supply response and the welfare

effects of government programs that force supply changes, both through direct price

controls and by affecting the intertemporal conditions for storage. In the empirical

application, a model of the international cotton market is studied as represented by

U.S., China and other countries aggregated conventionally to the Rest of The World.

The U.S. market is modeled as an active consumer, producer and storer of cotton,

while China and the ROW countries enter the model as the active importers. The

analysis is performed mainly in terms of the U.S. market with special focus on unex-

pected international policy disturbances, such as significant increases in foreign levels

of carryover above the projected levels due to foreign government import decisions,

which are exogenous to the model. We will also discuss the stability of different inter-

vention programs to such disturbances and implications of these results to national

market security.

Particle Filter

The general parametrized state-space model can be described as

xt+1 = gI(xt, ut, ε1t) (1)

yt = fI(xt, ut, ε2t) (2)

where gI and fI are the parametrized state transition and measurement equations, yt,

xt, ut are the state, control and measurement vectors, and ε1t and ε2t are the process

3



and measurement noise vectors, all at period t. The model index parameter I can take

on any of N discrete values I = 1, N . The parametrized model in (1) and (2) can have

exogenous or endogenous switching mechanism. The former implies that the regime

switching process is Markov chain [Pr(It−1 = 1), . . . , Pr(It−1 = N)]Λ = [Pr(It =

1), . . . , Pr(It = N)] with transition matrix Λ while the latter assumes that the regime

switching mechanism involves dependent variables of regression equations so that the

transition probabilities are no longer time invariant. In this case, the model index

I as the conditioning parameter can branch at the next time step according to the

endogenous transition probability matrix Λt(xt, ut+1). Due to this specific nature of

the endogenous switching models, they proved to be a useful tool in analyzing the dy-

namic disequilibrium models described e.g. in Quandt (1988). Since the state-space

systems in (1) and (2) are often non-linear and have non-Gaussian disturbances the

tool known as the multiple model bootstrap filter (MMBF) can be used for estimation

puropses1. Here, in the discussion of MMBF we follow McGinnity and Irwin (2001),

while looking at the special case of univariate state transition process. The extension

of the bootstrap filter suggested in Gordon, Salmond and Ewing (1995) to multiple

models is developed by considering a single sample, augmented by an index vector

representing the model parameter, It. Let us denote the information set at time t as

Ft = {yt, ut}. Then at any period t the unconditioned posterior density for unob-

served state variable p(xt|It, Ft) is given by the I-augmented sample from the state

space2 which is represented by the set of connected pairs of random realizations xt|t of

the state variable and the index It|t of the model which generated this realization of

1Hendry and Richard (1992) introduced alternative approach by simulation methods for the class
of dynamic latent-dependent variables models based on factorization of the sequential joint density
of the observable and latent-dependent variables. This approach was further discovered from the
simulated maximum likelihood (Lee(1997)) and nonlinear particle filtering (Liu and Chen (1998))
estimation perspectives.

2The time invariant parameter vector θ is suppressed for the simplicity of description.
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x. As suggested in McGinnity and Irwin (2001), the approximate posterior j’s model

probabilities for the period t can be obtained by computing the proportion of the tra-

jectories associated with the given regime j, that is p(It|t = j|Ft) ≈ n(It|t = j)/K for

j = 1, N . It is necessary to have K large enough to obtain an accurate approximation

of model probabilities. Since the evolution of regimes is actually a branching process

that generally would require an exponential growth in number of trajectories, the

following two stage procedure can be used to keep the number of estimators constant.

First, to receive the branched prior distribution p(xt|It, It+1, Ft) McGinnity and Irwin

(2001) suggest augmenting the posterior vector of xt|t with an additional index vector

It+1,t of possible effective future regimes. The values of elements of the index vector

are generated using endogenous transition probabilities implied by the state-space

system of interest. Second, the merged prior density p(xt|It+1, Ft+1) is obtained by

discarding the index vector It,t which is irrelevant now due to the Markovian nature

of the process. The prediction density p(xt|It+1 = j, Ft+1) can then be approximated

by transforming each element of xt|t using the transition equation conditionally on

the associated model It+1. At the next step, the posterior density of the state variable

is formed using the resampling algorithm utilized in the single model bootstrap filter

with the importance weights based on the likelihood of the prediction set. Using

relevant posterior densities and recurrent relations, the simulated likelihood function

of interest can be written as

L(y|u) =
N∑

I1=1

· · ·
N∑

IT =1

∫
x1

· · ·
∫

xT

T∏
t=1

p(yt|xt, ut, It)p(xt|ut, It)p(It|ut)dxt (3)

Note, that ranges of integration in the likelihood function are usually restricted for

endogenous dynamic switching models, as it is pointed out by Lee (1997). While

forming likelihood function in (3) we follow the idea of the expectation-maximuzation
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(EM) algorithm introduced by Dempster, Laird and Rubin (1977)3 with the unknown

parameters being replaced by their expectations. However, since in many cases the

estimation equations are nonlinear and distributions of unobserved variables change

over time, more complicated approaches, involving the simulated likelihood function

estimation should be used.

Model

In any period t the supply qt initially available in a given region is composed of a

carryover from the preceding period st−1 and new production, which is determined by

an exogenous random per-acre yield yt on the acreage at−1, planted in the preceding

period such that qt = at−1yt + st−1. The region must allocate total supply available

qt among consumption ct, future storage st and amount traded zt. Therefore the

decisions of market agents must obey the following aggregate balance equation qt =

ct + st + zt. In general, if qt > ct + st, the excess supply is observed in a given region

which is then a net exporter at that period and zt > 0. Otherwise, in the case of

qt < ct + st, the region is a net importer, with zt being negative. We assume that

each group of market participants makes decisions independently. Define the market

clearing price pt ∈ R++ as the strictly decreasing function of a current consumption

ct ∈ R++:

pt = α0c
α1
t exp(ε1t) (4)

where consumers are assumed to have quasi-linear preferences. The acreage at ∈ R++

planted by rational producers is a strictly increasing function of the effective future

3See McLachlan and Krishnan (1997) and Small and Wang (2003) for detailed discussion including
the stochastic version of EM algorithm.
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price, expected at the harvest time x∗
t+1

at = γ0x
∗
t+1

γ1 exp(ε2t) (5)

The effective future price is defined as the maximum of the expected future price

and the target price announced by the government for the period t. This condition

introduces the disequilibrium dynamics in the price expectation process, such that

two possible models can be used to define the acreage decisions

at = γ0x
γ1

t+1 exp(ε2t) if xt+1 > x̃t+1 It+1 = 1 (6)

at = γ0x̃
γ1

t+1 exp(ε2t) if xt+1 ≤ x̃t+1 It+1 = 2 (7)

Given the announced target price x̃t+1, the prior model probabilities can be defined

as p(It+1|t = 1) = 1 − Φ(xt+1|t = x̃t+1) and p(It+1|t = 2) = Φ(xt+1|t = x̃t+1), where

Φ(xt+1|t) is the unconditioned prior distribution function of unobserved state variable.

Storage decisions are made by competitive storers. Assuming that marginal cost kt

of storage increases, private demand for stocks is defined as

st = β0w
β1

t+1 exp(ε3t) (8)

where wt+1 = δtft+1/pt is the expected rate of appreciation of stocks and δt = 1/1+rt

is the annual discount factor, and rt is the annual interest rate. The market model

is closed by assuming that market agents make their decisions consistently using

information available at the present time.

The motion of price signals is limited by the following linear transition equation based
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on market efficiency condition

xt+1 = b0 + b1xt + ηt+1 (9)

Equations (4), (5) (in the form of switching models (6) and (7)) and (8) form the

system of measurement equations (2) of the general model, while equation (9) corre-

sponds to the state transition rule (1). In this case, the application of the MMBF to

the model recursion can be described with the following pseudo code

Estimation algorithm

Step 0a: Initialization Define τ , θ1 = θ0 and set j = 1.

Step 0b: Initialization Set t = 0 and define the initial conditioned distribution of
x as vectors x0 and I0.

Step 1: Prediction Generate the unconditioned distribution of xt+1 from xt using
state transition equation. Given target value x̃t+1 compute the prior regime
probabilities p(It+1 = j) for j = 1, 2 using unconditioned empirical distribution
function of xt+1. Generate new index vector It+1 using prior regime probabili-
ties. Augment xt index vector It+1 and discard old index vector It. Generate
prediction density for state variable x conditionally on prior model distribution.

Step 2: Update Form posterior conditioned distribution of xt|t using the sampling
importance resampling scheme.

Step 3: Counter check If t < T set t = t + 1 and go to Step 1.

Step 4: Maximization Maximize full information simulated likelihood for θ∗ given
the distributions computed in steps 1 - 3.

Step 5: Convergence check If ‖ θ∗ − θj ‖> τ set j = j + 1 and θj = θ∗ and go
to Step 0b. Otherwise stop.

The forecast based on the model can be obtained with the use of the following algo-

rithm, that combines bayesian inference and classical optimization routines
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Forecast algorithm

Step 0a: Initialization Set θ = θ∗.

Step 0b: Initialization Set t = T + 1 define the posterior vectors xT |T and IT |T as
the initial conditioned distribution of x.

Step 1: Prediction Construct prediction density for state variable x conditionally
on prior model distribution for period T + 1 using schema from Step 1 of
estimation algorithm.

Step 2: Prior forecast Compute bayesian optimal prior point estimate of x̂T+1|T

Step 3: Optimization Solve for equilibrium values of yT+1 given x̂T+1, x̃T+1, uT+1,
θ subject to balance conditions.

Step 4: Update Form posterior conditioned distribution of xt|t using the sampling
importance resampling scheme.

Step 5: Posterior forecast Compute bayesian optimal posterior point estimate of
x̂T+1|T+1

Computation

Bayesian recursive estimation is implemented using the sequential Sampling Impor-

tance Resampling (SIR) algorithm based on the original program code provided by

Nando de Freitas as the part of SIR Demo package. The algorithm is modified to

account for model specific likelihood and multiple regime resampling. The full in-

formation simulated likelihood is then maximized by genetic algorithm (GA) from

The Genetic Algorithm Optimization Toolbox for MatLab developed by C. Houck,

J. Joines and M. Kay (1995). All computations are done on Pentium 4 2.8 GHz IBM

PC computer using Mathworks MatLab R2006b programming environment.

Data

The data used for the study are annual time-series from 1972 to 2005 for cotton. The

relevant data have been collected from the Cotton and Wool Yearbook and Cotton
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and Wool Outlook published by the USDA Economic Research Service. Additional

information on missing quantities and prices were collected from 1996 to 2005 Cotton:

World Markets and Trade reports provided by USDA Foreign Agricultural Service.

The market prices are measured as season average prices adjusted for inflation using

Producer Price Index (PPI) for cotton products.

Expected Results

At the time of this writing we have run the simulations while correcting and improving

the SIR algorithm in terms of efficiency. Obtained estimates should be consistent with

modern commodity markets theory, which require the price expectations to be nega-

tively related to the value of commodity storage and have highly nonlinear form due

to the disequilibrium effects of the government intervention programs. Introduction

of switching mechanisms and multiple models will yield more complex distributions

of variables that should better describe the real market processes. Analytical results

will include welfare estimates for the alternative levels of policy along with stability

considerations based on safety first criteria. Also, we expect to compute a set of crit-

ical values and probabilities associated with different market scenarios. Additional

results will include tests for rationality of market behavior such as the nonparametric

tests on the difference in distributions and series of expected and realized prices in or-

der to justify the modeling results in statistical and economic sense. Obtained results

should be more accurate than the approximate computations based on probability

inequalities, since the optimal distributions of variables will be directly available.

10



References

1. Dempster A.P., N.M. Laird and D.B. Rubin. 1997. ”Maximum Likelihood from
Incomplete Data via EM Algorithm”. Journal of the Royal Statistical Society
B 39: 1-38.

2. de Freitas, N. Sequential Sampling-Importance Resampling (SIR) Algorithm
Demo. http://www.cs.ubc.ca/ nando/software.html.

3. Gordon, N., D.J. Salmond and C. Ewing. 1995. ”Bayesian State Estimation
for Tracking and Guidance Using the Bootstrap Filter”. Journal of Guidance,
Control and Dynamics 18 (6): 1434 - 1443.

4. Hendry, D.F. and J.-F. Richard. 1992. ”Likelihood Evaluation for Dynamic
Latent Variables Models.” In Amman, H.M., D.A. Belsley and L.F. Pau. Com-
putational Economics and Econometrics. Kluwer Academic Publishers, Norwell,
MA, pp. 3 - 19.

5. Houck, C.R., J.A. Joines and M.G. Kay. 1995. ”A Genetic Algorithm for Func-
tion Optimization: A Matlab Implementation”. NCSU-IE Technical Report
95-09.

6. Lee, L.-F. 1997. ”Simulation Estimation of Dynamic Switching Regression and
Dynamic Disequilibrium Models – Some Monte Carlo Results.” Journal of
Econometrics 78: 179-204.

7. Liu, J. S. and R. Chen. 1998. ”Sequential Monte Carlo Methods for Dynamic
Systems.” Journal of the American Statistical Association 93 (443): 1032 -
1044.

8. Makki, S.S., L.G. Tweeten and M.J. Miranda. 1996. ”Wheat Storage and Trade
in an Efficient Global Market.” American Journal of Agricultural Economics
78 (4): 879-890.

9. Makki, S.S., L.G. Tweeten, and M. J. Miranda. 1998. ”Storage-Trade Inter-
actions Under Domestic and Foreign Production Uncertainty: Implications for
Food Security.” Journal of Policy Modeling 23 (2): 127-140.

10. McGinnity, S. and W. Irwin. 2001. ”Manoeuvring Target Tracking Using a
Multiple-Model Bootstrap Filter”. In de Freitas, N., A. Doucet and N. Gordon,
ed. Sequential Monte-Carlo Methods in Practice. Springer-Verlag New York,
Inc., pp. 479 - 498.

11



11. McLachlan, G.J. and T. Krishnan. 1997. The EM Algorithm and Extensions.
John Wiley and Sons, NY.

12. Miranda, M.J. and J.W. Glauber. 1993. ”Estimation of dynamic nonlinear
rational expectations models of primary commodity markets with private and
government stockholding.” Review of Economics and Statistics 75 : 463-470.

13. Miranda, M.J. and J.W. Glauber. 1995. ”Solving Stochastic Models of Com-
petitive Storage and Trade by Chebychev Collocation Method.” Agricultural
and Resource Economics Review 24 (1): 70-77.

14. Miranda, M.J. and P.G. Helmberger. 1988. ”The Effects of Price Band Buffer
Stock Programs.” American Economic Review 78 , 46-58.

15. Peterson, H.H. and Tomek W.G. 2005. ”How Much of Commodity Price Be-
havior Can a Rational Expectations Storage Model Explain?” Agricultural Eco-
nomics 33: 289-303.

16. Ristic, B., S. Arulampalam and N. Gordon. 2004. Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House, Boston, MA.

17. Small, C.G. and J. Wang. 2003. Numerical Methods for Nonlinear Estimating
Equations. Oxford University Press, NY.

12


