%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Agrarwirtschaft 53 (2004), Heft 7

Optimierung unter Unsicherheit mit Hilfe stochastischer
Simulation und Genetischer Algorithmen

— dargestellt anhand der Optimierung des Produktions-
programms eines Brandenburger Marktfruchtbetriebes —

Optimization under uncertainty with stochastic simulation

and genetic algorithms

— case study for a crop farm in Brandenburg

Oliver MuBBhoff und Norbert Hirschauer
Humboldt-Universitat zu Berlin

Zusammenfassung

Bereits seit mehreren Jahrzehnten findet die Optimierung in der
akademischen Lehre und Forschung starke Beachtung. Trotz der
Breite potenzieller Anwendungsfelder gibt es jedoch einige metho-
dische Schwierigkeiten. Das Hauptproblem besteht darin, die Unsi-
cherheit, d.h. stochastische Prozesse von Zufallsvariablen inkl. ihrer
Korrelationen, in realistischer Weise zu beriicksichtigen. Der Hand-
habbarkeit wegen werden haufig Annahmen zugrunde gelegt, die
bereits vorliegende bzw. beschaffbare stochastische Informationen
nicht verwerten. In diesem Beitrag wird ein leicht handhabbares
Verfahren zur Beriicksichtigung stochastischer Informationen im
Rahmen der Optimierung entwickelt. Dabei wird die stochastische
Simulation mit Genetischen Algorithmen kombiniert. Am Beispiel
der Bestimmung des optimalen Anbauprogramms fiir einen Bran-
denburger Marktfruchtbetrieb wird gezeigt, dass dieses Verfahren
das Potenzial zur Verbesserung der Entscheidungsfindung hat. Bei
den Beispielrechnungen wird Unsicherheit bzgl. der Einzelde-
ckungsbeitrige in Form stochastischer Prozesse und bzgl. der
moglichen Feldarbeitstage in Form von Dreiecksverteilungen be-
riicksichtigt. Den unterschiedlichen Risikoeinstellungen von Ent-
scheidungstragern wird iiber Variantenrechnungen Rechnung
getragen. Die Modellergebnisse verdeutlichen, dass der Schétzung
der ,richtigen® Prozessart fiir die Deckungsbeitrdge der einzelnen
Produktionsverfahren eine groBe Bedeutung zukommt. Produk-
tionsverfahren, deren Deckungsbeitrdge stationdren stochastischen
Prozessen folgen, werden von risikoaversen Landwirten tendenziell
eher in das Produktionsprogramm aufgenommen als wenn man
félschlicherweise von nicht-stationdren Deckungsbeitragsentwick-
lungen ausgehen wiirde.
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Abstract

Optimization has been recognized as a powerful tool in teaching and
research for a long time. In spite of its well known problem solving
capacity, some methodological obstacles have persisted over the
years. The main problem is that stochastic variables and their corre-
lations cannot be adequately accounted for within traditional opti-
mization procedures. In this paper, we develop a methodological
mix of stochastic simulation and a heuristic optimization procedure
which has become known as genetic algorithms. The simulation-
part of the mix allows for the consideration of complex information
such as stochastic processes; the genetic algorithms-part ensures
that the method remains manageable in terms of required time and
resources. We demonstrate the decision support potential of the

approach by optimizing the production program of a Brandenburg
crop farm. We account for the risky environment by using existing
stochastic information: on the one hand, we model man-days which
are available in critical seasons (particularly harvesting) as triangu-
lar distributions according to expert estimations. On the other hand,
we use empirical time series and estimate stochastic processes for
the gross margins of different activities (wheat, barley etc.). Addi-
tionally, variant calculations are made in order to take into account
different risk attitudes of decision-makers. Model results in terms of
optimal production programs and expected total gross margins are
highly sensitive both to the risk attitudes of decision-makers and
the stochastic processes which are estimated for different activities.

Key words

optimization; optimal production program; stochastic simulation;
genetic algorithms; uncertainty; stochastic processes

1. Einleitung

Optimierungsprobleme treten in vielen betriebswirtschaftli-
chen Planungssituationen auf und sind sowohl aus theoreti-
scher wie auch aus praktischer Sicht von auerordentlichem
Interesse. Wichtige Fragestellungen sind das Aufteilungs-
problem (z.B. Bestimmung des optimalen Produktionspro-
gramms), das Mischungsproblem (z.B. Bestimmung der
kostenminimalen Futtermittelration) sowie das Transport-
problem (z.B. Bestimmung der minimalen Wegstrecke).

Wenn Entscheider die problemspezifischen Parameter, wie
z.B. Preise fiir Outputs und Inputs, Ertrdge etc. sicher
bestimmen konnten, wiren die oben genannten Fragestel-
lungen unter Riickgriff auf herkdmmliche Optimierungsver-
fahren zu beantworten. Planung ist aufgrund ihrer Zu-
kunftsbezogenheit aber mit Unsicherheit behaftet. Die zu-
nehmende Liberalisierung der Markte fiithrt dazu, dass dem
Risiko in der Unternehmensplanung kiinftig eine noch gro-
Bere Bedeutung zukommen wird als bisher. Deterministi-
sche Modelle bzw. Modelle, die Planungsprobleme unter
einwertigen Erwartungen zu l6sen versuchen, werden des-
halb immer mehr an Aussagekraft einbiilen. Die Ergebnis-
se solcher Planungen konnen allenfalls eine grobe Hilfestel-
lung fiir praktische Entscheidungen sein.

In der Vergangenheit wurden bereits zahlreiche Versuche
unternommen, Unsicherheit bei der Losung von Optimie-
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rungsproblemen zu beriicksichtigen. Bei allen bislang vor-
geschlagenen Modellansdtzen kann Unsicherheit aber nur
sehr rudimentdr oder stark vereinfacht abgebildet werden.
Oftmals werden einfach diskrete Verteilungsinformationen
beriicksichtigt, indem das Optimierungsproblem wiederholt
fiir jeweils eine Realisation von Zufallsvariablen geldst
wird. In Anbetracht des damit verbundenen hohen , manuel-
len* Arbeitsaufwandes lassen sich so jedoch nur eine gerin-
ge Anzahl an Zufallsvariablen und nur wenige Auspriagun-
gen beriicksichtigen. Praktische Anwendungen beschrianken
sich i.d.R. auf die Berechnung eines Worst-, Base- und
Best-Case-Szenarios ohne explizite Nutzung von Vertei-
lungsinformationen.

Mit Blick auf eine mdglichst realititsgetreue Modellierung
der zukiinftigen Wertentwicklung von Zufallsvariablen ge-
winnen stochastische Prozesse zunehmend an Beachtung.
Der Begriff ,,stochastischer Prozess® impliziert, dass man
Annahmen iiber die zukiinftigen Wahrscheinlichkeitsvertei-
lungen von Zufallsvariablen zu verschiedenen zukiinftigen
Zeitpunkten trifft. Mittels Zeitreihenanalyse kann aus ent-
sprechend langen empirischen Zeitreihen die Art des ,,richti-
gen“ bzw. ,besten” stochastischen Prozesses identifiziert
werden. Bislang wurde davon im Zusammenhang mit der
Optimierung im landwirtschaftlichen Bereich kein Gebrauch
gemacht. Der Hauptgrund ist wohl darin zu sehen, dass viele
der u.U. sehr komplexen stochastischen Prozesse im Rahmen
klassischer Optimierungsverfahren nicht handhabbar sind.

Bei einem Prognosezeitraum von nur einer Periode mag das
Konzept der stochastischen Prozesse zunichst wie ,.ein
Schieen mit Kanonen auf Spatzen“ erscheinen. Im einpe-
riodischen Fall kdnnte es vordergriindig nahe liegen, Unsi-
cherheit in Form einer Verteilung der vergangenen Beo-
bachtungswerte, ggf. korrigiert um einen Trend, zu bertick-
sichtigen. Das wiirde aber zu kurz greifen, weil der letzte
beobachtete Wert sowie ein Trend und die Standardabwei-
chung nur Teile moglicher stochastischer Entwicklungs-
muster sind. Letztlich geht es bei der Schitzung stochasti-
scher Prozesse darum, die verfiigbaren Informationen statis-
tisch bestmoglich auszuwerten und so zur besten Annahme
bzgl. zukiinftiger Verteilungen zu gelangen. Im einfachsten
Fall, dem sog. arithmetischen Brownschen Prozess, iiber-
tragt man tatsiachlich die bisherige Verteilung einer Zufalls-
variablen unter Beriicksichtigung des Trends auf den zu-
kiinftigen Zeitpunkt. Dies entspricht der iiblichen Vorge-
hensweise bei der Optimierung unter Anwendung des Er-
wartungswert-Varianz-Kriteriums. Diese Vorgehensweise
ist jedoch nicht ohne weiteres anwendbar, wenn die Zu-
fallsvariable einem anderen Entwicklungsmuster folgt.
Beispielsweise impliziert ein Mean-Reverting-Prozess, dass
eine Zufallsvariable langfristig um ein Gleichgewichtsni-
veau schwankt. Um bei Giiltigkeit eines solchen Prozesses
die erwartete Verteilung fiir einen zukiinftigen Zeitpunkt zu
bestimmen, muss man neben der Standardabweichung das
Gleichgewichtsniveau und die Geschwindigkeit der Riick-
kehr auf dieses Niveau kennen. Kurz gesagt: Auch bei einer
Planung iiber nur eine zukiinftige Periode ist das Konzept
der stochastischen Prozesse im Sinne einer ,,systematischen
Zeitreihenanalyse mit offenem Ergebnis angebracht, da die
zukiinftige Verteilung unabhéngig von der Lénge des Prog-
nosezeitraums vom stochastischen Prozess abhéngt.

In diesem Beitrag wird deshalb vorgeschlagen, die sto-
chastische Simulation mit Genetischen Algorithmen (GA)

zu kombinieren. Die stochastische Simulation weist die
groftmogliche Flexibilitdt hinsichtlich der Modellierung
von Unsicherheit auf, wodurch ,,wirklichkeitsgetreue® Ex-
perimente durchgefiihrt werden konnen. So ist die Beriick-
sichtigung beliebiger stochastischer Prozesse und mehrerer
stochastischer Variablen (inkl. ihrer Korrelationen) mit
relativ geringem Aufwand moglich. Eine einfache Stan-
dardsimulation ist aber nicht in der Lage, Optimierungs-
probleme zu 16sen. Demgegeniiber sind GA einfach einzu-
setzende Optimierungsverfahren, die - wie auch Neuronale
Netze - von der Natur inspiriert sind. Bei GA werden ,,na-
tiirliche Optimierungsstrategien aus der Evolution® nachge-
ahmt, um fiir ein Problem eine moglichst gute Losung zu
finden. GA arbeiten auf einer Menge von moglichen Lo-
sungen, die sukzessive durch die Evolutionsprinzipien Se-
lektion, Rekombination und Mutation verdndert wird. Das
Ziel ist dabei, mit der Zeit bzw. von ,,Generation zu Gene-
ration* immer bessere Losungen zu entwickeln. So werden
viele konventionell schwierig zu handhabende Optimie-
rungsprobleme (z.B. komplexe nicht lineare Modelle) in
akzeptabler Zeit 16sbar (vgl. z.B. GOLDBERG, 1989). Wenn
man eine Optimierung durch GA mit stochastischen Simu-
lationen kombiniert, lassen sich Planungssituationen reali-
titsgetreuer analysieren und somit die Entscheidungsunter-
stiitzung verbessern.

Der folgende Abschnitt 2 verdeutlicht die Begrenzungen
traditioneller Optimierungsansétze. Darauf aufbauend wird
in Abschnitt 3 ein praktikables Verfahren zur Beriicksichti-
gung von Unsicherheit in der Optimierung aufgezeigt, das
die stochastische Simulation in einen GA integriert. In
Abschnitt 4 wird dieses Verfahren angewendet, um die
optimale Anbaustrategie fiir einen Marktfruchtbetrieb in
Brandenburg abzuleiten. Uber zusitzliche Variantenrech-
nungen wird beriicksichtigt, dass Entscheider unterschied-
lichste Risikoeinstellungen besitzen. Der Beitrag schliefit
mit einigen Schlussfolgerungen und einem Ausblick (Ab-
schnitt 5).

2. Traditionelle Behandlung von Unsicher-
heit in der Optimierung

2.1 Das Standard-LP

Ganz allgemein bezeichnet man mit ,,Optimierung™ Pla-
nungsverfahren, mit denen eine bestimmte Anzahl von Va-
riablen simultan betrachtet und innerhalb gegebener Gren-
zen die bestmdgliche Losung fiir ein bestimmtes Ziel ge-
funden wird. Ein lineares Optimierungsproblem (synonym:
lineares Programmierungsproblem, LP) wird durch die An-
gabe der zu optimierenden linearen Zielfunktion und eines
zuldssigen Bereiches beschrieben, aus dem die Argumente
der Zielfunktion stammen diirfen. Dieser Bereich wird
durch sog. lineare Nebenbedingungen (Restriktionen) festge-
legt. Bezogen auf die Bestimmung des optimalen Produkti-
onsprogramms und damit die Maximierung des Gesamt-
deckungsbeitrages GDB, zu einem bestimmten Zeitpunkt ¢

lasst sich die Aufgabenstellung wie folgt beschreiben':

' Derim Zusammenhang mit LP iiblicherweise nicht verwende-

te Zeitindex ¢ (¢=1,2,...,7 ) wird hier mit aufgenommen, da
Annahmen bzgl. des unsicheren Gesamtdeckungsbeitrages der
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J
(1) maximize GDB, = ZDB{ -x]
x =l

J
2) st zat’?/ .xtf gbf,ﬂir i=12,..,1
=1

3) x/ >0, fir j=12,..,J

Dabei kennzeichnet der Zielfunktionskoeffizient DBtj den

Deckungsbeitrag je Einheit der Produktionsaktivitit j, xtj
die Umfiange der Aktivitdten bzw. Produktionsverfahren,
bt[ die begrenzt zur Verfliigung stehenden Kapazititen der

Faktoren i und af’j die Faktoranspriiche je Einheit der

einzelnen Produktionsaktivitit. Die letztgenannte Nebenbe-
dingung (3) stellt sicher, dass keine Aktivitit mit einem
negativen Wert in die Losung eingeht.

Zu bestimmen ist die Belegung der Unbekannten xtj , d.h.

das optimale Produktionsprogramm, das unter Beachtung
der Restriktionen zum maximalen Zielfunktionswert fiihrt.
Lineare Programmierungsprobleme werden i.d.R. mit Hilfe
eines Iterationsverfahrens geldst, das als Simplex-Algorith-
mus bekannt geworden ist (DANZIG, 1951). Das nach dem
letzten Iterationsschritt erzielte Optimum wird als Basislo-
sung bezeichnet. Bei diesem Standarditerationsverfahren
bleibt zunéchst unberiicksichtigt, dass bestimmte Variablen
mit Unsicherheit behaftet sind.

2.2 Bisherige Berucksichtigung von Unsicherheit
bei der Optimierung

Vielfach wird vorgeschlagen, Unsicherheit bei der Optimie-
rung durch Variantenrechnungen zu beriicksichtigen. Ein-
fache Beispiele hierfiir sind Sensitivitdtsanalysen oder sog.
parametrische Programmierungen (vgl. DINKELBACH, 1969).
Mittels Sensitivitdtsanalysen wird der Frage nachgegangen,
innerhalb welcher Grenzen sich die Koeffizienten in der
Zielfunktion oder in den Nebenbedingungen verdndern
diirfen, ohne dass die Basislosung ihre Optimalititseigen-
schaft verliert. Géngige Programmpakete, wie z.B. der MS-
EXCEL-Solver, liefern Sensitivititsberichte standardmaBig.
Eng verwandt mit der Sensitivititsanalyse ist die parametri-
sche Programmierung, bei der eine bestimmte Kapazitit in
systematischen Schritten verindert wird. Beim Chance-
Constrained-Programming-Ansatz (CCP) wird die Unsi-
cherheit in den Nebenbedingungen beriicksichtigt (HANF,
1986: 161f.). CCP unterstellt bei der Maximierung des

Zielfunktionswertes, dass die Kapazitétsgrenze bti mit einer

gewissen Wabhrscheinlichkeit eingehalten werden muss.
Technisch wird dazu das ,,deterministische Aquivalent der
Wahrscheinlichkeitsrestriktion® bestimmt. Wenn z.B. eine
Kapazitit mit 95 % Sicherheit eingehalten werden muss,
wird bei einer Normalverteilung anstelle des Erwartungs-
wertes (50 % Perzentil) der Wert des 5 % Perzentils einge-

relevanten zukiinftigen Periode in der Folge systematisch aus
stochastischen Prozessen fiir die Einzeldeckungsbeitrige abge-
leitet werden.

setzt und anschlieBend das LP mit der verdnderten Kapazi-
titsrestriktion gerechnet. Den genannten ,,einfachen Varian-
tenrechnungen® ist gemeinsam, dass sie trotz ihrer Zielset-
zung ,,Beriicksichtigung von Unsicherheit” Informationen
tiber die Unsicherheit im Sinne von Verteilungsinformatio-
nen unberiicksichtigt lassen bzw. - wie beim CCP - nur
ansatzweise beriicksichtigen.

Das Modell der Minimization-Of-Total-Absolute-Deviation
(MOTAD) versucht die zweidimensionale Zielstellung
»Maximierung des Gesamtdeckungsbeitrages™ und ,,Mini-
mierung des Risikos™ zu beriicksichtigen (HAZELL, 1971).
Dabei setzt es an der Unsicherheit der Zielfunktions-

koeffizienten DB[j an. Im Ergebnis wird fiir vorgegebene

Gesamtdeckungsbeitragsniveaus jeweils das ,,risikoeffizien-
te Produktionsprogramm® bestimmt; d.h. fiir bestimmte
Gesamtdeckungsbeitragsniveaus werden die (aufsummier-
ten oder durchschnittlichen) absoluten Abweichungen der
Einzeldeckungsbeitrige von ihrem Mittelwert minimiert.
Uber die optimale Kombination von Gesamtdeckungsbei-
trag und absoluten Abweichungen sagt das Modell endogen
nichts aus. Vielmehr werden die erzielten Varianten dem
Entscheider vorgelegt, dessen subjektive Risikoeinstellung
in der Wahl einer bestimmten Kombination von Gesamt-
deckungsbeitrag und absoluten Abweichungen zum Aus-
druck kommt. Voraussetzung fiir die Anwendung von
MOTAD-Modellen ist das Vorliegen von Zeitreiheninfor-
mationen, anhand derer fiir jede Periode die Abweichungen
der Einzeldeckungsbeitrige vom ihrem Mittelwert bzw.
Erwartungswert berechnet werden kénnen.

Eine sehr dhnlich gelagerte Vorgehensweise wie die Mini-
mierung der Summe der absoluten Abweichungen der Ein-
zeldeckungsbeitrdge bei vorgegebenem Gesamtdeckungs-
beitragsniveau stellt die Maximierung einer Praferenzfunk-
tion des Entscheiders dar. Bei Annahme einer exponentiel-
len Risikonutzenfunktion ergibt sich beispielsweise folgen-
de Priferenzfunktion (vgl. ARROW, 1964 und PRATT,
1964):

maximizeg, = GDB, (x,J )—l'/1 : [O' obr (‘xtj )]2
@ g
_GDB, _%./I.[O_GDB]Z

@, kennzeichnet das Sicherheitsiquivalent’, das als Erwar-
tungswert des Gesamtdeckungsbeitrages GDB, abziiglich
der Risikoprdmie berechnet wird. Die Risikoprdmie ent-
spricht hier dem 0,5fachen der mit dem Risikoaversionsko-
effizienten 4 gewichteten Varianz des Gesamtdeckungs-
2
beitrages [UGDB] . Der Risikoaversionskoeffizient A
ermdglicht es, verschiedene Risikoeinstellungen zu beriick-

Genau genommen wird das Sicherheitsdquivalent durch das
Erwartungswert-Varianz-Kriterium nur dann genau erfasst,
wenn entweder eine quadratische Risikonutzenfunktion unter-
stellt werden kann oder die Ergebnisse der Handlungsalterna-
tiven normalverteilt sind und zugleich von einer exponentiel-
len Risikonutzenfunktion ausgegangen werden kann (BRAN-
DES und ODENING, 1992: 203). Dies ist jedoch sowohl eine
plausible als auch iibliche Annahme.
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sichtigen.’” Bei A =0 entspricht der Modellansatz einer
Maximierung des Erwartungswertes des Gesamtdeckungs-
beitrages, d.h. die Streuung der Ergebnisse spielt fiir den
Entscheider keine Rolle (risikoneutraler Entscheider). Wird
A >0 gewidhlt, so werden Anbauprogramme, die zu einer
geringeren Standardabweichung des Gesamtdeckungsbei-
trages fiihren, bevorzugt (risikoaverse Entscheider). Uber
eine Risikonutzenfunktion (VON NEUMANN und MORGEN-
STERN, 1947) kann aus dem mit (4) ausgedriickten Sicher-
heitsédquivalent auch der Erwartungsnutzen berechnet wer-
den. Der Vergleich der Sicherheitsdquivalente von Alterna-
tiven fiihrt zur gleichen Rangfolge wie der Vergleich der
Erwartungsnutzen.

In Abweichung von der iiblichen Vorgehensweise wird in
der hier vorliegenden Anwendung die Priferenzfunktion
wie folgt definiert:

(5) maximizeg, = GDB, —a -5 “P"

Das hier als MaB fiir die Risikoeinstellung verwendete «
wird zur Abgrenzung vom Risikoaversionskoeffizienten des
Erwartungswert-Varianz-Kriteriums als Risikoparameter
bezeichnet. (5) wird hier verwendet, da diese Definition der
Priaferenzfunktion im Gegensatz zu (4) eine relativ einfache
empirische Erfragung der subjektiven Risikoeinstellung
ermdglicht und die Ergebnisinterpretation erleichtert.

Ein Unterschied der Maximierung einer Praferenzfunktion
zu den oben beschriebenen MOTAD-Modellen (abgesehen
von der Verwendung der Varianz bzw. Standardabwei-
chung anstelle der absoluten Abweichungen) besteht darin,
dass die Risikoeinstellung in der Zielfunktion beriicksich-
tigt wird. Stellt man aufgrund der bekanntermaBen schwie-
rig zu erfassenden Risikoeinstellung aber Variantenrech-
nungen fiir unterschiedliche 4 bzw. a an, so resultieren
daraus Ergebnisse, die denen von MOTAD-Modellen sehr
dhneln. In beiden Fillen werden Kombinationen von Ge-
samtdeckungsbeitrag und Streuung ausgewiesen.* Sowohl
bei MOTAD-Modellen als auch bei der Maximierung einer
Préferenzfunktion konnen also systematische Varianten-
rechnungen durchgefiihrt werden. Im Unterschied zu den
oben genannten einfachen Variantenrechnungen werden
Verteilungsinformationen bei beiden gezielt beriicksichtigt.

Die Maximierung einer Préferenzfunktion mittels MS-
EXCEL-Solver 0.4. setzt u.a. voraus, dass die Wahrschein-
lichkeitsverteilung der Zielgrofe aus den Wahrscheinlich-

3 Streng genommen miisste man begrifflich zwischen der sub-

jektiven Risikoeinstellung und dem Risikoaversionskoeffi-
zienten unterscheiden, da der gleiche Entscheider auf unter-
schiedlichen Einkommensniveaus unterschiedliche Risiko-
aversionskoeffizienten aufweisen kann. Zur Vereinfachung
der verwendeten Formulierungen werden - wie auch allgemein
tiblich - beide Begriffe synonym verwendet. Zudem bildet die
exponentielle Risikonutzenfunktion eine Ausnahme. Da in
diesem Fall die Risikoaversion konstant ist, driickt Risiko-
aversion gleichzeitig die ,,subjektive Risikoeinstellung* aus.

Neben der methodischen Vorgehensweise unterscheiden sich
MOTAD-Modelle von einer Maximierung einer Priferenz-
funktion letztlich darin, dass es in einem Fall zu ,,geraden
Werten® des systematisch variierten Gesamtdeckungsbeitrages
und im anderen Fall zu ,,geraden Werten* des systematisch va-
riierten Risikoaversionskoeffizienten bzw. Risikoparameters
kommt.

keitsverteilungen der einzelnen stochastischen Variablen
analytisch hergeleitet werden kann (BERG, 2003). Eine
algebraische Herleitung ist aber schwer bzw. nicht moglich,
wenn z.B.

e die Verteilungen der einzelnen stochastischen Variablen
nicht gleich sind,

e cine Vielzahl von Variablen beriicksichtigt werden muss,

o die mathematische Verkniipfung zwischen den stochasti-
schen Variablen nicht additiv ist oder

e die Verteilung der unsicheren Grofen nicht, wie z.B. bei
der Normalverteilung, vollstdndig durch den Erwartungs-
wert und die Varianz charakterisiert werden kann.

Vereinfachend wird deshalb meist unterstellt, dass die Ver-
teilungen der im Modell beriicksichtigten Zufallsvariablen
multivariat normalverteilt sind (DOPPLER und MARZ,
1989: 355).

Angesichts dieser Problematik liegt es nahe, bei komplexe-
ren Zusammenhdngen auf die stochastische Simulation
zuriickzugreifen. Mit relativ geringem Aufwand kann hier-
mit die Wahrscheinlichkeitsverteilung der ZielgroBe be-
stimmt werden, unabhéngig davon, wie komplex das Mo-
dell und die Verteilungen auch sind. Weil die stochastische
Simulation fiir sich genommen aber keinen Optimierungs-
algorithmus beinhaltet, kann sie zunichst nur eingesetzt
werden, um die Verteilung des Gesamtdeckungsbeitrages
bei gegebenem Anbauprogramm zu bestimmen. Das ist
aber gerade dann problematisch, wenn eine Praferenzfunk-
tion maximiert werden soll und somit die Verteilung des
Gesamtdeckungsbeitrages die Optimalldsung beeinflusst.
Allenfalls durch einen Vergleich der Ergebnisse verschie-
dener Strategien ldsst sich eine Optimierung vornehmen.
Eine Enumeration und ein ,,Durchprobieren” aller mdgli-
chen Anbauprogramme ist aufgrund des hohen manuellen
Aufwands aber immer nur bei einer sehr begrenzten Anzahl
an Handlungsalternativen moglich.

3. Die Kombination von stochastischer Simu-
lation und Genetischen Algorithmen

Im Folgenden wird die Verfahrenskombination stochasti-
sche Simulation/Genetische Algorithmen vorgestellt. Dabei
werden die Vorteile beider Verfahren miteinander vereint,
d.h. groBtmogliche Flexibilitdt hinsichtlich einer realisti-
schen Modellierung der Unsicherheit wird mit der grund-
sitzlichen Moglichkeit zur Losung von komplexen Opti-
mierungsproblemen gekoppelt.

Die Grundidee der stochastischen Simulation ist hinlanglich
bekannt: Die Zufallsvariablen werden identifiziert. An-
schlieBend wird unter Beriicksichtigung der Verteilungsin-
formationen der Zufallsvariablen sowie der vorgegebenen
Handlungsstrategie (hier: des Produktionsprogramms) der
Zielfunktionswert berechnet. Das Zufallsexperiment wird
hinreichend oft wiederholt. Auf der Grundlage der sich
wihrend der einzelnen Simulationsldufe einstellenden Ziel-
funktionswerte kann bei ausreichender Wiederholungszahl
eine Verteilung der ZielgroBe (hier: des Gesamtdeckungs-
beitrages) berechnet werden. Die stochastische Simulation
kann demzufolge als ,komplexe Variantenrechnung® zur
Beriicksichtigung stochastischer Umweltzustdnde verstan-
den werden.
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Die aus dem Bereich der kiinstlichen Intelligenz ent-
stammenden GA (GOLDBERG, 1989; HOLLAND, 1975; MIT-
CHELL, 1996 oder RECHENBERG, 1973) kénnen zur Losung
verschiedenster Optimierungsprobleme angewendet wer-
den, selbst wenn keine geschlossenen Losungsverfahren
existieren oder das Priifen aller Mdglichkeiten (vollstindige
Enumeration) nicht praktikabel ist.” Durch Nachahmung
der Prinzipien der natiirlichen Evolution, d.h. durch ,,Aus-
probieren® verschiedener Anbaustrategien, wird diejenige
bestimmt, die den maximalen Zielfunktionswert liefert. Im
Vokabular der GA stellt die Anbaustrategie das Genom dar,
das in aufeinander folgenden Generationen verschiedene
Ausprigungen bzw. Genotypen annehmen kann. Als Aus-
gangspunkt konnen in der ersten Generation Strategien
beliebig ausgewahlt werden. Die einzelnen Strategien wer-
den hinsichtlich des Zielfunktionswertes (Fitnesskriterium)
getestet und geordnet. Durch Anwendung der Operatoren
des GA (Selektion, Rekombination, Mutation) wird die Zu-
sammensetzung der in der nichsten Generation zu testen-
den Strategien bestimmt. Dieser leicht zu automatisierende
Prozess, der heuristisch zunehmend fittere Strategien gene-
riert, wird solange wiederholt, bis keine weitere Verbesse-
rung der Fitness moglich ist.

Bei der Bestimmung des optimalen Produktionsprogramms
mittels stochastischer Simulation und GA finden im We-
sentlichen vier Ablaufschritte Anwendung:

Schritt1:  Initialisierung

Der erste Schritt einer GA-Optimierung besteht darin, eine
sog. Ausgangspopulation zu generieren. Die Populations-
grofe N liegt im Allgemeinen zwischen 50 und 1 000 In-
dividuen, wobei man unter einem Individuum ein einzelnes
Genom versteht. Die Werte der Ausgangspopulation wer-
den mit einem Zufallsgenerator bestimmt, d.h. die Genome
stellen zufdllig gewéhlte Kombinationen von Umfiangen der
einzelnen Produktionsverfahren dar. Bei der Festlegung der
sog. Initiallosung ist zu beachten, dass die Flachen- und
Fruchtfolgerestriktionen eingehalten werden. Die initiali-
sierten Produktionsprogramme der Ausgangspopulation
stellen die erste Generation des GA dar.

Schritt2:  Bestimmung des Zielfunktionswertes fiir jede
Anbaustrategie

Fiir die Berechnung des Zielfunktionswertes fiir jede An-
baustrategie findet die stochastische Simulation Anwen-
dung. Es ist wie folgt vorzugehen:

ODENING et al. (2003) verwenden GA zur Maximierung der
Likelihoodfunktion eines Switching-Regression-Modells kom-
biniert mit einem Stochastic-Frontier-Modell im Zusammen-
hang mit der empirischen Validierung von Realoptionsmodel-
len, BALMANN und MUBHOFF (2001) wenden GA fiir die
Bestimmung der optimalen Investitionsstrategie an oder
BALMANN und HAPPE (2001) 16sen mittels GA Skonomische
Probleme auf landwirtschaftlichen Bodenmirkten. Weitere
Anwendungsfelder von GA sind die Vorhersage von Preis-
entwicklungen an Finanzmérkten, der Einsatz in der Spiel-
theorie oder das Training Neuronaler Netze (Koza, 1992 und
NISSEN, 1994).

Schritt 2.1: Simulation der Wertentwicklung der Einzel-
deckungsbeitrage

Ausgehend von den Deckungsbeitrigen DB/ , die im Pla-

nungszeitpunkt beobachtet werden, wird die Wertentwick-
lung der Einzeldeckungsbeitrige iiber eine Periode gemiR
der jeweils unterstellten zeitdiskreten stochastischen Pro-
zesse in mehreren tausend Simulationsldufen berechnet.
Dabei werden eventuell vorliegende Korrelationen beriick-
sichtigt.  Fir jeden einzelnen  Simulationslauf s
(s=1,2,...,8) ergibt sich in der Periode 1 ein Deckungs-

beitrag * DBI-’ fiir jedes Produktionsverfahren. Die im je-

weiligen Simulationslauf realisierten Entwicklungen der
Einzeldeckungsbeitrige gelten fiir alle Teststrategien glei-
chermaflen.

Schritt 2.2: Berechnung der Gesamtdeckungsbeitrage in
jedem Simulationslauf fiir alle Strategien

Fir jede simulierte Deckungsbeitragsentwicklung fiir das
relevante Planungsjahr 1 wird der Gesamtdeckungsbeitrag
fiir die jeweilige Teststrategie berechnet:

J . .
6) , GDB, =Y *DB{-,  x/

1 ng
J=1

Dabei bezeichnet der linkseitig tiefgestellte Index n
(n=1,2,...,N) das Genom und der gleichfalls linksseitig

tiefgestellte Index g (g =1,2,...,G ) die Generation.

Schritt 2.3: Berechnung des Erwartungswertes fiir den
Gesamtdeckungsbeitrag jeder Strategie

Nach einer hinreichend hohen Anzahl an Simulationsldu-
fen S kann der Erwartungswert des Gesamtdeckungsbei-
trages fiir jede Teststrategie berechnet werden:®

S 1
(M, GDB, =3, *GDB, <

n.g
s=1

Schritt 2.4: Berechnung des Zielfunktionswertes jeder
Strategie

Der Erwartungswert stellt nur im Fall von einem risikoneut-
ralen Entscheider ein hinreichendes Kalkiil dar. Bekann-
termaflen sind Okonomische Entscheidungstriger jedoch
mehr oder weniger risikoavers. Dies kann {iber eine Prife-
renzfunktion beriicksichtigt werden:

(5) e#=0,GDB, —a-, "

Das Sicherheitsdquivalent ”g¢1 der jeweiligen Strategie
ergibt sich aus dem Erwartungswert des Gesamtdeckungs-
beitrages < GDB,, der =zugehorigen Standardabwei-

GDB

chung ngC und dem Gewichtungsparameter «¢, der

die Risikoeinstellung des Entscheiders wiedergibt.

Hauc (1998: 140) schligt bspw. zur Erreichung einer ausrei-

chenden Giite des Simulationsexperimentes die Durchfiihrung
von mindestens 10 000 Simulationslédufen vor.
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Schritt 3:

Nun gilt es, die in der folgenden Generation zu evaluieren-
den Strategien (Produktionsprogramme) zu definieren.
Dazu werden die Operatoren eines GA angewandt. Aus-
gangspunkt sind dabei die Anbaustrategien der aktuellen
Generation und der Zielfunktionswert, den sie liefern. Zu
beachten ist, dass die nachfolgende Spezifikation der Ope-
ratoren des GA pragmatisch gewéhlt wurde und es zahlrei-
che alternative Moglichkeiten ihrer Festlegung gibt.

Anwendung der Operatoren des GA

Schritt 3.1: Evaluierung der Fitness

Die Hohe des im Rahmen der stochastischen Simulation
bestimmten Zielfunktionswertes gibt Aufschluss iiber die
,,Glite” der zugrunde gelegten Anbaustrategie. Je hoher der
Zielfunktionswert ist, desto ,,besser* (fitter) ist die Strate-
gie. Deshalb werden die Genome zunéchst ihrem Sicher-
heitsdquivalent nach geordnet.

Schritt 3.2:  Selektion und Replikation

Ein wesentlicher Operator auf dem Weg zum Auffinden der
Optimalldsung, d.h. der Anbaustrategie, die den tatsichlich
(und nicht nur relativ) hochsten Zielfunktionswert liefert,
ist die Selektion und Replikation. Dazu werden die fittesten
Genome der aktuellen Generation in die folgende iiber-
nommen. Die relativ schlechteren Anbaustrategien werden
hingegen verworfen und durch fittere, die verdoppelt wer-
den, ersetzt. Die Hohe des Zielfunktionswertes, den die
jeweilige Strategie liefert, determiniert also die ,,Uberle-
bensfihigkeit* bestimmter Strategien.

Schritt 3.3: Rekombination

Keine der relativ fitteren Anbaustrategien muss tatsdchlich
schon die optimale darstellen. Um das Potenzial eventuell
besserer Strategien zu beriicksichtigen, sind auch nach der
ersten Generation wieder géanzlich neue Strategien zu gene-
rieren. Dazu werden die Strategien i.d.R. unabhéngig von
ihrer Fitness mit einer vorgegebenen Wahrscheinlichkeit
verdndert, indem sie mit anderen rekombiniert werden oder
indem man sie mutieren lésst. Bei der horizontalen Rekom-
bination wird jede Strategie, d.h. alle Produktionsumfange,
mit einer bestimmten Wahrscheinlichkeit mit den Umfén-
gen einer zufillig ausgewéhlten anderen Strategie liber eine
mathematische Operation verbunden oder ,,gepaart™. Bei
der vertikalen Rekombination werden solche mathemati-
schen Operationen zwischen den Aktivititsumfingen einer
Strategie vorgenommen. Das ,Nachkommen®, das sich
nach einer horizontalen oder vertikalen Rekombination
ergibt, nimmt den Platz eines ,Elternteils* ein. Bei einer
horizontalen Rekombination kann es auch verdoppelt wer-
den und beide Elternteile ersetzen. Die Anzahl der Strate-
gien bleibt somit gleich.

Schritt 3.4: Mutation

Wihrend Rekombinationen alle Produktionsumfinge einer
betroffenen Strategie verdndern, erlauben Mutationen die
Veranderungen einzelner Werte der repriasentierten Strate-
gie. Das bedeutet, dass der Umfang jedes einzelnen Produk-
tionsverfahrens mit einer (geringen) Wahrscheinlichkeit
innerhalb einer vorgegebenen prozentualen oder absoluten
Spannbreite erhoht bzw. erniedrigt wird. Mutationen spie-
len eine wesentliche Rolle bei der Suche nach neuen und

erfolgreichen Genotypen, obgleich sie vielfach von der
Selektion wieder ausgemerzt werden, weil sie keine Ver-
besserung gebracht haben. Thnen kommt eine Art Versich-
erungsfunktion zu. Sie erlauben, noch nicht in der ,,Erbsub-
stanz* vorhandenes oder bereits verlorenes ,,Genmaterial*
wieder zu erlangen und verhindern so eine frithe Fixierung
auf bestimmte Werte.

Schritt 4:

Nach der Anwendung der Operatoren des GA werden die
Umfange der einzelnen Produktionsverfahren ggf. so ange-
passt, dass fiir jedes Genom die Flachen- und Fruchtfolge-
restriktionen eingehalten werden. Ergebnis ist eine neue
Population von Testgenomen oder Anbaustrategien, die die
Folgegeneration definieren. Sie bildet den Ausgangspunkt
der weiteren Berechnungen.

Die wiederholte Durchfiihrung der Schritte 2 bis 4 liefert
das optimale Produktionsprogramm. Der GA wird dann
beendet, wenn die erhaltenen Anbaustrategien homogen

Neue Generation

. . . . jN j ~ ~ j
und stabil sind, so dass gilt: | ;x/~, ;x/ ~..~ ;x’ und

ng X %, gx’ firalle j=1,2,..J. Abbildung I veran-

schaulicht die prinzipielle Vorgehensweise bei der Bestim-
mung des optimalen Produktionsprogramms mittels sto-
chastischer Simulation und GA grafisch.

Die Bestimmung des optimalen Produktionsprogramms
mittels stochastischer Simulation und GA ist bedeutend
programmier- und rechenzeitaufwindiger als die Anwen-
dung konventioneller Optimierungsverfahren, wie bspw.
der MS-EXCEL-Solver. Somit ist das Verfahren nur dann
anzuwenden, wenn die Komplexitit der Problemstellung
dies erfordert. Zudem ist zu beachten, dass GA heuristische
Suchverfahren darstellen und somit keine Garantie besteht,
dass tatséchlich das globale Optimum im jeweiligen Opti-
mierungslauf gefunden wird. Deshalb sollten mehrere
Suchldufe mit unterschiedlichen Ausgangsstrategien durch-
gefiihrt werden. Die Kombination von stochastischer Simu-
lation und GA kann direkt in MS-EXCEL programmiert
werden (MUBHOFF und HIRSCHAUER, 2003).

4. Modellanwendung

4.1 Datenbasis und Modellannahmen
4.1.1 Kapazitaten

Im Folgenden wird ein Marktfruchtbetrieb in Brandenburg
betrachtet, der sein Anbauprogramm optimieren will. Der
Betrieb kann zwischen zehn Produktionsverfahren wéhlen:
Winterweizen, Sommerweizen, Winterroggen, Wintergers-
te, Sommergerste, Winterraps, Zuckerriiben, Kérnermais,
Non-Food-Raps und Stilllegung. Maschinenkapazititen
sind vorhanden, um jedes Produktionsverfahren in den
durch Lieferrecht bedingten bzw. pflanzenbaulich mogli-
chen Grenzen umzusetzen. Die einzelnen Produktionsver-
fahren verursachen einen unterschiedlich hohen Ar-
beitsaufwand, der zudem saisonal verschieden ist. Es gelten
folgende Restriktionen:

e Der Betrieb verfiigt liber eine Fldchenausstattung von
800 ha. Die verfligbare Flache steht fiir das Planungsjahr
fest, d.h. weder Zupachtung/Verpachtung noch Zu-
kauf/Verkauf von Flache sind moglich.
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Abbildung 1.

Vorgehensweise bei der Kombination von stochastischer Simulation mit GA

1. Initialisierung 2. Stochastische 3a. Operatoren des Abbruchkriterium
(g=1 Simulation GAI erfiillt?
(N zufillig (Bestimmung des 3.1 B.ewertung der (oXl = wom yox
ausgewihlte > Zielfunktionswertes > Fitness —> ur;d PR ’1 x0)
Anbaustrategien) g flr jede " "
Anbaustrategie)

T

4. Neue Generation

nein ja
3b. Operatoren des
GAII
< 3.2 Selektion und
Replikation STOP
3.3 Rekombination
3.4 Mutation (optimale
Anbaustrategie und
maximaler
Zielfunktionswert
gefunden)

Quelle: Verdndert nach MUBHOFF und HIRSCHAUER (2003: 203)

e Fruchtfolgebedingt diirfen sowohl der Weizen- als auch
der Gerstenanteil 40 %, und der Rapsanteil 12 % der Ge-
samtflache nicht iibersteigen.

¢ Die Bodenqualitdt ist auf bestimmten Standorten so ge-
ring, dass auf 10 % der Flache ausschlieBlich Roggenan-
bau bzw. Stilllegung moglich ist.

¢ Quotenbedingt kénnen Zuckerriiben nur auf maximal 4 %
der Flache angebaut werden.

e Nach Zuckerriilben muss eine Sommerung erfolgen, weil
der Anbau von Wintergetreide nach der Zuckerriibenro-
dung im Spétherbst aus pflanzenbaulicher Sicht nicht
sinnvoll ist. Eine Stilllegung nach Zuckerriiben kommt
wegen der hohen Vorfruchtwirkung nicht in Betracht.

e Nur fiir maximal 33 % der prdmienberechtigten Flidche
gibt es Stilllegungspramie. Dariiber hinaus konnen Flai-
chen als Brache ungenutzt bleiben.

e Obligatorisch miissen 10 % der primienberechtigten
Flache stillgelegt werden. Alternativ ist der Anbau von
nachwachsenden Rohstoffen (Non-Food-Raps) moglich.

e Es werden zwei fest angestellte Mitarbeiter beschéftigt,
die an Feldarbeitstagen bis zu zehn Stunden arbeiten. Die
Anzahl der potenziellen Feldarbeitstage ist saisonabhén-
gig und witterungsbedingt mit Unsicherheit behaftet. Dies
wird modellendogen {iber Dreiecksverteilungen beriick-
sichtigt, deren Minimum (Maximum) 25 % unter (iiber)

arbeitskraftstunde (SAkh) belaufen sich auf 15 €.

Neben der Anzahl der potenziellen Feldarbeitstage werden
die Deckungsbeitrdge der einzelnen Produktionsverfahren
als Zufallsvariablen modelliert. Idealerweise wiirde man zur
Gewinnung von Informationen bzgl. der relevanten sto-
chastischen Prozesse fiir die Einzeldeckungsbeitrige mog-
lichst lange Zeitreihen aus der Region Brandenburg bzw.
aus dem zu optimierenden Betrieb verwenden. Deckungs-
beitrdge, die vor 1990 in Brandenburg realisiert wurden,
haben jedoch keinen Informationsgehalt fiir das zukiinftige
Entwicklungsmuster. Gleichzeitig ist eine nur zehn bis
zwolf Beobachtungswerte umfassende Stichprobe zu kurz,
um stochastische Prozesse zu schitzen. Deshalb werden
unter Rickgriff auf verschiedene Datenquellen fiir den
Zeitraum von 1980 bis 2002 jahrliche Deckungsbeitrige fiir
plausible Produktionsverfahren an entsprechenden Standor-
ten als aggregierte Grofle aus den Ertrdgen, Preisen und
Priamien (ZMP, verschiedene Jahrgiinge) sowie den variab-
len Produktionskosten (BAYERISCHE LANDESANSTALT,
2003) berechnet. Bei der Herleitung des Deckungsbeitrages
der Sommergerste wurde davon ausgegangen, dass 50 %
des Ertrages den Qualititsanforderungen fiir Braugerste
geniigen und zu entsprechend hoheren Preisen vermarktet
werden konnen. Die iibrige Sommergerste wird als Futter-
gerste verkauft. Auffdllig ist, dass die variablen Produk-
tionskosten flir alle Produktionsverfahren iiber den Zeit-

den erwarteten Feldarbeitstagen liegt (vgl.

Tabelle 1). Tabelle 1.  Die Feldarbeitstage als Dreiecksverteilung
. . . Minimum | Mittelwert | Maximum

4.1.2 Deckungsbeitrage und Hilfsaktivitaten Marz und April 22.50 30,00 37.50
Zusétzlich zu den im Betrieb verfiigbaren Mai und Juni 26,25 35,00 43,75
Arbeitskapazititen ist die Einstellung von || Mitte Juli bis Mitte September 33,75 45,00 56,25
Saisonarbeitskriaften moglich. So kann auch || Mitte September bis Mitte November | 30,00 40,00 50,00
ein w1tFerungsbed1ngter .Arbeltskra.ftema}ngel Quelle: Eigene Schiitzung

ausgeglichen werden. Die Kosten je Saison-
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raum von 198.0 bis 2.0 02 nahe- Abbildung 2. Zeitreihe der Deckungsbeitriige ausgewihlter Produktionsverfahren
zu konstant sind. Mit anderen
Worten: Unsicherheit in den 900
D eckpngsbeltrégen ISt. haupt- == KOrnermais Sommergerste = = Winterweizen
sdchlich in den Leistungen = 800 .
. . . < ~ A Y
begriindet. Bei Zuckerriiben = 700 ,J\ NN .
schwankt fast ausschlieflich § 500 l A\ ‘ NN v )
der Ertrag. Der Deckungsbei- < b h ’ ¢ s
@ A . -
trag des Produktionsverfahrens £ 500 / \ r \ ~ ¢ TN\ -7 =~
»Stilllegung™ wird mit einer 2 400 /' v s / A v,
Héhe von 150 € als determi- 3 N 2
.. % 300 |- —_— — \7-’@ o
nistisch konstant angenom- 2 o
men. Der Deckungsbeitrag des g 200 \ 7
Non-Food-Raps wird mit dem 2 100
Faktor 0,92 aus dem des Win- 0
terraps hergeleitet. Beide sind
; . 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
damit perfekt korreliert.
D_ie Modellierung - der aggre- | Quelle: Eigene Berechnungen
gierten GroBe ,,Deckungsbei-

trag™ anstelle der variablen Produktionskosten, Ertrdge,
Preise und Pramien ermdglicht eine Komplexitdtsreduktion.
Implizit werden sowohl Mengen-, Preis- als auch Politikun-
sicherheiten sowie Korrelationen zwischen diesen Grof3en
eingefangen. Die Entwicklungsverldufe der Deckungs-
beitrige von ausgewihlten Produktionsverfahren sind in
Abbildung 2 dargestellt. Abbildung 2 verdeutlicht, dass
Deckungsbeitrdge pflanzlicher Produktionsverfahren in
starkem Mafe mit Unsicherheit behaftet und zudem mitein-
ander korreliert sind.

Obwohl im Folgenden Unsicherheit beriicksichtigt wird,
indem die Zufallsvariablen als Verteilungen modelliert
werden, sind in Tabelle 2 der Ubersichtlichkeit halber die
Modellannahmen in Form von Erwartungswerten in einem
klassischen Optimierungstableaus dargestellt.

4.1.3 Ableitung stochastischer Prozesse

Im Folgenden wird gezeigt, wie man aus den Entwick-
lungsmustern der historischen Deckungsbeitragszeitreihen
stochastische Prozesse ableiten kann. Auf der Grundlage
der identifizierten stochastischen Prozesse sowie des aktu-
ellen Beobachtungswertes lassen sich Verteilungsannahmen
der Zufallsvariablen fiir unterschiedliche zukiinftige Zeit-
punkte treffen. Dies bildet die Grundlage fiir die Modellie-
rung der Einzeldeckungsbeitrige im Rahmen der stochasti-
schen Simulation, die letztlich als ,,Zufallsziehung nach
MafBgabe der Verteilung™ zu verstehen ist.

Das zutreffendste Entwicklungsmuster bzw. der ,beste®
stochastische Prozess fiir die einzelnen Deckungsbeitrige
wird mittels Zeitreihenanalyse aus den Deckungsbeitrags-
zeitreihen der Jahre 1980 bis 2002 abgeleitet. Dazu erfolgt
zundchst eine Priifung auf Stationaritit mit Hilfe des
Dickey-Fuller-Tests (DICKEY und FULLER, 1981). Ergebnis
dieses Tests ist, dass man mit 5 % Irrtumswahrscheinlich-
keit davon ausgehen kann, dass alle Deckungsbeitragszeit-
reihen mit Ausnahme der Sommergerste und der Zucker-
riiben nicht stationér sind.

Fir die Deckungsbeitrage der Produktionsverfahren Win-
terweizen, Sommerweizen, Winterroggen, Wintergerste,
Winterraps, Kérnermais und Non-Food-Raps erscheint ein
(nicht-stationdrer) arithmetischer Brownscher Prozess
(ABP) plausibel, der einen Vorzeichenwechsel und somit

sowohl negative als auch positive Deckungsbeitrige ermog-
licht. Bei einem ABP entspricht das Entwicklungsmuster
fiir den zukiinftigen Deckungsbeitrag dem gegenwiértig zu
beobachtenden Deckungsbeitrag zuziiglich einer konstanten
absoluten Drift (Trend) und einer Zufallskomponente. Ma-
thematisch ldsst sich ein ABP in diskreter Zeit wie folgt
darstellen (LUENBERGER, 1998: 305):

(8) DB/ =DB/,, + u’ At + o/ At -]

Dabei kennzeichnet 7 die Drift und o/ die Standardab-
weichung der absoluten Deckungsbeitragsdanderungen, At
die Linge eines Zeitintervalls zwischen zwei Beobach-
tungswerten (hier ein Jahr) und gtj eine standardnormalver-

teilte Zufallszahl. Die Drift und die Standardabweichung
eines ABP sind folgendermalen zu berechnen (CAMPBELL
etal., 1997: 363):

©) 4 =L, i it
TN ET ) BT
o) L. L.i(yj)z_#. iyj ’
Jar \B-1 &7 BB-1) (&7

mit y/ = DB/ — DB/ ,,
B kennzeichnet die Anzahl der historischen Beobach-

tungswerte, also 23.

Fiir die Deckungsbeitrige der Sommergerste und Zucker-
riiben zeigt sich nach der Anwendung der Box-Jenkins-
Testprozedur (Box und JENKINS, 1976), dass ein (statio-
nirer) autoregressiver Prozess erster Ordnung (AR(1)-
Prozess) plausibel ist:

(10) DB/ =aj +a{ -DB/ ,, +0'1€eg -g!, mit af <1

a-o" kennzeichnet eine Konstante, alj den Gewichtungsfak-
tor des zuriickliegenden Beobachtungswertes DB,-’; A und

O']égg die Standardabweichung der Residuen der Regression.
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Tabelle 2.  Optimierungstableau

Aktivititen Hilfsaktivititen

. 0 3 Bl = . 2

é% g% é% é&.’ g&.’ é ;‘L’: % L'C'.E(,, .éﬁ 4:% ,ﬂé §4:Z.

ES|ES|EB|E7|E7|Ea|SB|Ez|s8.|25| 58 252422

=2 |32 |EE B38| 5F|QE|UE|22 (38|55 |55 |52|53

Zielfunktionskoeffizient DB/ 359,7 | 312,4 | 344,5 | 238,8 | 323,5 | 482,5 |1709,8 [ 300,1 | 443,9 | 150,0 | -15 -15 -15 -15

Umfinge x| X, X, X, X X, X, b X, x,° x,' x)? X x*
Flachenanspruch 1 1 1 1 1 1 1 1 1 1 0 0 0 0 <= 800
= |Mirz und April 0,3 2,6 0,9 0,3 2,6 0,4 3,0 2,6 0,4 0,0 -1 0 0 0 <= 600
g Mai und Juni 0,8 0,5 0,2 0,5 0,5 0,9 0,9 0,8 0,9 0,0 0 -1 0 0 <= 700
g Mitte Juli bis Mitte Sept. 2,4 2,4 2,2 2,1 2,0 3,5 0,0 0,0 3,5 2,0 0 0 -1 0 <= 900
é Mitte Sept. bis Mitte Nov. 2,9 0,4 2,6 2,8 0,0 0,7 3,9 2,2 0,7 0,0 0 0 0 -1 <= 800
< gesamt 6,4 5,8 5,3 5,7 5,1 54 7,7 5,6 5,4 2,0 -1 -1 -1 -1 <= 3000
Weizen 0,60 | 0,60 | -0,40 | -0,40 | -0,40 | -0,40 | -0,40 | -0,40 | -0,40 | -0,40 0 0 0 0 <= 0
§ Roggen und Stilllegung 0,10 | o,10 | -0,90 { 0,10 | 0,10 | 0,10 { 0,10 | 0,10 | 0,10 | -0,90 0 0 0 0 <= 0
':3 Gerste -0,40 | -0,40 | -0,40 | 0,60 | 0,60 | -0,40 | -0,40 | -0,40 | -0,40 | -0,40 0 0 0 0 <= 0
% Raps -0,12 | -0,12 | -0,12 | -0,12 | -0,12 | 0,88 | -0,12 | -0,12 | 0,88 | -0,12 0 0 0 0 <= 0
%" Zuckerriiben -0,04 | -0,04 | -0,04 | -0,04 | -0,04 | -0,04 | 0,96 [ -0,04 | -0,04 | -0,04 0 0 0 0 <= 0
% Sommergetreide 0,04 | -0,96 | 0,04 [ 0,04 | -0,96 | 0,04 | 0,04 | -0,96 | 0,04 | 0,04 0 0 0 0 <= 0

=

= | Stilllegung -0,33 | -0,33 | -0,33 | -0,33 | -0,33 | -0,33 | -0,33 | -0,33 | -0,33 | 0,67 0 0 0 0 <= 0
Stilllegung und Non-Food-Raps | 0,10 | 0,10 | 0,10 | 0,10 | 0,10 | 0,10 | 0,10 | 0,10 | -0,90 | -0,90 0 0 0 0 <= 0

Y ygl. (MELF, 1997).
Quelle: Eigene Darstellung

272




Agrarwirtschaft 53

(2004), Heft 7

1]::/}2 ngéﬁsgﬁzghiﬁgi?lggg Tabelle 3. Zusammenfassung der Prozessparameter
Deckungsbeitragsentwicklun- , L , , L , . .

gen oft verwendeter Spezialfall 55|88 g S|l Eel 8 . E AP TR g0
eines AR(1)-Prozesses sind S3|ES|SES|E5|EE| S8 225 |S5E52588 5
Mean-Reverting-Prozesse. Cha- czlaz|PElPB|AG|PEINE|ZE ARG
rakteristisch fiir diese Prozess- stationdr nein | nein | nein | nein ja nein ja nein | nein —
klasse ist, dass es langfristig DB({ 366,0 [ 316,1 | 348,0( 246,3|188,4 [496,5 [1285,3 | 298,0| 456,8 [ 150,0
ein Gleichgewichtsniveau gibt, P 631 370 35| 750 - |-140 _ 21| -129] —
um das der Wert der stochasti- o ’ ’ ' ' ’ ' '

schen Variable kurzfristig E% o’ 111,41 108,8| 104,6| 1120 - 270,0 - 124,5] 248,4| -
SChV;’lanlft- hJe W\flt?rbTICh die E(DB]) | 3597 312.4| 3445|2388 — [4s25 | - |3001]4439| -
stochastische ariable von

ihrem  Gleichgewichtsniveau DB’ - - - - 329,3| - 1833,8| — - -
entfernt hat, desto groBer ist die ;

Wabhrscheinlichkeit einer Riick- 5 |7 B - - - 32 - Lt = B -
kehr. Fiir die Deckungsbeitra- o o’ - - - - 2089 - 408,1 - - -
ge wird ein spezieller Mean- j B ~ B B B B B _
Reverting-Prozess, der sog. E<DB' ) 323,5 17098
Ornstein-Uhlenbeck-Prozesses | Quelle: Eigene Berechnungen

(OUP) angenommen. Er er-
laubt einen (fiir Deckungsbeitrage plausiblen) Vorzeichen-
wechsel der stochastischen Variable. Die zeitdiskrete Version
eines OUP ldsst sich wie folgt darstellen (DIXIT und
PINDYCK, 1994: 76):

DB/ = DB’ (1 —e )+ e . DB/,
(11

77j kennzeichnet die Riickkehrgeschwindigkeit des De-
ckungsbeitrages des Produktionsverfahrens j auf sein

Gleichgewichtsniveau DB’ . Der Unterschied zu ABP
besteht zum einen darin, dass die zukiinftig erwartete Wert-
dnderung vom Niveau des Vorwertes abhdngt: Sie ist bei
DB/ ,, < DB’ positiv, bei DB/ ,, = DB’ gleich Null
und bei DB/,
Varianz bei lingeren Prognosezeitrdumen nicht linear mit
der Zeit an, sondern bleibt nach einer bestimmten Zeit we-
gen des Drangs zur Riickkehr konstant. Letztlich entspricht

> DB’ negativ. Zum anderen steigt die

(11) der Gleichung (10), in der die Parameter ag , aif und

j . . . . .
OReg Wi€ folgt zu interpretieren sind:

(12) af = DB/ (l e ),

j = g J —i
ai =e und Ohog =07 -

Da die Werte a]

Testprozedur bekannt sind, lassen sich durch Umstellen der

, a{ und 0'1jeeg nach der Box-Jenkins-

Formulierungen 77/, DB’ und ¢’/ bestimmen.

Alle Parameter fiir die stochastischen Prozesse der Einzel-
deckungsbeitrige werden als deterministisch konstant an-
genommen, d.h. der stochastische Prozess behilt iiber der
Zeit seine Giiltigkeit. Tabelle 3 liefert eine Ubersicht der
Prozesse und ihrer Parameter, wie sie sich aus den statisti-
schen Tests ergeben.

Zu beachten ist, dass die Hohe der Standardabweichungen
eines ABP nicht mit der eines OUP zu vergleichen ist. Im
Fall eines OUP besteht ein Drang zur Riickkehr der sto-
chastischen Variable auf ihr Gleichgewichtsniveau; beim
ABP kann die stochastische Variable dagegen beliebig
driften. Die fiir die Einzeldeckungsbeitrige bestimmten
Entwicklungsmuster (stochastischen Prozesse) werden an
die in der Periode 0 (im Jahr 2003) erzielten Deckungs-
beitrage DB({ angelegt, d.h. sie bilden die Grundlage der

Zufallsziehung im Rahmen der Simulation.'

4.1.4 Bestimmung von Korrelationen zwischen den Einzel-
deckungsbeitragen

Bei der Simulation zukiinftiger Entwicklungspfade fiir die
Einzeldeckungsbeitrdge ist zu beriicksichtigen, dass sie
zwar Zufallsinderungen unterliegen, aber auch Korrelatio-

nen vorliegen. Der Korrelationskoeffizient pj I st ganz
allgemein definiert als:

13 pj’f' _ cov//

>

ol o’
mit 0/, >0und j, ;' =1,2,....J
Dabei kennzeichnet cov’’ die Kovarianz zwischen den

Deckungsbeitragsdnderungen der Produktionsverfahren j
und ;'. Die Kovarianz ihrerseits ist wie folgt zu berechnen:

>

t

vl -y’

(14) cov// = Ayl =y

1
B

—

Zu beachten ist, dass die fiir das Jahr 2003 geschitzten
Deckungsbeitridge nicht zur Identifikation der stochastischen
Prozesse herangezogen wurden. Wéhrend die Einzeldeckungs-
beitrdge fiir den Zeitraum von 1980 bis 2002 (vgl. Abbil-
dung 2) basierend auf statistisch gesicherten Angaben herge-
leitet wurden, beruhen die Einzeldeckungsbeitrdge fiir das Jahr
2003 auf Expertenaussagen und Plausibilitdtsannahmen.
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mit y/ = DB/ -~ DB/ ,, und y/ = DB/ — DB/ ,,

wobei )7 und y_f die mittleren Deckungsbeitragsénde-

rungen beschreiben. Die Korrelationsmatrix der Einzel-
deckungsbeitrige ist in Tabelle 4 dargestellt.

In Spalte 1 sind die Ergebnisse fiir risikoneutrale Entschei-
der (a =0) dargestellt, die den Erwartungswert des Ge-
samtdeckungsbeitrages maximieren.' Demnach wiirden
risikoneutrale Landwirte dem Winterweizen und Winter-
roggen in ihrem Produktionsprogramm einen sehr hohen
Stellenwert einrdumen. Ebenfalls in der Optimallsung
befinden sich die Sommergerste, der Winterraps, die

Wie aus Tabelle 4 hervorgeht, sind

die Deckungsbeitrige pflanzenbau- | Tabelle 4. Korrelationsmatrix

licher Produktionsverfahren i.d.R. -

positiv korreliert. Allerdings ist der . £ . . o . . L §

Deckungsbeitrag der Zuckerriiben 2 E g E 2 afan g2 Eg g, % 5| & o E 2| 2 %"

mit den Deckungsbeitrigen der = g S g z g 25l 88lE g 5'% SE|SE g &

Winterungen negativ  korreliert. Winter-

Die (positive) Korrelation zwi- weizen 1,00 | 0,88 | 0,69 | 0,63 | 0,63 | 0,36 | -0,28 | 0,20 | 0,36 -

schen den Deckungsbeitragen der

Anbauverfahren Wignter— ungd Som- VSV(:ianzr:ler 1,00 | 0,66 | 0,48 | 0,87 | 036 | 0,04 | 0,15 | 0,36 -

merweizen sowie Sommerweizen Winter- 100 | 082 | 049 | 065 | 2022 | 0.09 | 065 B

und Sommergerste ist sehr hoch. roggen ’ ’ ’ ’ ’ ’ ’

Im ersten Fall ist dies darin be- Winter- 1.00 0.24 0.42 | -029 | 0.04 0.42 _

griindet, dass fiir Winter- und | | 8erste , ’ ’ i i ’

Sommerweizen i.d.R. der gleiche Sommer- 1,00 | 0,39 | 0,26 | 0,07 | 0,39 -

Marktpreis zu erzielen ist. Im %:’:;:Zr-

zweiten Fall liegt dies daran, dass | [ rps 1,00 | -0,01 { 0,19 | 1,00 | -

sich der Witterungseinfluss auf die Zucker- 100 | 0.00 |-0.01

Ertrage aller Sommerungen (aus- riiben ’ ’ s -

genommen Kornermais) &hnlich Kérner- 100 | 019 | -

auswirkt. Der Deckungsbeitrag von | | mais ’ i

Kornermais ist nahezu unkorreliert | | Non-Food- 100 | -

mit dem der anderen Produktions- | | Raps

verfahren. Still- 1,00
legung

4.2 Modellergebnisse Quelle: Eigene Berechnungen

4.2.1 Ergebnisse unter den
getroffenen Modellannahmen

Nachdem die stochastischen Prozesse der Zufallsvariablen
,Einzeldeckungsbeitrage* sowie die zwischen ihnen beste-
henden Korrelationen bestimmt sind, kann das Optimie-
rungsproblem mittels stochastischer Simulation und GA
gelost werden.” In Tabelle 5 sind fiir die Produktionsperio-
de 2003/04 die optimalen Anbauprogramme und die dazu-
gehorigen Zielfunktionswerte fiir Entscheider unterschied-
licher Risikoeinstellungen dargestellt. Wohl wissend, dass
hohe Werte fiir den Risikoparameter ¢ empirisch unplau-
sibel sind, wurde fiir systematisch zwischen Null und vier
variierte « jeweils die Priaferenzfunktion (5) maximiert,
um die Wirkungsrichtung einer steigenden Risikoaversion
auf das optimale Anbauprogramm und das Sicherheits-
dquivalent deutlich aufzeigen zu konnen.’

Fiir eine Optimierungsrechnung mittels stochastischer Simula-
tion und GA ist fiir einen Computer mit einem 1 000 MHz Pro-
zessor eine Rechenzeit von ca. 12 Stunden zu veranschlagen.

Neben den konkurrierenden Zielen der Maximierung des
Gesamtdeckungsbeitrages und der Minimierung des Risikos
konnen okonomische Entscheidungstriger noch andere, u.U.
auch nicht-monetére Zielstellungen verfolgen. Beispielsweise
konnten sie auch aus Tradition handeln. Davon wird im Fol-
genden abstrahiert.

Zuckerriiben sowie der Non-Food-Raps. Der Winterweizen,
der Raps (Winterraps + Non-Food-Raps) und die Zucker-
riiben wiirden im maximal moglichen Umfang realisiert, die
Flachenkapazitit vollstindig genutzt werden. Allerdings
wiirde die im Betrieb vorhandene (unsichere) Arbeitskraft-
kapazitdt (bis auf die Periode Mai/Juni) bei weitem nicht
bei allen Witterungsverhédltnissen ausreichen. Insgesamt
sind 1 898 Saisonarbeitskraftstunden notwendig. Die erwar-
teten Kosten fiir Saisonarbeitskrifte betragen also insge-
samt 28 470 €. Der Erwartungswert des Gesamtdeckungs-
beitrages GDB, und das Sicherheitsdquivalent ¢ belaufen

sich auf 303 417 €, die Standardabweichung des Gesamt-
deckungsbeitrages o P8 betrégt 76 465 €.

Im Ubrigen liefert im Fall =0 der einfache Simplex-Al-
gorithmus (MS-EXCEL-Solver), der die Unsicherheit in den
Einzeldeckungsbeitrigen und in den Feldarbeitstagen nicht be-
riicksichtigt, identische Ergebnisse wie der GA. Allerdings ist
der Programmier- und Rechenaufwand bei den GA erheblich
hoher. Deshalb wird man bei einfachen Optimierungsproble-
men nach dem Motto ,,So einfach wie moglich und so kom-
plex wie nétig™ den MS-EXCEL-Solver verwenden.
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Tabelle 5.  Optimales Anbauprogramm und maximaler der anderen Produktionsverfahren korreliert
Zielfunktionswert ist. Ab einem Risikoparameter o =4 wird
die Flachenkapazitit nicht mehr vollstandig
Spalte 1 | Spalte 2 | Spalte 3 | Spalte 4 | Spalte 5 ausgenutzt. Bei dieser hohen Risikoaversion
Risikoparameter o 0 1 2 3 4 wéren also die Grenzkosten der Nichtnut-
Winterweizen (ha) 3200 | 2100 25,1 15,0 11,7 || zung von Fliche in Form verringerter Ge-
Sommerweizen (ha) 0.0 0.0 0.0 0.0 0.0 samtdeckungsbeitrige geringer als die Zu-
Winterroggen (ha) 232.4 116,0 1953 1620 155.4 nahme des Nutzens infolge der Yerrmgerten
Wintergerste (ha) 0.0 0.0 0.0 0.0 0.0 Streuung des Gesamtdeckungsbeitrages.
Sommergerste (ha) 1196 | 2530 | 2630 | 2100 199,8 || Wie zu erwarten war, sinken der Erwar-
Winterraps (ha) 16.0 16.0 0.0 0.0 0.0 tungswert des Gesamtdeckungsbeitrages
Zuckerriiben (ha) 4.0 32,0 1.0 15,0 2.0 und seine Standardabweichung mit zuneh-
) . ’ ’ ’ ’ ’ mendem Risikoparameter ab. Die Vermin-
Koérnermais (ha) 0,0 93,0 130,1 117,0 119,7 . .
Non_Food-Raps (h $0.0 20.0 0.0 0.0 0.0 derung des Erwartungswertes ist der Preis,
on-rood- aps (ha) ’ ’ ’ ’ ’ den ein risikoaverser rationaler Entscheider
Stilllegung (ha) ) 0.0 0,0 154,5 264,0 254,9 fiir die Verringerung der Streuung zu zahlen
SAkh (gesamt) 1898,0 | 17248 | 1188,0 8909 793,9 bereit ist. Zu beachten ist, dass die Grenz-
Fldachenausnutzung 800,0 800,0 800,0 800,0 773,6 kosten fiir die Reduzierung der Standardab-
é, (€) 303417 | 230336 | 173802 | 136892 | 101165 || Weichung zunehmen, d.h. zur Reduzierung
o (@) 76465 | 67540 | 43366 | 36163 | 34489 der Str?uung um einen Euro muss eine im-
N mer stirkere Absenkung des Erwartungs-
GDB, (€) 303417 | 297875 | 260534 | 245382 | 239122 wertes in Kauf genommen werden. Das
GDB . sy e . . . _
GDB, ~1:0” | 55052 | 230336 | 217168 | 200218 | 204633 || Sicherheitsdquivalent nimmt mit zuneh
(15,9 % Perzentil) mendem Risikoparameter immer stérker ab.
oni . . . i
GDB, ~2-67 150487 | 162796 | 173802 | 173055 | 170 144 || /Abbildung3 verdeutlicht grafisch die Be
o Ferzentl .
23%P til) deutung einer steigenden Risikoaversion
GDB. —3.5 " Bildlich gesprochen wird die Verteilung des
0,1 (ylo Perzentil) 74022 95256 | 130436 | 136892 | 135654 Gesamtdeckungsbeitrages zum einen nach
o - — links verschoben (geringerer Erwartungs-
Mittelwert nach 50 000 Simulationsldufen. wert), zum anderen wird sie ,,steiler (ge-
Quelle: Eigene Berechnungen ringere Streuung).

Schaut man iiber alle Spalten von Tabelle 5 hinweg, so wird
ersichtlich, dass mit zunehmender Risikoaversion die Pro-
duktionsverfahren ,,Winterweizen®, ,,Winterroggen™ und
»Raps“ tendenziell an Bedeutung verlieren. Gleichzeitig
steigt der Anteil an Stilllegungsfldche an. Die Stilllegung
gewinnt mit zunehmender Risikoaversion an Bedeutung,
weil ihre Rentabilitdt annahmegetreu nicht mit Unsicherheit
verbunden ist. Ab a >3 wird von der Mdoglichkeit
Gebrauch gemacht, 33 % der prdmienberechtigten Flache
stillzulegen. Die Zuckerriiben bleiben unabhidngig vom
Ausmal} der Risikoaversion im maximal mdglichen Um-
fang in der Optimallosung. Dies liegt vor allem an der ho-
hen Wettbewerbsfahigkeit ausgedriickt in dem vielfach
hoheren Einzeldeckungsbeitrag. Zudem ist der Deckungs-
beitrag von Zuckerriiben negativ mit den Deckungsbeitra-
gen der Winterungen korreliert, so dass es zu einer Verrin-
gerung der Standardabweichung des Gesamtdeckungsbei-
trages kommt, wenn Zuckerriiben und Winterungen in das
Produktionsprogramm aufgenommen werden. Sommergers-
te und Kornermais gewinnen bis ¢ = 2 an Bedeutung. Der
Anteil der Sommergerste im Produktionsprogramm steigt
an, weil der Sommergerstenanbau mit weniger Unsicherheit
verbunden ist, wenn der Deckungsbeitrag als stationdrer
stochastischer Prozess geschitzt wird (siche unten). AuBSer-
dem ist die Erhohung des Sommergerstenanteils zu einem
bestimmten Teil auch dem Diversifikationseffekt zuzu-
schreiben, denn die positive Korrelation zwischen der
Sommergerste und den Winterungen ist relativ gering.
Auch die Ausdehnung des Kornermaisanbaus ist darin
begriindet, dass sein Deckungsbeitrag nur gering mit dem

Abbildung 3 zeigt, dass unterschiedliche
Risikoparameter zur Auswahl unterschiedlicher Alternati-
ven mit jeweils verschiedenen Verteilungen fiihren. Derar-
tige Verteilungsinformationen kann man nutzen, um Per-
zentilwerte oder Konfidenzintervalle zu berechnen. So kann
das Risikoprofil des Produktionsprogramms ,,plakativer
eingeschétzt werden. Beispielhaft sind in Tabelle 5 die
Werte des 15,9 %, 2,3 % und 0,1 % Perzentils angezeigt.
Mit Blick auf eine praktische Handlungsempfehlung bleibt
die Frage offen, welcher Risikoparameter ¢ die subjektive
Risikoeinstellung des jeweiligen Entscheiders widerspie-
gelt. Unter Riickgriff auf die o.a. Perzentile ldsst sich die
Bedeutung der verschiedenen der hier systematisch variier-
ten Risikoparameter ¢ plastisch machen: Sieht man sich
die Praferenzfunktion (5) an, so wird deutlich, dass a =1
gleichbedeutend mit der Maximierung des Wertes
GDB, —1-0%P% bzw. des 15,9 % Perzentilwertes ist.’
Oder anders formuliert: Die Maximierung der Priferenz-
funktion fir o =1 entspricht der impliziten Forderung,
dass der Gesamtdeckungsbeitrag nicht mit mehr als

Implizit wird bei der Bestimmung des Perzentilwertes von
einer Normalverteilung fiir den Gesamtdeckungsbeitrag aus-
gegangen. Zur Rechtfertigung sei darauf hingewiesen, dass
sich dem zentralen Grenzwertsatz folgend die Verteilung der
Summe einer zunehmenden Anzahl von Zufallsvariablen der
Normalverteilung annéhert, gleichgiiltig, welche Verteilung
den einzelnen Zufallsvariablen zugrunde liegt. Die Niherung
ist selbst fiir eine geringe Anzahl an Zufallsvariablen schon
recht gut (KREYSZIG, 1975: 133ff.).
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Abbildung 3. Verteilungen fiir den Gesamtdeckungsbeitrag bei

unterschiedlicher Risikoeinstellung

e wenn man zudem Korrelationen zwi-
schen den Einzeldeckungsbeitrigen
unberiicksichtigt lassen wiirde.

0,5-

Kumulierte Haufigkeit

_

In Spalte 2 der Tabelle 6 ist das ohne
Zeitreihenanalyse als optimal ausgewie-
sene Produktionsprogramm aufgefiihrt.
Im Vergleich zu Spalte 1 wird zum einen
deutlich, dass die Sommergerste, deren
Deckungsbeitrag eigentlich einem statio-
néren Prozess folgt, nicht im optimalen
Anbauprogramm eines risikoaversen
Entscheiders enthalten wére. Stattdessen
gewinnen der Winterweizen, der Winter-

— ()
— =)

a=4

100 200 300 400 500
Gesamtdeckungsbeitrag in Periode 1 (in T€)

T
-100 0

600 700 roggen und der Kornermais an Bedeu-

tung. Zum anderen ist das Sicherheits-

Quelle: Eigene Berechnungen

dquivalent ¢, wegen des geringeren

15,9 % Wahrscheinlichkeit kleiner ist als 230 336 €. Folge-
richtig ist der 15,9 % Perzentilwert bei =1 auch hoher
als bei anderen Werten fiir den Risikoparameter. « =2
entspricht dem Verlangen, dass der Gesamtdeckungsbeitrag
nicht mit mehr als 2,3 % Wahrscheinlichkeit kleiner ist als
173 802 €. Zu beachten ist, dass mit einer Erh6hung von «
nicht nur das mit dem Produktionsprogramm verbundene
Risiko eines geringen Gesamtdeckungsbeitrages sinkt,
sondern gleichfalls die Chance auf einen héheren Gesamt-
deckungsbeitrag (vgl. Abbildung 3).

Grundsétzlich stellen derartige Perzentilwerte eine addquate
Hilfe zur Erfassung der subjektiven Risikoeinstellung von
Entscheidern im Rahmen einer Befragung dar. Aufgrund
ihrer begrenzten Rationalitdt ldsst sich der Wert von «
aber nur groBenordnungsméBig bestimmen. Allerdings sind
niedrige Werte fiir den Risikoparameter nicht zuletzt
deshalb plausibel, weil sich der Landwirt durch die Wie-
derholung der Anbauentscheidung z.T. bei sich selbst ,,ver-
sichern” kann. Mit anderen Worten: Die Streuung des
Gegenwartswertes der Gesamtdeckungsbeitrige mehrerer
Jahre ist ohnehin geringer als die Streuung des Gesamt-
deckungsbeitrages im einzelnen Jahr. Hohe Werte fir o
sind allenfalls dann plausibel, wenn die Finanzkraft des
Betriebes so schwach ist, dass mit einem negativen oder
unter einem bestimmten Betrag liegenden Deckungsbeitrag
Liquiditétsprobleme verbunden wéren.

4.2.2 Mogliche Fehlerquellen

Vielfach wird bei der Berechnung der Standardabweichung
der Zufallsvariablen pauschal auf die absoluten Werte
bzw. auf die absoluten Wertdnderungen zuriickgegriffen.
Mit einer solchen Vorgehensweise wird implizit ein
ABP fiir die Zufallsvariable unterstellt. Die Moglichkeit,
dass es sich z.B. um einen OUP handeln koénnte, wird
damit von vorn herein ohne statistische Tests ausge-
schlossen. Um zu verdeutlichen, welche Fehleinschat-
zungen durch ein solches Vorgehen auftreten konnen,
ist in Tabelle 6 das fiir einen risikoaversen Entscheider
(a=1) optimale Produktionsprogramm einer Anbau-
strategie gegeniiber gestellt, die als ,,optimal® ausgewiesen
werden wirde,
e wenn man fiir die Deckungsbeitragsentwicklung aller Pro-
duktionsverfahren ohne statistische Tests einfach einen
(nicht-stationdren) ABP unterstellen wiirde und

Erwartungswertes und der héheren Stan-
dardabweichung des Gesamtdeckungsbeitrages geringer. Die
Art des stochastischen Prozesses, der den Einzeldeckungs-
beitrdgen zugrunde gelegt wird, beeinflusst das Optimie-
rungsergebnis also in auBerordentlichem Malle. Oder anders
formuliert: Die Beriicksichtigung der ,richtigen® Prozess-
form ist von grofer Bedeutung fiir die Optimierung.

Abbildung 4 verdeutlicht noch einmal grafisch den Unter-
schied bzgl. der zukiinftigen Verteilungsannahmen, die sich
fiir den Deckungsbeitrag der Sommergerste in Periode 1
(im Jahr 2004) ergeben, wenn (a) der zukiinftigen Entwick-
lung statistischen Tests folgend ein OUP zugrunde gelegt
wird oder (b) pauschal von einem ABP ausgegangen wird.
Wie ersichtlich wird ist zum einen bei einem OUP — aus-
gehend von dem relativ geringen Deckungsbeitragsniveau
in Periode 0 (im Jahr 2003) — der Erwartungswert fiir Peri-
ode 1 aufgrund des Drangs zur Riickkehr auf das Gleich-
gewichtsniveau (329,3 €) im Vergleich zum ABP hoéher.
Zum anderen ist die Streuung des Deckungsbeitrages (bzw.
der Deckungsbeitragsidnderungen) in Periode 1 bei einem
OUP bedeutend geringer.

Mit Blick auf Abbildung 4 wird offenbar, dass folgende
alternative Vorgehensweise bei der Bestimmung des opti-
malen Produktionsprogramms unter Beriicksichtigung von
Unsicherheit in den Einzeldeckungsbeitragen theoretisch
moglich wire:

1. Weiterhin ist unter Anwendung statistischer Testverfah-
ren fiir jeden Einzeldeckungsbeitrag der beste stochasti-
sche Prozess zu identifizieren.

2. Durch eine der Optimierung vorgelagerte Analyse wird
unter Beriicksichtigung des jeweiligen stochastischen
Prozesses die Verteilung fiir die Einzeldeckungsbeitriage
im relevanten Planungsjahr 1 bestimmt. Dies kdnnte
mittels stochastischer Simulation erfolgen. In einer
Vielzahl von Fillen resultiert eine Normalverteilung,
deren Parameter (Erwartungswert und Standardabwei-
chung) aber vom jeweiligen stochastischen Prozess be-
stimmt werden.

3. Die Parameter der Normalverteilungen fiir die Einzel-
deckungsbeitrige werden geschétzt und zusammen mit
den Korrelationskoeffizienten fiir die analytische Be-
rechnung der Standardabweichung des Gesamtdeckungs-
beitrages genutzt. Das optimale Produktionsprogramm
konnte dann z.B. mittels MS-EXCEL-Solver oder GA
bestimmt werden.
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den Anwendung - Unsi-

Tabelle 6. Optimales Anbauprogramm und Zielfunktionswert bei Vernachlissi- Y

gung der Ergebnisse statistischer Tests oder/und Korrelationen (o= 1) cherhelt in den Nebenbe-
dingungen (Anzahl der Feld-
Spalte 1 Spalte 2 Spalte 3 arbeitstage)  beriicksichtigt
Annahmen bzgl. der stochastischen Entwicklung werden soll. Wiirde man der
der Einzeldeckungsbeitriige Unsicherheit in den Neben-
stochastische Prozesse | pauschale Annahme | ABP und Vernachldssi- bedingungen mittels CCP
gemif Zeitreihenanalyse eines ABP gung von Korrelationen Rechnung tragen, um so
Winterweizen (ha) 210,0 320,0 245,0 einfachere  Optimierungs-
Sommerweizen (ha) 0,0 0,0 75,0 V?rfahren "anwenden zu
Winterroggen (ha) 116,0 207,0 267,5 konnen, misste man die
Wintergerste (ha) 0,0 0,0 0,0 Wahrsohelr}l}chk&:lt, mit Qer
Sommergerste (ha) 253,0 0,0 0,0 die Kapazitdtsgrenzen em-
Winterraps (ha) 16,0 16,0 16,0 gehahen werden §ollen, m
X ’ ’ ’ konsistenter Weise zum
Zuckerriiben (ha) 32,0 32,0 32,0 Risikoparameter ~ wihlen.

Koérnermais (ha) 93,0 145,0 84,5 Offen bleibt jedoch wie.
N(.)n-Food-Raps (ha) 80,0 80,0 80,0 Bei der Bestimmung des
Stilllegung (ha) 0,0 0,0 0,0 optimalen Anbauprogramms
SAkh (gesamt)” 17248 18954 18883 in Spalte3 der Tabelle 6
Flachenausnutzung 800,0 800,0 800,0 wurden neben der pauscha-
@, (€) 230336 213778 236 753 len Annahme eines ABP zu-
o PB © a) 67 540 73 562 48 811 S.éitzlich die eigentlich. vor-
GDB, (€)” 297 875 287 340 285 564 liegenden  Korrelationen
zwischen den Einzelde-
 Mittelwert nach 50 000 Simulationslaufen. ckungsbeitrigen  vernach-
Quelle: Eigene Berechnungen lassigt. Im Vergleich zu

Spalte 1 zeigt sich, dass die

Sommergerste zugunsten von
Winterweizen, Sommerwei-

zen und Winterroggen ver-

drangt wird. Anders als in
Spalte 2 ist das Sicherheits-
dquivalent in Spalte 3 aber
héher als in Spalte 1, ob-
wohl der Erwartungswert
des Gesamtdeckungsbeitra-

ges im Vergleich zu Spalte 1
geringer ist. Dies ist darin
begriindet, weil eine Ver-
nachlédssigung positiver Kor-
relationen zu einer Verrin-
gerung der Streuung des Ge-
samtdeckungsbeitrages fiihrt.

Abbildung 4. Dichtefunktionen fiir den Deckungsbeitrag der Sommergerste bei
einem OUP bzw. ABP (50 000 Simulationsliufe)
m———o—— WABP(DB,=1884; a=14; —
RS o=112,7)
@ OUP (DB,=188,4; n=3.2;
[ Fe® & DB=329,3; o =208,9)
g P
# y
= d s e
E u * §
z F I 2
o 4
-400 200 0 200 400 600 800
Deckungsbeitrag der Sommergerste in Periode 1 (in €/ha)

Positive Korrelationen zwi-
schen den Einzeldeckungs-
beitrdgen bedeuten letztlich,

Quelle: Eigene Berechnungen

dass es entweder iiberall gut

Zu beachten ist, dass durchaus Fille denkbar sind, wo sich
nicht fiir alle betrachteten Zufallsvariablen eine Normalver-
teilung ergibt und somit eine algebraische Berechnung der
Standardabweichung des Gesamtdeckungsbeitrages sehr
hohe mathematische Fahigkeiten erfordert bzw. nicht mog-
lich ist. Beispielsweise wenn die betrachtete Zufallsvariable
einem geometrischen Brownschen Prozess folgt, ergibt sich
eine Log-Normalverteilung. Wenn Ertrags- oder Erlosver-
sicherungen bzw. Hedge-Malinahmen beriicksichtigt wer-
den, resultiert eine rechtsschiefe Verteilung. Die Kombina-
tion von stochastischer Simulation und GA stellt mit Blick
auf die Art der Verteilung der Zufallsvariablen eine allge-
meingiiltige Vorgehensweise dar. Diese Vorgehensweise ist
z.B. auch dann gangbar, wenn — wie in der hier vorliegen-

oder iiberall schlecht lauft,
d.h. bei korrekter Beriicksichtigung der (positiven) Korrela-
tionen kommt es zu einer hoheren Streuung des Gesamt-
deckungsbeitrages als ohne.

5. Schlussfolgerungen und Ausblick

Im Rahmen {iblicher Optimierungsansétze ist eine realitéts-
getreue Berlicksichtigung von Unsicherheit kaum moglich
bzw. nicht praktikabel. Durch die Kombination von sto-
chastischer Simulation und GA kann dieses Problem beho-
ben werden. Die grofere Realitdtsndhe des Modells hat
einen Preis: Ein z.T. sehr viel hoherer Programmieraufwand
und ein grofBerer Rechenbedarf als fiir Standardoptimie-
rungsverfahren. Allerdings ist die Kombination von sto-
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chastischer Simulation und GA mit den zur Verfiigung
stehenden technischen Tools relativ einfach zu implemen-
tieren. Trotzdem wird die Verfahrenskombination sto-
chastische Simulation/Genetische Algorithmen kaum von
Praktikern in groBerem Umfang eingesetzt werden. Die
Entwicklung eines anwenderfreundlichen, kommerziell
erhéltlichen Tools konnte aber dabei helfen, dieses Verfah-
ren iliber die akademische Forschung hinaus z.B. fiir Berater
interessant zu machen.

Nicht zu iibersehen ist, dass das hier verwendete Optimie-
rungsverfahren leicht auf eine dynamische Betrachtung er-
weitert werden kann, d.h. es konnte simultan das optimale
Produktionsprogramm fiir mehrere Produktionsperioden
bestimmt werden. Dazu wére die Wertentwicklung der Zu-
fallsvariablen {iber den entsprechenden Zeitraum zu model-
lieren. Mittels GA lielen sich dann fiir jede Produktionsperi-
ode die u.U. ganz unterschiedlichen optimalen Produktions-
programme bestimmen. Dies ist zwar i.d.R. fiir betriebliche
Anbauentscheidungen nicht erforderlich, allerdings konnte
man so z.B. die Auswirkungen bestimmter Agrarpolitiken
auf das langfristige Entscheidungsverhalten der Landwirte
untersuchen. Beispielsweise konnte man der Frage nachge-
hen, ob es im Lichte gegenwirtiger Einzeldeckungsbeitrags-
niveaus und ihrer stochastischen Prozesse fiir konventionell
und Skologisch erzeugte Produkte realistisch erscheint, dass
die Bundesregierung mit den bislang durchgefiihrten MaB-
nahmen den bis 2010 angestrebten Stellenwert des 6kologi-
schen Landbaus von 20 % der landwirtschaftlich genutzten
Flache erreichen wird. Dabei wire dann allerdings zu be-
riicksichtigen, dass Festkosten nicht notwendigerweise kon-
stant sind. Anstelle der zukiinftigen Gesamtdeckungsbeitrige
wiren zukiinftige Gewinne zu maximieren.

Die mit der Kombination von stochastischer Simulation und
GA angestellten Modellrechnungen zeigen, dass risikoneut-
rale bzw. wenig risikoscheue Landwirte den Winterweizen,
Winterroggen, Sommergerste, Winterraps, Zuckerriiben
und Non-Food-Raps in ihr Produktionsprogramm aufneh-
men wiirden. Bei zunehmender Risikoaversion gewinnen
die den stationdren stochastischen Prozessen folgenden
Produktionsverfahren tendenziell an Bedeutung. In dem
hier betrachteten Beispiel gilt dies fiir die Sommergerste
und die Zuckerriiben, wobei das letztgenannte Produktions-
verfahren nicht zuletzt auch wegen der vergleichsweise
hohen Rentabilitdt und der negativen Korrelation zu den
Deckungsbeitridgen anderer pflanzlicher Produktionsverfah-
ren unabhingig von der Risikoeinstellung in maximal mdg-
lichem Umfang realisiert wird. Aulerdem haben die Mo-
dellrechnungen gezeigt, dass die Beriicksichtigung der
»richtigen® bzw. geeignetsten stochastischen Prozesse fiir
die Einzeldeckungsbeitrdge die Struktur des als optimal
ausgewiesenen Produktionsprogramms stark beeinflusst.

Bei der Interpretation der Modellergebnisse ist zu beachten,
dass diese immer nur so gut sind wie die Modellannahmen.
Natiirlich miissen im Modell alle relevanten Aktivititen
berticksichtigt werden. In diesem Zusammenhang erscheint
eine Modellerweiterung sinnvoll, die der seit einigen Jahren
bestehenden Mdglichkeit, aktiv an Warenterminborsen zu
hedgen, Rechnung trigt. Moglicherweise wiren auch bei
einem besseren Datenmaterial die mittels statistischer Test-
verfahren gefundenen stochastischen Prozesse fiir die Ein-
zeldeckungsbeitrdge zu korrigieren. Auflerdem wurde still-
schweigend davon ausgegangen, dass die fiir die Vergan-

genheit ermittelten Entwicklungsmuster der Einzelde-
ckungsbeitrage auch fiir die Zukunft gelten (Zeitstabilitt).
Diese Annahme ist nur eingeschrinkt zuldssig und wird
umso unrealistischer, je mehr in der Vergangenheit (nicht)
wirkende Krifte in der Zukunft an Bedeutung verlieren
(gewinnen). Im Lichte der Liberalisierungsbestrebungen ist
davon auszugehen, dass zukiinftig Marktkrifte an Bedeu-
tung gewinnen und Politikeffekte an Relevanz verlieren. Im
Endeffekt wird dies dazu fihren, dass das Ausmalf} der
Unsicherheit, das sich in den jeweils relevanten stochasti-
schen Prozessen &duflert, zunimmt. Dies kann zu anderen
Prozessparametern oder sogar zu anderen stochastischen
Prozessen fiihren.

Eine interessante zukiinftige Forschungsaufgabe konnte
sein, empirische Produktionsprogrammentscheidungen von
Unternehmen mit dem Produktionsprogramm laut Optimie-
rungsmodell zu vergleichen. Dabei wére natiirlich der em-
pirische Informationsstand der Vergangenheit in Form der
bis dahin vorliegenden Zeitreihen zugrunde zu legen. Bei
einer hinreichend zuverldssigen Schétzung des Risikopara-
meters konnte man schlieBlich die Frage beantworten, ob
die Unternehmer im Mittel der letzten Jahre einen hoheren
Nutzen erzielt hétten, wenn sie tatsdchlich das Optimie-
rungsmodell genutzt hétten.
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