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Optimierung unter Unsicherheit mit Hilfe stochastischer 
Simulation und Genetischer Algorithmen  
– dargestellt anhand der Optimierung des Produktions-
programms eines Brandenburger Marktfruchtbetriebes – 
Optimization under uncertainty with stochastic simulation 
and genetic algorithms  
– case study for a crop farm in Brandenburg 
Oliver Mußhoff und Norbert Hirschauer 
Humboldt-Universität zu Berlin 
 

Zusammenfassung 
Bereits seit mehreren Jahrzehnten findet die Optimierung in der 
akademischen Lehre und Forschung starke Beachtung. Trotz der 
Breite potenzieller Anwendungsfelder gibt es jedoch einige metho-
dische Schwierigkeiten. Das Hauptproblem besteht darin, die Unsi-
cherheit, d.h. stochastische Prozesse von Zufallsvariablen inkl. ihrer 
Korrelationen, in realistischer Weise zu berücksichtigen. Der Hand-
habbarkeit wegen werden häufig Annahmen zugrunde gelegt, die 
bereits vorliegende bzw. beschaffbare stochastische Informationen 
nicht verwerten. In diesem Beitrag wird ein leicht handhabbares 
Verfahren zur Berücksichtigung stochastischer Informationen im 
Rahmen der Optimierung entwickelt. Dabei wird die stochastische 
Simulation mit Genetischen Algorithmen kombiniert. Am Beispiel 
der Bestimmung des optimalen Anbauprogramms für einen Bran-
denburger Marktfruchtbetrieb wird gezeigt, dass dieses Verfahren 
das Potenzial zur Verbesserung der Entscheidungsfindung hat. Bei 
den Beispielrechnungen wird Unsicherheit bzgl. der Einzelde-
ckungsbeiträge in Form stochastischer Prozesse und bzgl. der 
möglichen Feldarbeitstage in Form von Dreiecksverteilungen be-
rücksichtigt. Den unterschiedlichen Risikoeinstellungen von Ent-
scheidungsträgern wird über Variantenrechnungen Rechnung 
getragen. Die Modellergebnisse verdeutlichen, dass der Schätzung 
der „richtigen“ Prozessart für die Deckungsbeiträge der einzelnen 
Produktionsverfahren eine große Bedeutung zukommt. Produk-
tionsverfahren, deren Deckungsbeiträge stationären stochastischen 
Prozessen folgen, werden von risikoaversen Landwirten tendenziell 
eher in das Produktionsprogramm aufgenommen als wenn man 
fälschlicherweise von nicht-stationären Deckungsbeitragsentwick-
lungen ausgehen würde. 

Schlüsselwörter 
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Abstract 
Optimization has been recognized as a powerful tool in teaching and 
research for a long time. In spite of its well known problem solving 
capacity, some methodological obstacles have persisted over the 
years. The main problem is that stochastic variables and their corre-
lations cannot be adequately accounted for within traditional opti-
mization procedures. In this paper, we develop a methodological 
mix of stochastic simulation and a heuristic optimization procedure 
which has become known as genetic algorithms. The simulation-
part of the mix allows for the consideration of complex information 
such as stochastic processes; the genetic algorithms-part ensures 
that the method remains manageable in terms of required time and 
resources. We demonstrate the decision support potential of the 

approach by optimizing the production program of a Brandenburg 
crop farm. We account for the risky environment by using existing 
stochastic information: on the one hand, we model man-days which 
are available in critical seasons (particularly harvesting) as triangu-
lar distributions according to expert estimations. On the other hand, 
we use empirical time series and estimate stochastic processes for 
the gross margins of different activities (wheat, barley etc.). Addi-
tionally, variant calculations are made in order to take into account 
different risk attitudes of decision-makers. Model results in terms of 
optimal production programs and expected total gross margins are 
highly sensitive both to the risk attitudes of decision-makers and 
the stochastic processes which are estimated for different activities.  

Key words 
optimization; optimal production program; stochastic simulation; 
genetic algorithms; uncertainty; stochastic processes 

1. Einleitung 
Optimierungsprobleme treten in vielen betriebswirtschaftli-
chen Planungssituationen auf und sind sowohl aus theoreti-
scher wie auch aus praktischer Sicht von außerordentlichem 
Interesse. Wichtige Fragestellungen sind das Aufteilungs-
problem (z.B. Bestimmung des optimalen Produktionspro-
gramms), das Mischungsproblem (z.B. Bestimmung der 
kostenminimalen Futtermittelration) sowie das Transport-
problem (z.B. Bestimmung der minimalen Wegstrecke). 

Wenn Entscheider die problemspezifischen Parameter, wie 
z.B. Preise für Outputs und Inputs, Erträge etc. sicher 
bestimmen könnten, wären die oben genannten Fragestel-
lungen unter Rückgriff auf herkömmliche Optimierungsver-
fahren zu beantworten. Planung ist aufgrund ihrer Zu-
kunftsbezogenheit aber mit Unsicherheit behaftet. Die zu-
nehmende Liberalisierung der Märkte führt dazu, dass dem 
Risiko in der Unternehmensplanung künftig eine noch grö-
ßere Bedeutung zukommen wird als bisher. Deterministi-
sche Modelle bzw. Modelle, die Planungsprobleme unter 
einwertigen Erwartungen zu lösen versuchen, werden des-
halb immer mehr an Aussagekraft einbüßen. Die Ergebnis-
se solcher Planungen können allenfalls eine grobe Hilfestel-
lung für praktische Entscheidungen sein. 

In der Vergangenheit wurden bereits zahlreiche Versuche 
unternommen, Unsicherheit bei der Lösung von Optimie-



Agrarwirtschaft 53 (2004), Heft 7 

265 

rungsproblemen zu berücksichtigen. Bei allen bislang vor-
geschlagenen Modellansätzen kann Unsicherheit aber nur 
sehr rudimentär oder stark vereinfacht abgebildet werden. 
Oftmals werden einfach diskrete Verteilungsinformationen 
berücksichtigt, indem das Optimierungsproblem wiederholt 
für jeweils eine Realisation von Zufallsvariablen gelöst 
wird. In Anbetracht des damit verbundenen hohen „manuel-
len“ Arbeitsaufwandes lassen sich so jedoch nur eine gerin-
ge Anzahl an Zufallsvariablen und nur wenige Ausprägun-
gen berücksichtigen. Praktische Anwendungen beschränken 
sich i.d.R. auf die Berechnung eines Worst-, Base- und 
Best-Case-Szenarios ohne explizite Nutzung von Vertei-
lungsinformationen. 

Mit Blick auf eine möglichst realitätsgetreue Modellierung 
der zukünftigen Wertentwicklung von Zufallsvariablen ge-
winnen stochastische Prozesse zunehmend an Beachtung. 
Der Begriff „stochastischer Prozess“ impliziert, dass man 
Annahmen über die zukünftigen Wahrscheinlichkeitsvertei-
lungen von Zufallsvariablen zu verschiedenen zukünftigen 
Zeitpunkten trifft. Mittels Zeitreihenanalyse kann aus ent-
sprechend langen empirischen Zeitreihen die Art des „richti-
gen“ bzw. „besten“ stochastischen Prozesses identifiziert 
werden. Bislang wurde davon im Zusammenhang mit der 
Optimierung im landwirtschaftlichen Bereich kein Gebrauch 
gemacht. Der Hauptgrund ist wohl darin zu sehen, dass viele 
der u.U. sehr komplexen stochastischen Prozesse im Rahmen 
klassischer Optimierungsverfahren nicht handhabbar sind. 
Bei einem Prognosezeitraum von nur einer Periode mag das 
Konzept der stochastischen Prozesse zunächst wie „ein 
Schießen mit Kanonen auf Spatzen“ erscheinen. Im einpe-
riodischen Fall könnte es vordergründig nahe liegen, Unsi-
cherheit in Form einer Verteilung der vergangenen Beo-
bachtungswerte, ggf. korrigiert um einen Trend, zu berück-
sichtigen. Das würde aber zu kurz greifen, weil der letzte 
beobachtete Wert sowie ein Trend und die Standardabwei-
chung nur Teile möglicher stochastischer Entwicklungs-
muster sind. Letztlich geht es bei der Schätzung stochasti-
scher Prozesse darum, die verfügbaren Informationen statis-
tisch bestmöglich auszuwerten und so zur besten Annahme 
bzgl. zukünftiger Verteilungen zu gelangen. Im einfachsten 
Fall, dem sog. arithmetischen Brownschen Prozess, über-
trägt man tatsächlich die bisherige Verteilung einer Zufalls-
variablen unter Berücksichtigung des Trends auf den zu-
künftigen Zeitpunkt. Dies entspricht der üblichen Vorge-
hensweise bei der Optimierung unter Anwendung des Er-
wartungswert-Varianz-Kriteriums. Diese Vorgehensweise 
ist jedoch nicht ohne weiteres anwendbar, wenn die Zu-
fallsvariable einem anderen Entwicklungsmuster folgt. 
Beispielsweise impliziert ein Mean-Reverting-Prozess, dass 
eine Zufallsvariable langfristig um ein Gleichgewichtsni-
veau schwankt. Um bei Gültigkeit eines solchen Prozesses 
die erwartete Verteilung für einen zukünftigen Zeitpunkt zu 
bestimmen, muss man neben der Standardabweichung das 
Gleichgewichtsniveau und die Geschwindigkeit der Rück-
kehr auf dieses Niveau kennen. Kurz gesagt: Auch bei einer 
Planung über nur eine zukünftige Periode ist das Konzept 
der stochastischen Prozesse im Sinne einer „systematischen 
Zeitreihenanalyse mit offenem Ergebnis“ angebracht, da die 
zukünftige Verteilung unabhängig von der Länge des Prog-
nosezeitraums vom stochastischen Prozess abhängt. 
In diesem Beitrag wird deshalb vorgeschlagen, die sto-
chastische Simulation mit Genetischen Algorithmen (GA) 

zu kombinieren. Die stochastische Simulation weist die 
größtmögliche Flexibilität hinsichtlich der Modellierung 
von Unsicherheit auf, wodurch „wirklichkeitsgetreue“ Ex-
perimente durchgeführt werden können. So ist die Berück-
sichtigung beliebiger stochastischer Prozesse und mehrerer 
stochastischer Variablen (inkl. ihrer Korrelationen) mit 
relativ geringem Aufwand möglich. Eine einfache Stan-
dardsimulation ist aber nicht in der Lage, Optimierungs-
probleme zu lösen. Demgegenüber sind GA einfach einzu-
setzende Optimierungsverfahren, die - wie auch Neuronale 
Netze - von der Natur inspiriert sind. Bei GA werden „na-
türliche Optimierungsstrategien aus der Evolution“ nachge-
ahmt, um für ein Problem eine möglichst gute Lösung zu 
finden. GA arbeiten auf einer Menge von möglichen Lö-
sungen, die sukzessive durch die Evolutionsprinzipien Se-
lektion, Rekombination und Mutation verändert wird. Das 
Ziel ist dabei, mit der Zeit bzw. von „Generation zu Gene-
ration“ immer bessere Lösungen zu entwickeln. So werden 
viele konventionell schwierig zu handhabende Optimie-
rungsprobleme (z.B. komplexe nicht lineare Modelle) in 
akzeptabler Zeit lösbar (vgl. z.B. GOLDBERG, 1989). Wenn 
man eine Optimierung durch GA mit stochastischen Simu-
lationen kombiniert, lassen sich Planungssituationen reali-
tätsgetreuer analysieren und somit die Entscheidungsunter-
stützung verbessern. 
Der folgende Abschnitt 2 verdeutlicht die Begrenzungen 
traditioneller Optimierungsansätze. Darauf aufbauend wird 
in Abschnitt 3 ein praktikables Verfahren zur Berücksichti-
gung von Unsicherheit in der Optimierung aufgezeigt, das 
die stochastische Simulation in einen GA integriert. In 
Abschnitt 4 wird dieses Verfahren angewendet, um die 
optimale Anbaustrategie für einen Marktfruchtbetrieb in 
Brandenburg abzuleiten. Über zusätzliche Variantenrech-
nungen wird berücksichtigt, dass Entscheider unterschied-
lichste Risikoeinstellungen besitzen. Der Beitrag schließt 
mit einigen Schlussfolgerungen und einem Ausblick (Ab-
schnitt 5). 

2. Traditionelle Behandlung von Unsicher-
heit in der Optimierung 

2.1 Das Standard-LP 
Ganz allgemein bezeichnet man mit „Optimierung“ Pla-
nungsverfahren, mit denen eine bestimmte Anzahl von Va-
riablen simultan betrachtet und innerhalb gegebener Gren-
zen die bestmögliche Lösung für ein bestimmtes Ziel ge-
funden wird. Ein lineares Optimierungsproblem (synonym: 
lineares Programmierungsproblem, LP) wird durch die An-
gabe der zu optimierenden linearen Zielfunktion und eines 
zulässigen Bereiches beschrieben, aus dem die Argumente 
der Zielfunktion stammen dürfen. Dieser Bereich wird 
durch sog. lineare Nebenbedingungen (Restriktionen) festge-
legt. Bezogen auf die Bestimmung des optimalen Produkti-
onsprogramms und damit die Maximierung des Gesamt-
deckungsbeitrages tGDB  zu einem bestimmten Zeitpunkt t  
lässt sich die Aufgabenstellung wie folgt beschreiben1: 

                                                           
1 Der im Zusammenhang mit LP üblicherweise nicht verwende-

te Zeitindex t  ( Tt ...,,2,1= ) wird hier mit aufgenommen, da 
Annahmen bzgl. des unsicheren Gesamtdeckungsbeitrages der 
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Dabei kennzeichnet der Zielfunktionskoeffizient j
tDB  den 

Deckungsbeitrag je Einheit der Produktionsaktivität j , j
tx  

die Umfänge der Aktivitäten bzw. Produktionsverfahren, 
i
tb  die begrenzt zur Verfügung stehenden Kapazitäten der 

Faktoren i  und ji
ta ,  die Faktoransprüche je Einheit der 

einzelnen Produktionsaktivität. Die letztgenannte Nebenbe-
dingung (3) stellt sicher, dass keine Aktivität mit einem 
negativen Wert in die Lösung eingeht. 

Zu bestimmen ist die Belegung der Unbekannten j
tx , d.h. 

das optimale Produktionsprogramm, das unter Beachtung 
der Restriktionen zum maximalen Zielfunktionswert führt. 
Lineare Programmierungsprobleme werden i.d.R. mit Hilfe 
eines Iterationsverfahrens gelöst, das als Simplex-Algorith-
mus bekannt geworden ist (DANZIG, 1951). Das nach dem 
letzten Iterationsschritt erzielte Optimum wird als Basislö-
sung bezeichnet. Bei diesem Standarditerationsverfahren 
bleibt zunächst unberücksichtigt, dass bestimmte Variablen 
mit Unsicherheit behaftet sind. 

2.2 Bisherige Berücksichtigung von Unsicherheit 
bei der Optimierung 

Vielfach wird vorgeschlagen, Unsicherheit bei der Optimie-
rung durch Variantenrechnungen zu berücksichtigen. Ein-
fache Beispiele hierfür sind Sensitivitätsanalysen oder sog. 
parametrische Programmierungen (vgl. DINKELBACH, 1969). 
Mittels Sensitivitätsanalysen wird der Frage nachgegangen, 
innerhalb welcher Grenzen sich die Koeffizienten in der 
Zielfunktion oder in den Nebenbedingungen verändern 
dürfen, ohne dass die Basislösung ihre Optimalitätseigen-
schaft verliert. Gängige Programmpakete, wie z.B. der MS-
EXCEL-Solver, liefern Sensitivitätsberichte standardmäßig. 
Eng verwandt mit der Sensitivitätsanalyse ist die parametri-
sche Programmierung, bei der eine bestimmte Kapazität in 
systematischen Schritten verändert wird. Beim Chance-
Constrained-Programming-Ansatz (CCP) wird die Unsi-
cherheit in den Nebenbedingungen berücksichtigt (HANF, 
1986: 161f.). CCP unterstellt bei der Maximierung des 
Zielfunktionswertes, dass die Kapazitätsgrenze i

tb  mit einer 
gewissen Wahrscheinlichkeit eingehalten werden muss. 
Technisch wird dazu das „deterministische Äquivalent der 
Wahrscheinlichkeitsrestriktion“ bestimmt. Wenn z.B. eine 
Kapazität mit 95 % Sicherheit eingehalten werden muss, 
wird bei einer Normalverteilung anstelle des Erwartungs-
wertes (50 % Perzentil) der Wert des 5 % Perzentils einge-

                                                                                                 
relevanten zukünftigen Periode in der Folge systematisch aus 
stochastischen Prozessen für die Einzeldeckungsbeiträge abge-
leitet werden. 

setzt und anschließend das LP mit der veränderten Kapazi-
tätsrestriktion gerechnet. Den genannten „einfachen Varian-
tenrechnungen“ ist gemeinsam, dass sie trotz ihrer Zielset-
zung „Berücksichtigung von Unsicherheit“ Informationen 
über die Unsicherheit im Sinne von Verteilungsinformatio-
nen unberücksichtigt lassen bzw. - wie beim CCP - nur 
ansatzweise berücksichtigen. 
Das Modell der Minimization-Of-Total-Absolute-Deviation 
(MOTAD) versucht die zweidimensionale Zielstellung 
„Maximierung des Gesamtdeckungsbeitrages“ und „Mini-
mierung des Risikos“ zu berücksichtigen (HAZELL, 1971). 
Dabei setzt es an der Unsicherheit der Zielfunktions-
koeffizienten j

tDB  an. Im Ergebnis wird für vorgegebene 
Gesamtdeckungsbeitragsniveaus jeweils das „risikoeffizien-
te Produktionsprogramm“ bestimmt; d.h. für bestimmte 
Gesamtdeckungsbeitragsniveaus werden die (aufsummier-
ten oder durchschnittlichen) absoluten Abweichungen der 
Einzeldeckungsbeiträge von ihrem Mittelwert minimiert. 
Über die optimale Kombination von Gesamtdeckungsbei-
trag und absoluten Abweichungen sagt das Modell endogen 
nichts aus. Vielmehr werden die erzielten Varianten dem 
Entscheider vorgelegt, dessen subjektive Risikoeinstellung 
in der Wahl einer bestimmten Kombination von Gesamt-
deckungsbeitrag und absoluten Abweichungen zum Aus-
druck kommt. Voraussetzung für die Anwendung von  
MOTAD-Modellen ist das Vorliegen von Zeitreiheninfor-
mationen, anhand derer für jede Periode die Abweichungen 
der Einzeldeckungsbeiträge vom ihrem Mittelwert bzw. 
Erwartungswert berechnet werden können. 
Eine sehr ähnlich gelagerte Vorgehensweise wie die Mini-
mierung der Summe der absoluten Abweichungen der Ein-
zeldeckungsbeiträge bei vorgegebenem Gesamtdeckungs-
beitragsniveau stellt die Maximierung einer Präferenzfunk-
tion des Entscheiders dar. Bei Annahme einer exponentiel-
len Risikonutzenfunktion ergibt sich beispielsweise folgen-
de Präferenzfunktion (vgl. ARROW, 1964 und PRATT, 
1964): 

tφ  kennzeichnet das Sicherheitsäquivalent2, das als Erwar-
tungswert des Gesamtdeckungsbeitrages tGDB  abzüglich 
der Risikoprämie berechnet wird. Die Risikoprämie ent-
spricht hier dem 0,5fachen der mit dem Risikoaversionsko-
effizienten λ  gewichteten Varianz des Gesamtdeckungs-

beitrages [ ]2GDBσ . Der Risikoaversionskoeffizient λ  
ermöglicht es, verschiedene Risikoeinstellungen zu berück-

                                                           
2 Genau genommen wird das Sicherheitsäquivalent durch das 

Erwartungswert-Varianz-Kriterium nur dann genau erfasst, 
wenn entweder eine quadratische Risikonutzenfunktion unter-
stellt werden kann oder die Ergebnisse der Handlungsalterna-
tiven normalverteilt sind und zugleich von einer exponentiel-
len Risikonutzenfunktion ausgegangen werden kann (BRAN-
DES und ODENING, 1992: 203). Dies ist jedoch sowohl eine 
plausible als auch übliche Annahme. 
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sichtigen.3 Bei 0=λ  entspricht der Modellansatz einer 
Maximierung des Erwartungswertes des Gesamtdeckungs-
beitrages, d.h. die Streuung der Ergebnisse spielt für den 
Entscheider keine Rolle (risikoneutraler Entscheider). Wird 

0>λ  gewählt, so werden Anbauprogramme, die zu einer 
geringeren Standardabweichung des Gesamtdeckungsbei-
trages führen, bevorzugt (risikoaverse Entscheider). Über 
eine Risikonutzenfunktion (VON NEUMANN und MORGEN-
STERN, 1947) kann aus dem mit (4) ausgedrückten Sicher-
heitsäquivalent auch der Erwartungsnutzen berechnet wer-
den. Der Vergleich der Sicherheitsäquivalente von Alterna-
tiven führt zur gleichen Rangfolge wie der Vergleich der 
Erwartungsnutzen. 
In Abweichung von der üblichen Vorgehensweise wird in 
der hier vorliegenden Anwendung die Präferenzfunktion 
wie folgt definiert: 

(5)  GDB
ttx

GDB σαφ ⋅−=maximize  

Das hier als Maß für die Risikoeinstellung verwendete α  
wird zur Abgrenzung vom Risikoaversionskoeffizienten des 
Erwartungswert-Varianz-Kriteriums als Risikoparameter 
bezeichnet. (5) wird hier verwendet, da diese Definition der 
Präferenzfunktion im Gegensatz zu (4) eine relativ einfache 
empirische Erfragung der subjektiven Risikoeinstellung 
ermöglicht und die Ergebnisinterpretation erleichtert. 
Ein Unterschied der Maximierung einer Präferenzfunktion 
zu den oben beschriebenen MOTAD-Modellen (abgesehen 
von der Verwendung der Varianz bzw. Standardabwei-
chung anstelle der absoluten Abweichungen) besteht darin, 
dass die Risikoeinstellung in der Zielfunktion berücksich-
tigt wird. Stellt man aufgrund der bekanntermaßen schwie-
rig zu erfassenden Risikoeinstellung aber Variantenrech-
nungen für unterschiedliche λ  bzw. α  an, so resultieren 
daraus Ergebnisse, die denen von MOTAD-Modellen sehr 
ähneln. In beiden Fällen werden Kombinationen von Ge-
samtdeckungsbeitrag und Streuung ausgewiesen.4 Sowohl 
bei MOTAD-Modellen als auch bei der Maximierung einer 
Präferenzfunktion können also systematische Varianten-
rechnungen durchgeführt werden. Im Unterschied zu den 
oben genannten einfachen Variantenrechnungen werden 
Verteilungsinformationen bei beiden gezielt berücksichtigt. 
Die Maximierung einer Präferenzfunktion mittels MS-
EXCEL-Solver o.ä. setzt u.a. voraus, dass die Wahrschein-
lichkeitsverteilung der Zielgröße aus den Wahrscheinlich-

                                                           
3 Streng genommen müsste man begrifflich zwischen der sub-

jektiven Risikoeinstellung und dem Risikoaversionskoeffi-
zienten unterscheiden, da der gleiche Entscheider auf unter-
schiedlichen Einkommensniveaus unterschiedliche Risiko-
aversionskoeffizienten aufweisen kann. Zur Vereinfachung 
der verwendeten Formulierungen werden - wie auch allgemein 
üblich - beide Begriffe synonym verwendet. Zudem bildet die 
exponentielle Risikonutzenfunktion eine Ausnahme. Da in 
diesem Fall die Risikoaversion konstant ist, drückt Risiko-
aversion gleichzeitig die „subjektive Risikoeinstellung“ aus. 

4  Neben der methodischen Vorgehensweise unterscheiden sich 
MOTAD-Modelle von einer Maximierung einer Präferenz-
funktion letztlich darin, dass es in einem Fall zu „geraden 
Werten“ des systematisch variierten Gesamtdeckungsbeitrages 
und im anderen Fall zu „geraden Werten“ des systematisch va-
riierten Risikoaversionskoeffizienten bzw. Risikoparameters 
kommt. 

keitsverteilungen der einzelnen stochastischen Variablen 
analytisch hergeleitet werden kann (BERG, 2003). Eine 
algebraische Herleitung ist aber schwer bzw. nicht möglich, 
wenn z.B. 
• die Verteilungen der einzelnen stochastischen Variablen 

nicht gleich sind, 
• eine Vielzahl von Variablen berücksichtigt werden muss, 
• die mathematische Verknüpfung zwischen den stochasti-

schen Variablen nicht additiv ist oder 
• die Verteilung der unsicheren Größen nicht, wie z.B. bei 

der Normalverteilung, vollständig durch den Erwartungs-
wert und die Varianz charakterisiert werden kann. 

Vereinfachend wird deshalb meist unterstellt, dass die Ver-
teilungen der im Modell berücksichtigten Zufallsvariablen 
multivariat normalverteilt sind (DOPPLER und MÄRZ, 
1989: 355). 
Angesichts dieser Problematik liegt es nahe, bei komplexe-
ren Zusammenhängen auf die stochastische Simulation 
zurückzugreifen. Mit relativ geringem Aufwand kann hier-
mit die Wahrscheinlichkeitsverteilung der Zielgröße be-
stimmt werden, unabhängig davon, wie komplex das Mo-
dell und die Verteilungen auch sind. Weil die stochastische 
Simulation für sich genommen aber keinen Optimierungs-
algorithmus beinhaltet, kann sie zunächst nur eingesetzt 
werden, um die Verteilung des Gesamtdeckungsbeitrages 
bei gegebenem Anbauprogramm zu bestimmen. Das ist 
aber gerade dann problematisch, wenn eine Präferenzfunk-
tion maximiert werden soll und somit die Verteilung des 
Gesamtdeckungsbeitrages die Optimallösung beeinflusst. 
Allenfalls durch einen Vergleich der Ergebnisse verschie-
dener Strategien lässt sich eine Optimierung vornehmen. 
Eine Enumeration und ein „Durchprobieren“ aller mögli-
chen Anbauprogramme ist aufgrund des hohen manuellen 
Aufwands aber immer nur bei einer sehr begrenzten Anzahl 
an Handlungsalternativen möglich. 

3. Die Kombination von stochastischer Simu-
lation und Genetischen Algorithmen 

Im Folgenden wird die Verfahrenskombination stochasti-
sche Simulation/Genetische Algorithmen vorgestellt. Dabei 
werden die Vorteile beider Verfahren miteinander vereint, 
d.h. größtmögliche Flexibilität hinsichtlich einer realisti-
schen Modellierung der Unsicherheit wird mit der grund-
sätzlichen Möglichkeit zur Lösung von komplexen Opti-
mierungsproblemen gekoppelt. 
Die Grundidee der stochastischen Simulation ist hinlänglich 
bekannt: Die Zufallsvariablen werden identifiziert. An-
schließend wird unter Berücksichtigung der Verteilungsin-
formationen der Zufallsvariablen sowie der vorgegebenen 
Handlungsstrategie (hier: des Produktionsprogramms) der 
Zielfunktionswert berechnet. Das Zufallsexperiment wird 
hinreichend oft wiederholt. Auf der Grundlage der sich 
während der einzelnen Simulationsläufe einstellenden Ziel-
funktionswerte kann bei ausreichender Wiederholungszahl 
eine Verteilung der Zielgröße (hier: des Gesamtdeckungs-
beitrages) berechnet werden. Die stochastische Simulation 
kann demzufolge als „komplexe Variantenrechnung“ zur 
Berücksichtigung stochastischer Umweltzustände verstan-
den werden. 
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Die aus dem Bereich der künstlichen Intelligenz ent-
stammenden GA (GOLDBERG, 1989; HOLLAND, 1975; MIT-
CHELL, 1996 oder RECHENBERG, 1973) können zur Lösung 
verschiedenster Optimierungsprobleme angewendet wer-
den, selbst wenn keine geschlossenen Lösungsverfahren 
existieren oder das Prüfen aller Möglichkeiten (vollständige 
Enumeration) nicht praktikabel ist.5 Durch Nachahmung 
der Prinzipien der natürlichen Evolution, d.h. durch „Aus-
probieren“ verschiedener Anbaustrategien, wird diejenige 
bestimmt, die den maximalen Zielfunktionswert liefert. Im 
Vokabular der GA stellt die Anbaustrategie das Genom dar, 
das in aufeinander folgenden Generationen verschiedene 
Ausprägungen bzw. Genotypen annehmen kann. Als Aus-
gangspunkt können in der ersten Generation Strategien 
beliebig ausgewählt werden. Die einzelnen Strategien wer-
den hinsichtlich des Zielfunktionswertes (Fitnesskriterium) 
getestet und geordnet. Durch Anwendung der Operatoren 
des GA (Selektion, Rekombination, Mutation) wird die Zu-
sammensetzung der in der nächsten Generation zu testen-
den Strategien bestimmt. Dieser leicht zu automatisierende 
Prozess, der heuristisch zunehmend fittere Strategien gene-
riert, wird solange wiederholt, bis keine weitere Verbesse-
rung der Fitness möglich ist. 
Bei der Bestimmung des optimalen Produktionsprogramms 
mittels stochastischer Simulation und GA finden im We-
sentlichen vier Ablaufschritte Anwendung: 

Schritt 1:  Initialisierung 
Der erste Schritt einer GA-Optimierung besteht darin, eine 
sog. Ausgangspopulation zu generieren. Die Populations-
größe N  liegt im Allgemeinen zwischen 50 und 1 000 In-
dividuen, wobei man unter einem Individuum ein einzelnes 
Genom versteht. Die Werte der Ausgangspopulation wer-
den mit einem Zufallsgenerator bestimmt, d.h. die Genome 
stellen zufällig gewählte Kombinationen von Umfängen der 
einzelnen Produktionsverfahren dar. Bei der Festlegung der 
sog. Initiallösung ist zu beachten, dass die Flächen- und 
Fruchtfolgerestriktionen eingehalten werden. Die initiali-
sierten Produktionsprogramme der Ausgangspopulation 
stellen die erste Generation des GA dar. 

Schritt 2:  Bestimmung des Zielfunktionswertes für jede  
Anbaustrategie 

Für die Berechnung des Zielfunktionswertes für jede An-
baustrategie findet die stochastische Simulation Anwen-
dung. Es ist wie folgt vorzugehen: 

                                                           
5 ODENING et al. (2003) verwenden GA zur Maximierung der 

Likelihoodfunktion eines Switching-Regression-Modells kom-
biniert mit einem Stochastic-Frontier-Modell im Zusammen-
hang mit der empirischen Validierung von Realoptionsmodel-
len, BALMANN und MUßHOFF (2001) wenden GA für die  
Bestimmung der optimalen Investitionsstrategie an oder  
BALMANN und HAPPE (2001) lösen mittels GA ökonomische 
Probleme auf landwirtschaftlichen Bodenmärkten. Weitere 
Anwendungsfelder von GA sind die Vorhersage von Preis-
entwicklungen an Finanzmärkten, der Einsatz in der Spiel-
theorie oder das Training Neuronaler Netze (KOZA, 1992 und 
NISSEN, 1994). 

Schritt 2.1:  Simulation der Wertentwicklung der Einzel-
deckungsbeiträge 

Ausgehend von den Deckungsbeiträgen jDB0 , die im Pla-
nungszeitpunkt beobachtet werden, wird die Wertentwick-
lung der Einzeldeckungsbeiträge über eine Periode gemäß 
der jeweils unterstellten zeitdiskreten stochastischen Pro-
zesse in mehreren tausend Simulationsläufen berechnet. 
Dabei werden eventuell vorliegende Korrelationen berück-
sichtigt. Für jeden einzelnen Simulationslauf s  
( Ss ...,,2,1= ) ergibt sich in der Periode 1 ein Deckungs-

beitrag js DB1  für jedes Produktionsverfahren. Die im je-
weiligen Simulationslauf realisierten Entwicklungen der 
Einzeldeckungsbeiträge gelten für alle Teststrategien glei-
chermaßen. 

Schritt 2.2:  Berechnung der Gesamtdeckungsbeiträge in 
jedem Simulationslauf für alle Strategien 

Für jede simulierte Deckungsbeitragsentwicklung für das 
relevante Planungsjahr 1 wird der Gesamtdeckungsbeitrag 
für die jeweilige Teststrategie berechnet: 

(6)  ∑
=

⋅=
J

j

j
gn

jss
gn xDBGDB

1
1,11,  

Dabei bezeichnet der linkseitig tiefgestellte Index n  
( Nn ...,,2,1= ) das Genom und der gleichfalls linksseitig 
tiefgestellte Index g  ( Gg ...,,2,1= ) die Generation. 

Schritt 2.3:  Berechnung des Erwartungswertes für den  
Gesamtdeckungsbeitrag jeder Strategie 

Nach einer hinreichend hohen Anzahl an Simulationsläu-
fen S  kann der Erwartungswert des Gesamtdeckungsbei-
trages für jede Teststrategie berechnet werden:6 
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Schritt 2.4:  Berechnung des Zielfunktionswertes jeder  
Strategie 

Der Erwartungswert stellt nur im Fall von einem risikoneut-
ralen Entscheider ein hinreichendes Kalkül dar. Bekann-
termaßen sind ökonomische Entscheidungsträger jedoch 
mehr oder weniger risikoavers. Dies kann über eine Präfe-
renzfunktion berücksichtigt werden: 

(5´)  GDB
gngnn,g GDB σαφ ,1,1 ⋅−=  

Das Sicherheitsäquivalent 1, φgn  der jeweiligen Strategie 
ergibt sich aus dem Erwartungswert des Gesamtdeckungs-
beitrages 1, GDBgn , der zugehörigen Standardabwei-

chung GDB
gn σ,  und dem Gewichtungsparameter α , der 

die Risikoeinstellung des Entscheiders wiedergibt. 
                                                           
6 HAUG (1998: 140) schlägt bspw. zur Erreichung einer ausrei-

chenden Güte des Simulationsexperimentes die Durchführung 
von mindestens 10 000 Simulationsläufen vor. 
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Schritt 3:  Anwendung der Operatoren des GA 
Nun gilt es, die in der folgenden Generation zu evaluieren-
den Strategien (Produktionsprogramme) zu definieren. 
Dazu werden die Operatoren eines GA angewandt. Aus-
gangspunkt sind dabei die Anbaustrategien der aktuellen 
Generation und der Zielfunktionswert, den sie liefern. Zu 
beachten ist, dass die nachfolgende Spezifikation der Ope-
ratoren des GA pragmatisch gewählt wurde und es zahlrei-
che alternative Möglichkeiten ihrer Festlegung gibt. 

Schritt 3.1:  Evaluierung der Fitness 
Die Höhe des im Rahmen der stochastischen Simulation 
bestimmten Zielfunktionswertes gibt Aufschluss über die 
„Güte“ der zugrunde gelegten Anbaustrategie. Je höher der 
Zielfunktionswert ist, desto „besser“ (fitter) ist die Strate-
gie. Deshalb werden die Genome zunächst ihrem Sicher-
heitsäquivalent nach geordnet. 

Schritt 3.2:  Selektion und Replikation 
Ein wesentlicher Operator auf dem Weg zum Auffinden der 
Optimallösung, d.h. der Anbaustrategie, die den tatsächlich 
(und nicht nur relativ) höchsten Zielfunktionswert liefert, 
ist die Selektion und Replikation. Dazu werden die fittesten 
Genome der aktuellen Generation in die folgende über-
nommen. Die relativ schlechteren Anbaustrategien werden 
hingegen verworfen und durch fittere, die verdoppelt wer-
den, ersetzt. Die Höhe des Zielfunktionswertes, den die 
jeweilige Strategie liefert, determiniert also die „Überle-
bensfähigkeit“ bestimmter Strategien. 

Schritt 3.3:  Rekombination 
Keine der relativ fitteren Anbaustrategien muss tatsächlich 
schon die optimale darstellen. Um das Potenzial eventuell 
besserer Strategien zu berücksichtigen, sind auch nach der 
ersten Generation wieder gänzlich neue Strategien zu gene-
rieren. Dazu werden die Strategien i.d.R. unabhängig von 
ihrer Fitness mit einer vorgegebenen Wahrscheinlichkeit 
verändert, indem sie mit anderen rekombiniert werden oder 
indem man sie mutieren lässt. Bei der horizontalen Rekom-
bination wird jede Strategie, d.h. alle Produktionsumfänge, 
mit einer bestimmten Wahrscheinlichkeit mit den Umfän-
gen einer zufällig ausgewählten anderen Strategie über eine 
mathematische Operation verbunden oder „gepaart“. Bei 
der vertikalen Rekombination werden solche mathemati-
schen Operationen zwischen den Aktivitätsumfängen einer 
Strategie vorgenommen. Das „Nachkommen“, das sich 
nach einer horizontalen oder vertikalen Rekombination 
ergibt, nimmt den Platz eines „Elternteils“ ein. Bei einer 
horizontalen Rekombination kann es auch verdoppelt wer-
den und beide Elternteile ersetzen. Die Anzahl der Strate-
gien bleibt somit gleich. 

Schritt 3.4:  Mutation 
Während Rekombinationen alle Produktionsumfänge einer 
betroffenen Strategie verändern, erlauben Mutationen die 
Veränderungen einzelner Werte der repräsentierten Strate-
gie. Das bedeutet, dass der Umfang jedes einzelnen Produk-
tionsverfahrens mit einer (geringen) Wahrscheinlichkeit 
innerhalb einer vorgegebenen prozentualen oder absoluten 
Spannbreite erhöht bzw. erniedrigt wird. Mutationen spie-
len eine wesentliche Rolle bei der Suche nach neuen und 

erfolgreichen Genotypen, obgleich sie vielfach von der 
Selektion wieder ausgemerzt werden, weil sie keine Ver-
besserung gebracht haben. Ihnen kommt eine Art Versich-
erungsfunktion zu. Sie erlauben, noch nicht in der „Erbsub-
stanz“ vorhandenes oder bereits verlorenes „Genmaterial“ 
wieder zu erlangen und verhindern so eine frühe Fixierung 
auf bestimmte Werte. 

Schritt 4:  Neue Generation 
Nach der Anwendung der Operatoren des GA werden die 
Umfänge der einzelnen Produktionsverfahren ggf. so ange-
passt, dass für jedes Genom die Flächen- und Fruchtfolge-
restriktionen eingehalten werden. Ergebnis ist eine neue 
Population von Testgenomen oder Anbaustrategien, die die 
Folgegeneration definieren. Sie bildet den Ausgangspunkt 
der weiteren Berechnungen. 
Die wiederholte Durchführung der Schritte 2 bis 4 liefert 
das optimale Produktionsprogramm. Der GA wird dann 
beendet, wenn die erhaltenen Anbaustrategien homogen 
und stabil sind, so dass gilt: j

GN
j

G
j

G xxx ,,2,1 ...≈≈≈  und 
j

Gn
j

Gn xx 1,, −≈  für alle Jj ...,,2,1= . Abbildung 1 veran-

schaulicht die prinzipielle Vorgehensweise bei der Bestim-
mung des optimalen Produktionsprogramms mittels sto-
chastischer Simulation und GA grafisch. 
Die Bestimmung des optimalen Produktionsprogramms 
mittels stochastischer Simulation und GA ist bedeutend 
programmier- und rechenzeitaufwändiger als die Anwen-
dung konventioneller Optimierungsverfahren, wie bspw. 
der MS-EXCEL-Solver. Somit ist das Verfahren nur dann 
anzuwenden, wenn die Komplexität der Problemstellung 
dies erfordert. Zudem ist zu beachten, dass GA heuristische 
Suchverfahren darstellen und somit keine Garantie besteht, 
dass tatsächlich das globale Optimum im jeweiligen Opti-
mierungslauf gefunden wird. Deshalb sollten mehrere 
Suchläufe mit unterschiedlichen Ausgangsstrategien durch-
geführt werden. Die Kombination von stochastischer Simu-
lation und GA kann direkt in MS-EXCEL programmiert 
werden (MUßHOFF und HIRSCHAUER, 2003). 

4. Modellanwendung 
4.1 Datenbasis und Modellannahmen 
4.1.1 Kapazitäten 
Im Folgenden wird ein Marktfruchtbetrieb in Brandenburg 
betrachtet, der sein Anbauprogramm optimieren will. Der 
Betrieb kann zwischen zehn Produktionsverfahren wählen: 
Winterweizen, Sommerweizen, Winterroggen, Wintergers-
te, Sommergerste, Winterraps, Zuckerrüben, Körnermais, 
Non-Food-Raps und Stilllegung. Maschinenkapazitäten 
sind vorhanden, um jedes Produktionsverfahren in den 
durch Lieferrecht bedingten bzw. pflanzenbaulich mögli-
chen Grenzen umzusetzen. Die einzelnen Produktionsver-
fahren verursachen einen unterschiedlich hohen Ar-
beitsaufwand, der zudem saisonal verschieden ist. Es gelten 
folgende Restriktionen: 
• Der Betrieb verfügt über eine Flächenausstattung von 

800 ha. Die verfügbare Fläche steht für das Planungsjahr 
fest, d.h. weder Zupachtung/Verpachtung noch Zu-
kauf/Verkauf von Fläche sind möglich. 
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• Fruchtfolgebedingt dürfen sowohl der Weizen- als auch 
der Gerstenanteil 40 %, und der Rapsanteil 12 % der Ge-
samtfläche nicht übersteigen. 

• Die Bodenqualität ist auf bestimmten Standorten so ge-
ring, dass auf 10 % der Fläche ausschließlich Roggenan-
bau bzw. Stilllegung möglich ist. 

• Quotenbedingt können Zuckerrüben nur auf maximal 4 % 
der Fläche angebaut werden. 

• Nach Zuckerrüben muss eine Sommerung erfolgen, weil 
der Anbau von Wintergetreide nach der Zuckerrübenro-
dung im Spätherbst aus pflanzenbaulicher Sicht nicht 
sinnvoll ist. Eine Stilllegung nach Zuckerrüben kommt 
wegen der hohen Vorfruchtwirkung nicht in Betracht. 

• Nur für maximal 33 % der prämienberechtigten Fläche 
gibt es Stilllegungsprämie. Darüber hinaus können Flä-
chen als Brache ungenutzt bleiben. 

• Obligatorisch müssen 10 % der prämienberechtigten 
Fläche stillgelegt werden. Alternativ ist der Anbau von 
nachwachsenden Rohstoffen (Non-Food-Raps) möglich.  

• Es werden zwei fest angestellte Mitarbeiter beschäftigt, 
die an Feldarbeitstagen bis zu zehn Stunden arbeiten. Die 
Anzahl der potenziellen Feldarbeitstage ist saisonabhän-
gig und witterungsbedingt mit Unsicherheit behaftet. Dies 
wird modellendogen über Dreiecksverteilungen berück-
sichtigt, deren Minimum (Maximum) 25 % unter (über) 
den erwarteten Feldarbeitstagen liegt (vgl. 
Tabelle 1). 

4.1.2 Deckungsbeiträge und Hilfsaktivitäten 
Zusätzlich zu den im Betrieb verfügbaren 
Arbeitskapazitäten ist die Einstellung von 
Saisonarbeitskräften möglich. So kann auch 
ein witterungsbedingter Arbeitskräftemangel 
ausgeglichen werden. Die Kosten je Saison-

arbeitskraftstunde (SAkh) belaufen sich auf 15 €. 
Neben der Anzahl der potenziellen Feldarbeitstage werden 
die Deckungsbeiträge der einzelnen Produktionsverfahren 
als Zufallsvariablen modelliert. Idealerweise würde man zur 
Gewinnung von Informationen bzgl. der relevanten sto-
chastischen Prozesse für die Einzeldeckungsbeiträge mög-
lichst lange Zeitreihen aus der Region Brandenburg bzw. 
aus dem zu optimierenden Betrieb verwenden. Deckungs-
beiträge, die vor 1990 in Brandenburg realisiert wurden, 
haben jedoch keinen Informationsgehalt für das zukünftige 
Entwicklungsmuster. Gleichzeitig ist eine nur zehn bis 
zwölf Beobachtungswerte umfassende Stichprobe zu kurz, 
um stochastische Prozesse zu schätzen. Deshalb werden 
unter Rückgriff auf verschiedene Datenquellen für den 
Zeitraum von 1980 bis 2002 jährliche Deckungsbeiträge für 
plausible Produktionsverfahren an entsprechenden Standor-
ten als aggregierte Größe aus den Erträgen, Preisen und 
Prämien (ZMP, verschiedene Jahrgänge) sowie den variab-
len Produktionskosten (BAYERISCHE LANDESANSTALT, 
2003) berechnet. Bei der Herleitung des Deckungsbeitrages 
der Sommergerste wurde davon ausgegangen, dass 50 % 
des Ertrages den Qualitätsanforderungen für Braugerste 
genügen und zu entsprechend höheren Preisen vermarktet 
werden können. Die übrige Sommergerste wird als Futter-
gerste verkauft. Auffällig ist, dass die variablen Produk-
tionskosten für alle Produktionsverfahren über den Zeit-

Tabelle 1.  Die Feldarbeitstage als Dreiecksverteilung 

 Minimum Mittelwert Maximum
März und April 22,50 30,00 37,50 
Mai und Juni 26,25 35,00 43,75 
Mitte Juli bis Mitte September 33,75 45,00 56,25 
Mitte September bis Mitte November 30,00 40,00 50,00 

Quelle: Eigene Schätzung 

Abbildung 1.  Vorgehensweise bei der Kombination von stochastischer Simulation mit GA 
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Agrarwirtschaft 53 (2004), Heft 7 

271 

raum von 1980 bis 2002 nahe-
zu konstant sind. Mit anderen 
Worten: Unsicherheit in den 
Deckungsbeiträgen ist haupt-
sächlich in den Leistungen 
begründet. Bei Zuckerrüben 
schwankt fast ausschließlich 
der Ertrag. Der Deckungsbei-
trag des Produktionsverfahrens 
„Stilllegung“ wird mit einer 
Höhe von 150 € als determi-
nistisch konstant angenom-
men. Der Deckungsbeitrag des 
Non-Food-Raps wird mit dem 
Faktor 0,92 aus dem des Win-
terraps hergeleitet. Beide sind 
damit perfekt korreliert. 
Die Modellierung der aggre-
gierten Größe „Deckungsbei-
trag“ anstelle der variablen Produktionskosten, Erträge, 
Preise und Prämien ermöglicht eine Komplexitätsreduktion. 
Implizit werden sowohl Mengen-, Preis- als auch Politikun-
sicherheiten sowie Korrelationen zwischen diesen Größen 
eingefangen. Die Entwicklungsverläufe der Deckungs-
beiträge von ausgewählten Produktionsverfahren sind in 
Abbildung 2 dargestellt. Abbildung 2 verdeutlicht, dass  
Deckungsbeiträge pflanzlicher Produktionsverfahren in 
starkem Maße mit Unsicherheit behaftet und zudem mitein-
ander korreliert sind. 
Obwohl im Folgenden Unsicherheit berücksichtigt wird, 
indem die Zufallsvariablen als Verteilungen modelliert 
werden, sind in Tabelle 2 der Übersichtlichkeit halber die 
Modellannahmen in Form von Erwartungswerten in einem 
klassischen Optimierungstableaus dargestellt. 

4.1.3 Ableitung stochastischer Prozesse 
Im Folgenden wird gezeigt, wie man aus den Entwick-
lungsmustern der historischen Deckungsbeitragszeitreihen 
stochastische Prozesse ableiten kann. Auf der Grundlage 
der identifizierten stochastischen Prozesse sowie des aktu-
ellen Beobachtungswertes lassen sich Verteilungsannahmen 
der Zufallsvariablen für unterschiedliche zukünftige Zeit-
punkte treffen. Dies bildet die Grundlage für die Modellie-
rung der Einzeldeckungsbeiträge im Rahmen der stochasti-
schen Simulation, die letztlich als „Zufallsziehung nach 
Maßgabe der Verteilung“ zu verstehen ist. 
Das zutreffendste Entwicklungsmuster bzw. der „beste“ 
stochastische Prozess für die einzelnen Deckungsbeiträge 
wird mittels Zeitreihenanalyse aus den Deckungsbeitrags-
zeitreihen der Jahre 1980 bis 2002 abgeleitet. Dazu erfolgt 
zunächst eine Prüfung auf Stationarität mit Hilfe des  
Dickey-Fuller-Tests (DICKEY und FULLER, 1981). Ergebnis 
dieses Tests ist, dass man mit 5 % Irrtumswahrscheinlich-
keit davon ausgehen kann, dass alle Deckungsbeitragszeit-
reihen mit Ausnahme der Sommergerste und der Zucker-
rüben nicht stationär sind. 
Für die Deckungsbeiträge der Produktionsverfahren Win-
terweizen, Sommerweizen, Winterroggen, Wintergerste, 
Winterraps, Körnermais und Non-Food-Raps erscheint ein 
(nicht-stationärer) arithmetischer Brownscher Prozess 
(ABP) plausibel, der einen Vorzeichenwechsel und somit 

sowohl negative als auch positive Deckungsbeiträge ermög-
licht. Bei einem ABP entspricht das Entwicklungsmuster 
für den zukünftigen Deckungsbeitrag dem gegenwärtig zu 
beobachtenden Deckungsbeitrag zuzüglich einer konstanten 
absoluten Drift (Trend) und einer Zufallskomponente. Ma-
thematisch lässt sich ein ABP in diskreter Zeit wie folgt 
darstellen (LUENBERGER, 1998: 305): 
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Dabei kennzeichnet jµ  die Drift und jσ  die Standardab-
weichung der absoluten Deckungsbeitragsänderungen, t∆  
die Länge eines Zeitintervalls zwischen zwei Beobach-
tungswerten (hier ein Jahr) und j

tε  eine standardnormalver-
teilte Zufallszahl. Die Drift und die Standardabweichung 
eines ABP sind folgendermaßen zu berechnen (CAMPBELL 
et al., 1997: 363): 
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B  kennzeichnet die Anzahl der historischen Beobach-
tungswerte, also 23. 

Für die Deckungsbeiträge der Sommergerste und Zucker-
rüben zeigt sich nach der Anwendung der Box-Jenkins-
Testprozedur (BOX und JENKINS, 1976), dass ein (statio-
närer) autoregressiver Prozess erster Ordnung (AR(1)-
Prozess) plausibel ist: 

(10) j
t

j
Reg

j
tt

jjj
t DBaaDB εσ ⋅+⋅+= ∆−10 ,  mit 11 <ja  

ja0  kennzeichnet eine Konstante, ja1  den Gewichtungsfak-

tor des zurückliegenden Beobachtungswertes j
ttDB ∆−  und 

j
Regσ  die Standardabweichung der Residuen der Regression. 

Abbildung 2. Zeitreihe der Deckungsbeiträge ausgewählter Produktionsverfahren

0

100

200

300

400

500

600

700

800

900

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

D
ec

ku
ng

sb
ei

tra
g 

(in
 €

/h
a 

un
d 

Ja
hr

)

Körnermais Sommergerste Winterweizen

Quelle: Eigene Berechnungen 



Agrarwirtschaft 53 (2004), Heft 7 

272 

 
 

Tabelle 2.  Optimierungstableau 

Aktivitäten Hilfsaktivitäten 
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SA
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Zielfunktionskoeffizient jDB1  359,7 312,4 344,5 238,8 323,5 482,5 1709,8 300,1 443,9 150,0 -15 -15 -15 -15 

Umfänge 1
1x  2

1x  3
1x  4

1x  5
1x  6

1x  7
1x  8

1x  9
1x  10

1x  11
1x  12

1x  13
1x  14

1x  
 

Flächenanspruch 1 1 1 1 1 1 1 1 1 1 0 0 0 0 <= 800 

März und April 0,3 2,6 0,9 0,3 2,6 0,4 3,0 2,6 0,4 0,0 -1 0 0 0 <= 600 

Mai und Juni 0,8 0,5 0,2 0,5 0,5 0,9 0,9 0,8 0,9 0,0 0 -1 0 0 <= 700 

Mitte Juli bis Mitte Sept. 2,4 2,4 2,2 2,1 2,0 3,5 0,0 0,0 3,5 2,0 0 0 -1 0 <= 900 

Mitte Sept. bis Mitte Nov. 2,9 0,4 2,6 2,8 0,0 0,7 3,9 2,2 0,7 0,0 0 0 0 -1 <= 800 

A
rb

ei
ts

an
sp

ru
ch

 a
)  

gesamt 6,4 5,8 5,3 5,7 5,1 5,4 7,7 5,6 5,4 2,0 -1 -1 -1 -1 <= 3 000 

Weizen 0,60 0,60 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40 -0,40 0 0 0 0 <= 0 

Roggen und Stilllegung 0,10 0,10 -0,90 0,10 0,10 0,10 0,10 0,10 0,10 -0,90 0 0 0 0 <= 0 

Gerste -0,40 -0,40 -0,40 0,60 0,60 -0,40 -0,40 -0,40 -0,40 -0,40 0 0 0 0 <= 0 

Raps -0,12 -0,12 -0,12 -0,12 -0,12 0,88 -0,12 -0,12 0,88 -0,12 0 0 0 0 <= 0 

Zuckerrüben -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 0,96 -0,04 -0,04 -0,04 0 0 0 0 <= 0 

Sommergetreide 0,04 -0,96 0,04 0,04 -0,96 0,04 0,04 -0,96 0,04 0,04 0 0 0 0 <= 0 

Stilllegung -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 0,67 0 0 0 0 <= 0 Fr
uc

ht
fo

lg
er

es
tri

kt
io

ne
n 

Stilllegung und Non-Food-Raps 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 -0,90 -0,90 0 0 0 0 <= 0 
a) vgl. (MELF, 1997). 

Quelle: Eigene Darstellung 
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Ein im Zusammenhang mit der 
Modellierung von Preis- oder 
Deckungsbeitragsentwicklun-
gen oft verwendeter Spezialfall 
eines AR(1)-Prozesses sind 
Mean-Reverting-Prozesse. Cha-
rakteristisch für diese Prozess-
klasse ist, dass es langfristig 
ein Gleichgewichtsniveau gibt, 
um das der Wert der stochasti-
schen Variable kurzfristig 
schwankt. Je weiter sich die 
stochastische Variable von 
ihrem Gleichgewichtsniveau 
entfernt hat, desto größer ist die 
Wahrscheinlichkeit einer Rück-
kehr. Für die Deckungsbeiträ-
ge wird ein spezieller Mean-
Reverting-Prozess, der sog. 
Ornstein-Uhlenbeck-Prozesses 
(OUP) angenommen. Er er-
laubt einen (für Deckungsbeiträge plausiblen) Vorzeichen-
wechsel der stochastischen Variable. Die zeitdiskrete Version 
eines OUP lässt sich wie folgt darstellen (DIXIT und  
PINDYCK, 1994: 76): 

jη  kennzeichnet die Rückkehrgeschwindigkeit des De-
ckungsbeitrages des Produktionsverfahrens j  auf sein 

Gleichgewichtsniveau 
___

jDB . Der Unterschied zu ABP 
besteht zum einen darin, dass die zukünftig erwartete Wert-
änderung vom Niveau des Vorwertes abhängt: Sie ist bei ___

jj
tt DBDB <∆−  positiv, bei 

___
jj

tt DBDB =∆−  gleich Null 

und bei 
___

jj
tt DBDB >∆−  negativ. Zum anderen steigt die 

Varianz bei längeren Prognosezeiträumen nicht linear mit 
der Zeit an, sondern bleibt nach einer bestimmten Zeit we-
gen des Drangs zur Rückkehr konstant. Letztlich entspricht 
(11) der Gleichung (10), in der die Parameter ja0 , ja1  und 

j
Regσ  wie folgt zu interpretieren sind: 

(12)  ( )tjj j
eDBa ∆⋅−−⋅= η1

___

0 ,  

 tj j
ea ∆⋅−= η

1  und 
j

t
jj

Reg

j
e

η
σσ

η

⋅
−

⋅=
∆⋅⋅−

2
1 2

 

Da die Werte ja0 , ja1  und j
Regσ  nach der Box-Jenkins-

Testprozedur bekannt sind, lassen sich durch Umstellen der 
Formulierungen jη , 

___
jDB  und jσ  bestimmen. 

Alle Parameter für die stochastischen Prozesse der Einzel-
deckungsbeiträge werden als deterministisch konstant an-
genommen, d.h. der stochastische Prozess behält über der 
Zeit seine Gültigkeit. Tabelle 3 liefert eine Übersicht der 
Prozesse und ihrer Parameter, wie sie sich aus den statisti-
schen Tests ergeben. 

Zu beachten ist, dass die Höhe der Standardabweichungen 
eines ABP nicht mit der eines OUP zu vergleichen ist. Im 
Fall eines OUP besteht ein Drang zur Rückkehr der sto-
chastischen Variable auf ihr Gleichgewichtsniveau; beim 
ABP kann die stochastische Variable dagegen beliebig 
driften. Die für die Einzeldeckungsbeiträge bestimmten 
Entwicklungsmuster (stochastischen Prozesse) werden an 
die in der Periode 0 (im Jahr 2003) erzielten Deckungs-
beiträge jDB0  angelegt, d.h. sie bilden die Grundlage der 
Zufallsziehung im Rahmen der Simulation.1 

4.1.4 Bestimmung von Korrelationen zwischen den Einzel-
deckungsbeiträgen 

Bei der Simulation zukünftiger Entwicklungspfade für die 
Einzeldeckungsbeiträge ist zu berücksichtigen, dass sie 
zwar Zufallsänderungen unterliegen, aber auch Korrelatio-
nen vorliegen. Der Korrelationskoeffizient jj ′,ρ  ist ganz 
allgemein definiert als: 

(13)  
jj

jj
jj

′

′
′

⋅
=

σσ
ρ

,
, cov ,   

 mit 0, >′jj σσ  und Jjj ...,,2,1, =′  

Dabei kennzeichnet jj ′,cov  die Kovarianz zwischen den 
Deckungsbeitragsänderungen der Produktionsverfahren j  
und j′ . Die Kovarianz ihrerseits ist wie folgt zu berechnen: 

(14) ∑
=

′′′











−⋅










−⋅=

B

t

jj
t

jj
t

jj yyyy
B 1

______
, 1cov ,   

                                                           
1 Zu beachten ist, dass die für das Jahr 2003 geschätzten  

Deckungsbeiträge nicht zur Identifikation der stochastischen 
Prozesse herangezogen wurden. Während die Einzeldeckungs-
beiträge für den Zeitraum von 1980 bis 2002 (vgl. Abbil-
dung 2) basierend auf statistisch gesicherten Angaben herge-
leitet wurden, beruhen die Einzeldeckungsbeiträge für das Jahr 
2003 auf Expertenaussagen und Plausibilitätsannahmen. 

Tabelle 3.  Zusammenfassung der Prozessparameter 
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stationär nein nein nein nein ja nein ja nein nein – 
jDB0  366,0 316,1 348,0 246,3 188,4 496,5 1285,3 298,0 456,8 150,0

jµ  -6,3 -3,7 -3,5 -7,5 – -14,0 – 2,1 -12,9 – 
jσ  111,4 108,8 104,6 112,0 – 270,0 – 124,5 248,4 – A

B
P 

( )jDBE 1 359,7 312,4 344,5 238,8 – 482,5 – 300,1 443,9 – 
___

jDB  – – – – 329,3 – 1833,8 – – – 

jη  – – – – 3,2 – 1,5 – – – 
jσ  – – – – 208,9 – 408,1 – – – O

U
P 

( )jDBE 1 – – – – 323,5 – 1709,8 – – – 

Quelle: Eigene Berechnungen

(11)  
( )

j
tj

t
j

j
tt

ttjj
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j

jj

e

DBeeDBDB

ε
η

σ
η

ηη

⋅
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 mit j
tt

j
t

j
t DBDBy ∆−−=  und j

tt
j

t
j

t DBDBy ′
∆−

′′ −=  

wobei 
___

jy  und 
___

jy ′  die mittleren Deckungsbeitragsände-
rungen beschreiben. Die Korrelationsmatrix der Einzel-
deckungsbeiträge ist in Tabelle 4 dargestellt. 

Wie aus Tabelle 4 hervorgeht, sind 
die Deckungsbeiträge pflanzenbau-
licher Produktionsverfahren i.d.R. 
positiv korreliert. Allerdings ist der 
Deckungsbeitrag der Zuckerrüben 
mit den Deckungsbeiträgen der 
Winterungen negativ korreliert. 
Die (positive) Korrelation zwi-
schen den Deckungsbeiträgen der 
Anbauverfahren Winter- und Som-
merweizen sowie Sommerweizen 
und Sommergerste ist sehr hoch. 
Im ersten Fall ist dies darin be-
gründet, dass für Winter- und 
Sommerweizen i.d.R. der gleiche 
Marktpreis zu erzielen ist. Im 
zweiten Fall liegt dies daran, dass 
sich der Witterungseinfluss auf die 
Erträge aller Sommerungen (aus-
genommen Körnermais) ähnlich 
auswirkt. Der Deckungsbeitrag von 
Körnermais ist nahezu unkorreliert 
mit dem der anderen Produktions-
verfahren. 

4.2 Modellergebnisse 
4.2.1 Ergebnisse unter den  

getroffenen Modellannahmen 

Nachdem die stochastischen Prozesse der Zufallsvariablen 
„Einzeldeckungsbeiträge“ sowie die zwischen ihnen beste-
henden Korrelationen bestimmt sind, kann das Optimie-
rungsproblem mittels stochastischer Simulation und GA 
gelöst werden.2 In Tabelle 5 sind für die Produktionsperio-
de 2003/04 die optimalen Anbauprogramme und die dazu-
gehörigen Zielfunktionswerte für Entscheider unterschied-
licher Risikoeinstellungen dargestellt. Wohl wissend, dass 
hohe Werte für den Risikoparameter α  empirisch unplau-
sibel sind, wurde für systematisch zwischen Null und vier 
variierte α  jeweils die Präferenzfunktion (5) maximiert, 
um die Wirkungsrichtung einer steigenden Risikoaversion 
auf das optimale Anbauprogramm und das Sicherheits-
äquivalent deutlich aufzeigen zu können.3 

                                                           
2 Für eine Optimierungsrechnung mittels stochastischer Simula-

tion und GA ist für einen Computer mit einem 1 000 MHz Pro-
zessor eine Rechenzeit von ca. 12 Stunden zu veranschlagen. 

3 Neben den konkurrierenden Zielen der Maximierung des 
Gesamtdeckungsbeitrages und der Minimierung des Risikos 
können ökonomische Entscheidungsträger noch andere, u.U. 
auch nicht-monetäre Zielstellungen verfolgen. Beispielsweise 
könnten sie auch aus Tradition handeln. Davon wird im Fol-
genden abstrahiert. 

In Spalte 1 sind die Ergebnisse für risikoneutrale Entschei-
der ( 0=α ) dargestellt, die den Erwartungswert des Ge-
samtdeckungsbeitrages maximieren.4 Demnach würden 
risikoneutrale Landwirte dem Winterweizen und Winter-
roggen in ihrem Produktionsprogramm einen sehr hohen 
Stellenwert einräumen. Ebenfalls in der Optimallösung 
befänden sich die Sommergerste, der Winterraps, die  

Zuckerrüben sowie der Non-Food-Raps. Der Winterweizen, 
der Raps (Winterraps + Non-Food-Raps) und die Zucker-
rüben würden im maximal möglichen Umfang realisiert, die 
Flächenkapazität vollständig genutzt werden. Allerdings 
würde die im Betrieb vorhandene (unsichere) Arbeitskraft-
kapazität (bis auf die Periode Mai/Juni) bei weitem nicht 
bei allen Witterungsverhältnissen ausreichen. Insgesamt 
sind 1 898 Saisonarbeitskraftstunden notwendig. Die erwar-
teten Kosten für Saisonarbeitskräfte betragen also insge-
samt 28 470 €. Der Erwartungswert des Gesamtdeckungs-
beitrages 1GDB  und das Sicherheitsäquivalent 1φ  belaufen 
sich auf 303 417 €, die Standardabweichung des Gesamt-
deckungsbeitrages GDBσ  beträgt 76 465 €. 

                                                           
4 Im Übrigen liefert im Fall α = 0 der einfache Simplex-Al-

gorithmus (MS-EXCEL-Solver), der die Unsicherheit in den 
Einzeldeckungsbeiträgen und in den Feldarbeitstagen nicht be-
rücksichtigt, identische Ergebnisse wie der GA. Allerdings ist 
der Programmier- und Rechenaufwand bei den GA erheblich 
höher. Deshalb wird man bei einfachen Optimierungsproble-
men nach dem Motto „So einfach wie möglich und so kom-
plex wie nötig“ den MS-EXCEL-Solver verwenden. 

Tabelle 4.  Korrelationsmatrix 
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Winter-
weizen 1,00 0,88 0,69 0,63 0,63 0,36 -0,28 0,20 0,36 – 

Sommer-
weizen  1,00 0,66 0,48 0,87 0,36 0,04 0,15 0,36 – 

Winter-
roggen   1,00 0,82 0,49 0,65 -0,22 0,09 0,65 – 

Winter-
gerste    1,00 0,24 0,42 -0,29 0,04 0,42 – 

Sommer-
gerste     1,00 0,39 0,26 0,07 0,39 – 

Winter-
raps      1,00 -0,01 0,19 1,00 – 

Zucker-
rüben       1,00 0,00 -0,01 – 

Körner-
mais        1,00 0,19 – 

Non-Food-
Raps         1,00 – 

Still- 
legung          1,00 

Quelle: Eigene Berechnungen 
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Schaut man über alle Spalten von Tabelle 5 hinweg, so wird 
ersichtlich, dass mit zunehmender Risikoaversion die Pro-
duktionsverfahren „Winterweizen“, „Winterroggen“ und 
„Raps“ tendenziell an Bedeutung verlieren. Gleichzeitig 
steigt der Anteil an Stilllegungsfläche an. Die Stilllegung 
gewinnt mit zunehmender Risikoaversion an Bedeutung, 
weil ihre Rentabilität annahmegetreu nicht mit Unsicherheit 
verbunden ist. Ab 3≥α  wird von der Möglichkeit 
Gebrauch gemacht, 33 % der prämienberechtigten Fläche 
stillzulegen. Die Zuckerrüben bleiben unabhängig vom 
Ausmaß der Risikoaversion im maximal möglichen Um-
fang in der Optimallösung. Dies liegt vor allem an der ho-
hen Wettbewerbsfähigkeit ausgedrückt in dem vielfach 
höheren Einzeldeckungsbeitrag. Zudem ist der Deckungs-
beitrag von Zuckerrüben negativ mit den Deckungsbeiträ-
gen der Winterungen korreliert, so dass es zu einer Verrin-
gerung der Standardabweichung des Gesamtdeckungsbei-
trages kommt, wenn Zuckerrüben und Winterungen in das 
Produktionsprogramm aufgenommen werden. Sommergers-
te und Körnermais gewinnen bis 2=α  an Bedeutung. Der 
Anteil der Sommergerste im Produktionsprogramm steigt 
an, weil der Sommergerstenanbau mit weniger Unsicherheit 
verbunden ist, wenn der Deckungsbeitrag als stationärer 
stochastischer Prozess geschätzt wird (siehe unten). Außer-
dem ist die Erhöhung des Sommergerstenanteils zu einem 
bestimmten Teil auch dem Diversifikationseffekt zuzu-
schreiben, denn die positive Korrelation zwischen der 
Sommergerste und den Winterungen ist relativ gering. 
Auch die Ausdehnung des Körnermaisanbaus ist darin 
begründet, dass sein Deckungsbeitrag nur gering mit dem 

der anderen Produktionsverfahren korreliert 
ist. Ab einem Risikoparameter 4=α  wird 
die Flächenkapazität nicht mehr vollständig 
ausgenutzt. Bei dieser hohen Risikoaversion 
wären also die Grenzkosten der Nichtnut-
zung von Fläche in Form verringerter Ge-
samtdeckungsbeiträge geringer als die Zu-
nahme des Nutzens infolge der verringerten 
Streuung des Gesamtdeckungsbeitrages. 
Wie zu erwarten war, sinken der Erwar-
tungswert des Gesamtdeckungsbeitrages 
und seine Standardabweichung mit zuneh-
mendem Risikoparameter ab. Die Vermin-
derung des Erwartungswertes ist der Preis, 
den ein risikoaverser rationaler Entscheider 
für die Verringerung der Streuung zu zahlen 
bereit ist. Zu beachten ist, dass die Grenz-
kosten für die Reduzierung der Standardab-
weichung zunehmen, d.h. zur Reduzierung 
der Streuung um einen Euro muss eine im-
mer stärkere Absenkung des Erwartungs-
wertes in Kauf genommen werden. Das 
Sicherheitsäquivalent nimmt mit zuneh-
mendem Risikoparameter immer stärker ab. 
Abbildung 3 verdeutlicht grafisch die Be-
deutung einer steigenden Risikoaversion. 
Bildlich gesprochen wird die Verteilung des 
Gesamtdeckungsbeitrages zum einen nach 
links verschoben (geringerer Erwartungs-
wert), zum anderen wird sie „steiler“ (ge-
ringere Streuung). 
Abbildung 3 zeigt, dass unterschiedliche 

Risikoparameter zur Auswahl unterschiedlicher Alternati-
ven mit jeweils verschiedenen Verteilungen führen. Derar-
tige Verteilungsinformationen kann man nutzen, um Per-
zentilwerte oder Konfidenzintervalle zu berechnen. So kann 
das Risikoprofil des Produktionsprogramms „plakativer“ 
eingeschätzt werden. Beispielhaft sind in Tabelle 5 die 
Werte des 15,9 %, 2,3 % und 0,1 % Perzentils angezeigt. 
Mit Blick auf eine praktische Handlungsempfehlung bleibt 
die Frage offen, welcher Risikoparameter α  die subjektive 
Risikoeinstellung des jeweiligen Entscheiders widerspie-
gelt. Unter Rückgriff auf die o.a. Perzentile lässt sich die 
Bedeutung der verschiedenen der hier systematisch variier-
ten Risikoparameter α  plastisch machen: Sieht man sich 
die Präferenzfunktion (5) an, so wird deutlich, dass 1=α  
gleichbedeutend mit der Maximierung des Wertes 

GDBGDB σ⋅−11  bzw. des 15,9 % Perzentilwertes ist.5 
Oder anders formuliert: Die Maximierung der Präferenz-
funktion für 1=α  entspricht der impliziten Forderung, 
dass der Gesamtdeckungsbeitrag nicht mit mehr als 

                                                           
5 Implizit wird bei der Bestimmung des Perzentilwertes von 

einer Normalverteilung für den Gesamtdeckungsbeitrag aus-
gegangen. Zur Rechtfertigung sei darauf hingewiesen, dass 
sich dem zentralen Grenzwertsatz folgend die Verteilung der 
Summe einer zunehmenden Anzahl von Zufallsvariablen der 
Normalverteilung annähert, gleichgültig, welche Verteilung 
den einzelnen Zufallsvariablen zugrunde liegt. Die Näherung 
ist selbst für eine geringe Anzahl an Zufallsvariablen schon 
recht gut (KREYSZIG, 1975: 133ff.). 

Tabelle 5.  Optimales Anbauprogramm und maximaler  
Zielfunktionswert 

 Spalte 1 Spalte 2 Spalte 3 Spalte 4 Spalte 5 
Risikoparameter α 0 1 2 3 4 
Winterweizen (ha) 320,0 210,0 25,1 15,0 11,7 
Sommerweizen (ha) 0,0 0,0 0,0 0,0 0,0 
Winterroggen (ha) 232,4 116,0 195,3 162,0 155,4 
Wintergerste (ha) 0,0 0,0 0,0 0,0 0,0 
Sommergerste (ha) 119,6 253,0 263,0 210,0 199,8 
Winterraps (ha) 16,0 16,0 0,0 0,0 0,0 
Zuckerrüben (ha) 32,0 32,0 32,0 32,0 32,0 
Körnermais (ha) 0,0 93,0 130,1 117,0 119,7 
Non-Food-Raps (ha) 80,0 80,0 0,0 0,0 0,0 
Stilllegung (ha) 0,0 0,0 154,5 264,0 254,9 
SAkh (gesamt) a) 1 898,0 1 724,8 1 188,0 890,9 793,9 
Flächenausnutzung 800,0 800,0 800,0 800,0 773,6 

1φ  (€) 303 417 230 336 173 802 136 892 101 165 
GDBσ  (€) a) 76 465 67 540 43 366 36 163 34 489 

1GDB  (€) a) 303 417 297 875 260 534 245 382 239 122 
GDBGDB σ⋅−11  

(15,9 % Perzentil) 
226 952 230 336 217 168 209 218 204 633 

GDBGDB σ⋅− 21  
(2,3 % Perzentil) 

150 487 162 796 173 802 173 055 170 144 

GDBGDB σ⋅− 31  
(0,1 % Perzentil) 

74 022 95 256 130 436 136 892 135 654 

a) Mittelwert nach 50 000 Simulationsläufen. 
Quelle: Eigene Berechnungen 
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15,9 % Wahrscheinlichkeit kleiner ist als 230 336 €. Folge-
richtig ist der 15,9 % Perzentilwert bei 1=α  auch höher 
als bei anderen Werten für den Risikoparameter. 2=α  
entspricht dem Verlangen, dass der Gesamtdeckungsbeitrag 
nicht mit mehr als 2,3 % Wahrscheinlichkeit kleiner ist als 
173 802 €. Zu beachten ist, dass mit einer Erhöhung von α  
nicht nur das mit dem Produktionsprogramm verbundene 
Risiko eines geringen Gesamtdeckungsbeitrages sinkt, 
sondern gleichfalls die Chance auf einen höheren Gesamt-
deckungsbeitrag (vgl. Abbildung 3). 
Grundsätzlich stellen derartige Perzentilwerte eine adäquate 
Hilfe zur Erfassung der subjektiven Risikoeinstellung von 
Entscheidern im Rahmen einer Befragung dar. Aufgrund 
ihrer begrenzten Rationalität lässt sich der Wert von α  
aber nur größenordnungsmäßig bestimmen. Allerdings sind 
niedrige Werte für den Risikoparameter nicht zuletzt 
deshalb plausibel, weil sich der Landwirt durch die Wie-
derholung der Anbauentscheidung z.T. bei sich selbst „ver-
sichern“ kann. Mit anderen Worten: Die Streuung des  
Gegenwartswertes der Gesamtdeckungsbeiträge mehrerer 
Jahre ist ohnehin geringer als die Streuung des Gesamt-
deckungsbeitrages im einzelnen Jahr. Hohe Werte für α  
sind allenfalls dann plausibel, wenn die Finanzkraft des 
Betriebes so schwach ist, dass mit einem negativen oder 
unter einem bestimmten Betrag liegenden Deckungsbeitrag 
Liquiditätsprobleme verbunden wären. 

4.2.2 Mögliche Fehlerquellen 
Vielfach wird bei der Berechnung der Standardabweichung 
der Zufallsvariablen pauschal auf die absoluten Werte  
bzw. auf die absoluten Wertänderungen zurückgegriffen. 
Mit einer solchen Vorgehensweise wird implizit ein  
ABP für die Zufallsvariable unterstellt. Die Möglichkeit, 
dass es sich z.B. um einen OUP handeln könnte, wird  
damit von vorn herein ohne statistische Tests ausge-
schlossen. Um zu verdeutlichen, welche Fehleinschät-
zungen durch ein solches Vorgehen auftreten können,  
ist in Tabelle 6 das für einen risikoaversen Entscheider 
( 1=α ) optimale Produktionsprogramm einer Anbau-
strategie gegenüber gestellt, die als „optimal“ ausgewiesen 
werden würde, 
• wenn man für die Deckungsbeitragsentwicklung aller Pro-

duktionsverfahren ohne statistische Tests einfach einen 
(nicht-stationären) ABP unterstellen würde und 

• wenn man zudem Korrelationen zwi-
schen den Einzeldeckungsbeiträgen 
unberücksichtigt lassen würde. 

In Spalte 2 der Tabelle 6 ist das ohne 
Zeitreihenanalyse als optimal ausgewie-
sene Produktionsprogramm aufgeführt. 
Im Vergleich zu Spalte 1 wird zum einen 
deutlich, dass die Sommergerste, deren 
Deckungsbeitrag eigentlich einem statio-
nären Prozess folgt, nicht im optimalen 
Anbauprogramm eines risikoaversen 
Entscheiders enthalten wäre. Stattdessen 
gewinnen der Winterweizen, der Winter-
roggen und der Körnermais an Bedeu-
tung. Zum anderen ist das Sicherheits-
äquivalent 1φ  wegen des geringeren 
Erwartungswertes und der höheren Stan-

dardabweichung des Gesamtdeckungsbeitrages geringer. Die 
Art des stochastischen Prozesses, der den Einzeldeckungs-
beiträgen zugrunde gelegt wird, beeinflusst das Optimie-
rungsergebnis also in außerordentlichem Maße. Oder anders 
formuliert: Die Berücksichtigung der „richtigen“ Prozess-
form ist von großer Bedeutung für die Optimierung. 
Abbildung 4 verdeutlicht noch einmal grafisch den Unter-
schied bzgl. der zukünftigen Verteilungsannahmen, die sich 
für den Deckungsbeitrag der Sommergerste in Periode 1 
(im Jahr 2004) ergeben, wenn (a) der zukünftigen Entwick-
lung statistischen Tests folgend ein OUP zugrunde gelegt 
wird oder (b) pauschal von einem ABP ausgegangen wird. 
Wie ersichtlich wird ist zum einen bei einem OUP – aus-
gehend von dem relativ geringen Deckungsbeitragsniveau 
in Periode 0 (im Jahr 2003) – der Erwartungswert für Peri-
ode 1 aufgrund des Drangs zur Rückkehr auf das Gleich-
gewichtsniveau (329,3 €) im Vergleich zum ABP höher. 
Zum anderen ist die Streuung des Deckungsbeitrages (bzw. 
der Deckungsbeitragsänderungen) in Periode 1 bei einem 
OUP bedeutend geringer. 
Mit Blick auf Abbildung 4 wird offenbar, dass folgende 
alternative Vorgehensweise bei der Bestimmung des opti-
malen Produktionsprogramms unter Berücksichtigung von 
Unsicherheit in den Einzeldeckungsbeiträgen theoretisch 
möglich wäre: 

1. Weiterhin ist unter Anwendung statistischer Testverfah-
ren für jeden Einzeldeckungsbeitrag der beste stochasti-
sche Prozess zu identifizieren. 

2. Durch eine der Optimierung vorgelagerte Analyse wird 
unter Berücksichtigung des jeweiligen stochastischen 
Prozesses die Verteilung für die Einzeldeckungsbeiträge 
im relevanten Planungsjahr 1 bestimmt. Dies könnte 
mittels stochastischer Simulation erfolgen. In einer 
Vielzahl von Fällen resultiert eine Normalverteilung, 
deren Parameter (Erwartungswert und Standardabwei-
chung) aber vom jeweiligen stochastischen Prozess be-
stimmt werden.  

3. Die Parameter der Normalverteilungen für die Einzel-
deckungsbeiträge werden geschätzt und zusammen mit 
den Korrelationskoeffizienten für die analytische Be-
rechnung der Standardabweichung des Gesamtdeckungs-
beitrages genutzt. Das optimale Produktionsprogramm 
könnte dann z.B. mittels MS-EXCEL-Solver oder GA 
bestimmt werden. 

Abbildung 3. Verteilungen für den Gesamtdeckungsbeitrag bei  
unterschiedlicher Risikoeinstellung 
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Zu beachten ist, dass durchaus Fälle denkbar sind, wo sich 
nicht für alle betrachteten Zufallsvariablen eine Normalver-
teilung ergibt und somit eine algebraische Berechnung der 
Standardabweichung des Gesamtdeckungsbeitrages sehr 
hohe mathematische Fähigkeiten erfordert bzw. nicht mög-
lich ist. Beispielsweise wenn die betrachtete Zufallsvariable 
einem geometrischen Brownschen Prozess folgt, ergibt sich 
eine Log-Normalverteilung. Wenn Ertrags- oder Erlösver-
sicherungen bzw. Hedge-Maßnahmen berücksichtigt wer-
den, resultiert eine rechtsschiefe Verteilung. Die Kombina-
tion von stochastischer Simulation und GA stellt mit Blick 
auf die Art der Verteilung der Zufallsvariablen eine allge-
meingültige Vorgehensweise dar. Diese Vorgehensweise ist 
z.B. auch dann gangbar, wenn – wie in der hier vorliegen-

den Anwendung  – Unsi-
cherheit in den Nebenbe-
dingungen (Anzahl der Feld-
arbeitstage) berücksichtigt 
werden soll. Würde man der 
Unsicherheit in den Neben-
bedingungen mittels CCP 
Rechnung tragen, um so 
einfachere Optimierungs-
verfahren anwenden zu 
können, müsste man die 
Wahrscheinlichkeit, mit der 
die Kapazitätsgrenzen ein-
gehalten werden sollen, in 
konsistenter Weise zum 
Risikoparameter wählen. 
Offen bleibt jedoch wie. 
Bei der Bestimmung des 
optimalen Anbauprogramms 
in Spalte 3 der Tabelle 6 
wurden neben der pauscha-
len Annahme eines ABP zu-
sätzlich die eigentlich vor-
liegenden Korrelationen 
zwischen den Einzelde-
ckungsbeiträgen vernach-
lässigt. Im Vergleich zu 
Spalte 1 zeigt sich, dass die 
Sommergerste zugunsten von 
Winterweizen, Sommerwei-
zen und Winterroggen ver-
drängt wird. Anders als in 
Spalte 2 ist das Sicherheits-
äquivalent in Spalte 3 aber 
höher als in Spalte 1, ob-
wohl der Erwartungswert 
des Gesamtdeckungsbeitra-
ges im Vergleich zu Spalte 1 
geringer ist. Dies ist darin 
begründet, weil eine Ver-
nachlässigung positiver Kor-
relationen zu einer Verrin-
gerung der Streuung des Ge-
samtdeckungsbeitrages führt. 
Positive Korrelationen zwi-
schen den Einzeldeckungs-
beiträgen bedeuten letztlich, 
dass es entweder überall gut 
oder überall schlecht läuft, 

d.h. bei korrekter Berücksichtigung der (positiven) Korrela-
tionen kommt es zu einer höheren Streuung des Gesamt-
deckungsbeitrages als ohne. 

5. Schlussfolgerungen und Ausblick 
Im Rahmen üblicher Optimierungsansätze ist eine realitäts-
getreue Berücksichtigung von Unsicherheit kaum möglich 
bzw. nicht praktikabel. Durch die Kombination von sto-
chastischer Simulation und GA kann dieses Problem beho-
ben werden. Die größere Realitätsnähe des Modells hat 
einen Preis: Ein z.T. sehr viel höherer Programmieraufwand 
und ein größerer Rechenbedarf als für Standardoptimie-
rungsverfahren. Allerdings ist die Kombination von sto-

Tabelle 6.  Optimales Anbauprogramm und Zielfunktionswert bei Vernachlässi-
gung der Ergebnisse statistischer Tests oder/und Korrelationen (α = 1) 

 Spalte 1 Spalte 2 Spalte 3 
 Annahmen bzgl. der stochastischen Entwicklung  

der Einzeldeckungsbeiträge 
 stochastische Prozesse  

gemäß Zeitreihenanalyse 
pauschale Annahme 

eines ABP 
ABP und Vernachlässi-
gung von Korrelationen

Winterweizen (ha) 210,0 320,0 245,0 
Sommerweizen (ha) 0,0 0,0 75,0 
Winterroggen (ha) 116,0 207,0 267,5 
Wintergerste (ha) 0,0 0,0 0,0 
Sommergerste (ha) 253,0 0,0 0,0 
Winterraps (ha) 16,0 16,0 16,0 
Zuckerrüben (ha) 32,0 32,0 32,0 
Körnermais (ha) 93,0 145,0 84,5 
Non-Food-Raps (ha) 80,0 80,0 80,0 
Stilllegung (ha) 0,0 0,0 0,0 
SAkh (gesamt) a) 1 724,8 1 895,4 1 888,3 
Flächenausnutzung 800,0 800,0 800,0 

1φ  (€) 230 336 213 778 236 753 
GDBσ  (€) a) 67 540 73 562 48 811 

1GDB  (€) a) 297 875 287 340 285 564 
a) Mittelwert nach 50 000 Simulationsläufen. 
Quelle: Eigene Berechnungen 

Abbildung 4.  Dichtefunktionen für den Deckungsbeitrag der Sommergerste bei 
einem OUP bzw. ABP (50 000 Simulationsläufe) 
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chastischer Simulation und GA mit den zur Verfügung 
stehenden technischen Tools relativ einfach zu implemen-
tieren. Trotzdem wird die Verfahrenskombination sto-
chastische Simulation/Genetische Algorithmen kaum von 
Praktikern in größerem Umfang eingesetzt werden. Die 
Entwicklung eines anwenderfreundlichen, kommerziell 
erhältlichen Tools könnte aber dabei helfen, dieses Verfah-
ren über die akademische Forschung hinaus z.B. für Berater 
interessant zu machen. 
Nicht zu übersehen ist, dass das hier verwendete Optimie-
rungsverfahren leicht auf eine dynamische Betrachtung er-
weitert werden kann, d.h. es könnte simultan das optimale 
Produktionsprogramm für mehrere Produktionsperioden 
bestimmt werden. Dazu wäre die Wertentwicklung der Zu-
fallsvariablen über den entsprechenden Zeitraum zu model-
lieren. Mittels GA ließen sich dann für jede Produktionsperi-
ode die u.U. ganz unterschiedlichen optimalen Produktions-
programme bestimmen. Dies ist zwar i.d.R. für betriebliche 
Anbauentscheidungen nicht erforderlich, allerdings könnte 
man so z.B. die Auswirkungen bestimmter Agrarpolitiken 
auf das langfristige Entscheidungsverhalten der Landwirte 
untersuchen. Beispielsweise könnte man der Frage nachge-
hen, ob es im Lichte gegenwärtiger Einzeldeckungsbeitrags-
niveaus und ihrer stochastischen Prozesse für konventionell 
und ökologisch erzeugte Produkte realistisch erscheint, dass 
die Bundesregierung mit den bislang durchgeführten Maß-
nahmen den bis 2010 angestrebten Stellenwert des ökologi-
schen Landbaus von 20 % der landwirtschaftlich genutzten 
Fläche erreichen wird. Dabei wäre dann allerdings zu be-
rücksichtigen, dass Festkosten nicht notwendigerweise kon-
stant sind. Anstelle der zukünftigen Gesamtdeckungsbeiträge 
wären zukünftige Gewinne zu maximieren. 
Die mit der Kombination von stochastischer Simulation und 
GA angestellten Modellrechnungen zeigen, dass risikoneut-
rale bzw. wenig risikoscheue Landwirte den Winterweizen, 
Winterroggen, Sommergerste, Winterraps, Zuckerrüben 
und Non-Food-Raps in ihr Produktionsprogramm aufneh-
men würden. Bei zunehmender Risikoaversion gewinnen 
die den stationären stochastischen Prozessen folgenden 
Produktionsverfahren tendenziell an Bedeutung. In dem 
hier betrachteten Beispiel gilt dies für die Sommergerste 
und die Zuckerrüben, wobei das letztgenannte Produktions-
verfahren nicht zuletzt auch wegen der vergleichsweise 
hohen Rentabilität und der negativen Korrelation zu den 
Deckungsbeiträgen anderer pflanzlicher Produktionsverfah-
ren unabhängig von der Risikoeinstellung in maximal mög-
lichem Umfang realisiert wird. Außerdem haben die Mo-
dellrechnungen gezeigt, dass die Berücksichtigung der 
„richtigen“ bzw. geeignetsten stochastischen Prozesse für 
die Einzeldeckungsbeiträge die Struktur des als optimal 
ausgewiesenen Produktionsprogramms stark beeinflusst. 
Bei der Interpretation der Modellergebnisse ist zu beachten, 
dass diese immer nur so gut sind wie die Modellannahmen. 
Natürlich müssen im Modell alle relevanten Aktivitäten 
berücksichtigt werden. In diesem Zusammenhang erscheint 
eine Modellerweiterung sinnvoll, die der seit einigen Jahren 
bestehenden Möglichkeit, aktiv an Warenterminbörsen zu 
hedgen, Rechnung trägt. Möglicherweise wären auch bei 
einem besseren Datenmaterial die mittels statistischer Test-
verfahren gefundenen stochastischen Prozesse für die Ein-
zeldeckungsbeiträge zu korrigieren. Außerdem wurde still-
schweigend davon ausgegangen, dass die für die Vergan-

genheit ermittelten Entwicklungsmuster der Einzelde-
ckungsbeiträge auch für die Zukunft gelten (Zeitstabilität). 
Diese Annahme ist nur eingeschränkt zulässig und wird 
umso unrealistischer, je mehr in der Vergangenheit (nicht) 
wirkende Kräfte in der Zukunft an Bedeutung verlieren 
(gewinnen). Im Lichte der Liberalisierungsbestrebungen ist 
davon auszugehen, dass zukünftig Marktkräfte an Bedeu-
tung gewinnen und Politikeffekte an Relevanz verlieren. Im 
Endeffekt wird dies dazu führen, dass das Ausmaß der 
Unsicherheit, das sich in den jeweils relevanten stochasti-
schen Prozessen äußert, zunimmt. Dies kann zu anderen 
Prozessparametern oder sogar zu anderen stochastischen 
Prozessen führen. 
Eine interessante zukünftige Forschungsaufgabe könnte 
sein, empirische Produktionsprogrammentscheidungen von 
Unternehmen mit dem Produktionsprogramm laut Optimie-
rungsmodell zu vergleichen. Dabei wäre natürlich der em-
pirische Informationsstand der Vergangenheit in Form der 
bis dahin vorliegenden Zeitreihen zugrunde zu legen. Bei 
einer hinreichend zuverlässigen Schätzung des Risikopara-
meters könnte man schließlich die Frage beantworten, ob 
die Unternehmer im Mittel der letzten Jahre einen höheren 
Nutzen erzielt hätten, wenn sie tatsächlich das Optimie-
rungsmodell genutzt hätten. 
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