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Abstract  

 

 

This paper develops a model that solves for the optimal economic harvest rotation 

problem to maximize revenue of an even-aged forest plantation when there is a risk of a 

catastrophic forest fire.  The paper also investigates the feasibility of using fire prone stands 

for carbon sequestration and estimates the effects that it would have on the optimal 

management regime and rotation age empirically using a typical Douglas-fir stand in the 

Pacific Northwest.  The model incorporates risk-reducing management practices that allow 

risk and growth to be endogenous, and the optimal rotation model is solved using numerical 

simulation techniques. Results show that higher carbon prices increase the rotation length 

regardless of the probability of fire and that the frequency of risk-reducing management 

practices increase as the stand approaches the optimal harvest age.  Results also indicate that 

intermediate fuel treatments can provide economical and environmental benefits, even with a 

high probability of fire.  

 

Keywords: Carbon sequestration; Stochastic risk; Forest management; Optimal rotation; 

Silviculture; Forest fires; Climate change
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1.  Introduction 

 

 There is widespread belief that forests can be used to sequester carbon from the 

atmosphere and consequently to help reduce the effects of climate change (see Sedjo and 

Solomon, 1989; Stavins, 1999; Richards and Stokes, 2004 for example).  Concern has 

been raised, however, that if the area of forests is expanded and these forests are used to 

sequester carbon, much of the carbon gained through afforestation may be lost from fires.   

This concern has increased in recent times, as the fires burning in many regions of the 

world have grown in size and intensity, leading to large losses in timber reserves, habitat, 

and valuable carbon sinks (Westerling et al., 2006).  Reports indicate that over 50 million 

hectares of forestland are burned globally, leading to upwards of 1 billion tC (1 tC = 1000 

Kg C) of emissions annually (van der Werf et al., 2005).  Although forests often grow 

back on land where fires occur, even short-term losses (e.g. 30 - 50 years of reduced 

carbon while forests are growing back) can have economic consequences for companies 

that have invested in timber reserves for carbon sequestration. 

Historically, fire risk has been considered to be outside the control of landowners, 

but recent evidence indicates that land management can influence fire risk.  For example, 

Peterson et al. (2005) show that large suppression efforts over the past 100 years have 

caused forests to accumulate fuels to levels well beyond the historical means, thus 

increasing the risk of loss once a stand ignites   On the other hand, van Wagner (1977), 

Yoder (2004), and Curtis et al. (1998) show that management activities in existing forests 

can reduce the risks to landowners.  Given the high value that forests may hold for 
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sequestering carbon, and the potentially large risks associated with emissions from forest 

fires, it is useful to consider the link between forest management, and forest fire risk. 

There are two critical issues to be addressed when considering forest 

management, fire risk, and carbon sequestration.  The first issue relates to the optimal 

rotation age and whether it increases or decreases with fire risk.  Early papers by Martell 

(1980), Routledge (1980), Reed (1984), and Reed and Errico (1985) evaluated the effect 

of risk of forest fires on the optimal rotation age of a single forest stand.  These studies all 

concluded that in the presence of stochastic fire loss, optimal rotations would be shorter 

compared to the case when no risk was present.  They also found that the presence of fire 

risk would reduce expected volume produced per unit time in the long run. None of these 

studies account for the possibility that forest managers may alter the management of their 

stands to reduce probability of fire.  More recent work by Thorsen and Helles (1998) 

shows that thinning can reduce risks and that the change in the optimal rotation period is 

minimal.  Amacher et al. (2005) suggest that when thinning and other management 

activities are undertaken, optimal rotation periods may or may not decrease.  Unlike 

Amacher et al., this paper accounts for the potential increase in growth from intermediate 

treatments and investigates the role that a specific non-timber benefit (i.e. carbon 

sequestration) has on the optimal management regime.   

The second issue relates to the effects that incentives to sequester carbon may 

have on landowners.  Englin and Calloway (1993) and Van Kooten et al. (1995) suggest 

that carbon incentives should increase the optimal rotation period.  Obviously, planting 

trees to avoid climate change and holding them for longer periods of time, exposes them 

to more risk than otherwise.  In the face of fire risk, one must question if the results 
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suggested by these authors still hold.  Englin et al. (2000) suggest that amenity values 

would still increase the optimal rotation period, but Stainback and Alavalapati (2004) 

find that rotations would decrease as the price of carbon increases.  The Stainback and 

Alavalapati (2004) result hinges on the inclusion of wood product pools for carbon, 

which implies that it is better to store carbon in wood products than accept the risks of 

emissions associated with fires.  Neither of these studies account for risk reducing 

management strategies that forest landowners may have. 

Substantial ecological research in recent years has been conducted to show that 

the effects of forest fires (i.e., the risk they pose to standing timber and carbon) may be 

reduced with management (Raymond and Peterson, 2005).  Specifically, the research 

suggests that treatment programs aimed at reducing surface fuels, and dead and dying 

trees below the canopy, can reduce the probability of large crown fires that often destroy 

large amounts of merchantable timber (van Wagner, 1977; Yoder, 2004; and Curtis et al., 

1998).  Essentially, these treatment programs focus on eliminating small, non-

merchantable materials that act as a "ladder," enabling the fire to shift from the forest 

floor (where it is often relatively benign) to the canopy (where it kills trees by destroying 

their ability to photosynthesize).  

Although there is ample evidence that management can reduce fire risk, 

management is costly. Many of the existing management recommendations focus on 

removing non-commercial material, which does not yield economic returns, but is just a 

cost to the landowner.  Given management costs, it is not clear that it is economical to 

invest in afforestatation and lengthening rotations for carbon sequestration in fire prone 

regions.  Unfortunately, fire prone regions encompass a large proportion of the United 



 6 

States.  For example, current estimates indicate that approximately 35% of the forests of 

the U.S. are in regions that are considered to be at risk of a high-mortality stand-replacing 

forest fire in the next century (Schmidt et al., 2002).  Thus, our existing stocks of forests 

appear to be particularly vulnerable to fire and related carbon emissions, and expanding 

and enhancing these stocks could be problematic.  It is necessary to carefully assess 

whether there are any economic and carbon gains associated with investing in forest 

plantations and managing them optimally in order to minimize the risks of fires.   

To model the optimal rotation problem in the presence of fire risk, this paper 

adopts a stochastic approach.  The probability that fire occurs is assumed to be 

exogenous, however, land managers are assumed to have control over the likelihood that 

the stand will be destroyed by the fire.  This means that even though forest fires are 

exogenous, the risk that stands die, or are unsalvageable, is endogenous in the optimal 

rotation problem.  Within the context of the stochastic optimization model developed in 

the paper, it is not possible to present analytical solutions to the optimal rotation problem. 

Instead, we use numerical simulations to show how timberland management and optimal 

rotations adjust when fire risk is present.  Douglas-fir stands in the Pacific Northwestern 

United States are used for our numerical example. This paper improves upon previous 

research by directly incorporating the endogenous growth and stand mortality rates in the 

case of a forest fire into the decision making process.   

 This paper is organized as follows.  Because fire ecology is central to the notion 

that risk is endogenous in forest management, the next section discusses the current state 

of the fire ecology literature as it relates to management options available for reducing 

risk.  The third section presents our stochastic dynamic model of forest management with 
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endogenous risk, and incentives for carbon sequestration.  The fourth section uses 

computational analysis to test these effects on the rotation length of a Douglas-fir stand in 

the Pacific Northwest, followed by the conclusion in the final section.   

 

2.  Fire Ecology and Risk-Reducing Management  

 

 The intensity and severity of a fire is dependent on the weather, climate, wind, 

topography, ignition source, and the amount and types of fuels present when the stand 

ignites (Agee, 1993; Schoennagel et al., 2004).  Fuels are traditionally separated by their 

structure and placement in the stand, and are characterized as crown fuels (live and dead 

material in the canopy of trees), surface fuels (grass, shrubs, litter, and wood in contact 

with the surface), and ground fuels (organic soil horizons and buried wood).  Crown fires 

have been shown to be the most destructive, according to Agee (1993), and the severity 

of crown fires is dependent on fuel-moisture content, wind conditions, and the level of 

surface and ground fuels.   Shrubs and small trees living under the forest canopy often act 

as a “ladder,” helping fire move from the ground to the canopy.  Activities that reduce the 

amount of fuel under the forest canopy can reduce the likelihood of catastrophic losses 

(Peterson et al, 2005).  Forest managers, therefore, have long engaged in activities to 

mitigate the risk of a crown fire through fuel reduction techniques, such as prescribed fire 

or thinning.  Quick suppression once a fire has begun has also been shown to be easier 

and less costly in stands that have been actively managed to remove fuel "ladders" 

(Oucalt and Wade, 1999; Agee, 2002). 



 8 

 Three techniques have been widely suggested to reduce the risks that timber 

stands will be destroyed by fire: prescribed burning, periodic thinning, and suppression.  

Prescribed fire (periodic burns of the under-story of a stand) is known as a cost-effective 

way to reduce fuel loads (Rummer et al., 2003; Yoder, 2004). It is not considered in this 

study because it leads to immediate carbon emissions from the material burned, there is 

the possibility that the fire will escape the managed area, and prescribed fires often have 

other negative externalities, such as particulate matter and nitrogen oxide emissions 

(Peterson et al., 2005).  They also can only be performed during certain times of the 

year—usually in the autumn in the Pacific Northwest—and therefore provided limited 

flexibility to landowners.   

Suppression efforts that take place after a forest fire has been detected are the 

most widely used fire management tool at the moment.  Average expenditures fighting 

fires in the U.S. were $300 million per year between 1970 and 1998, and they have 

increased dramatically in some years (more than 200%) since 1998 because of the greater 

number of large fires (Calkin et al, 2005).  However, large suppression efforts over the 

past century have raised fuel loads much higher than their historic levels, thereby 

increasing the risk of a catastrophic fire, especially in much of the Western United States 

(Covington and Moore, 1994).  As with prescribed burning, this paper does not 

investigate fire suppression activities directly, however it is expected that the 

management techniques discussed in this paper will have a positive effect on the ability 

to suppress fires quickly because of the lower risk of crown fires and overall stand 

mortality (Agee, 2002).  
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The third fuel treatment option is the practice of thinning a stand to remove excess 

trees and fuels.  Thinning can be used to mitigate fire risk by reducing high fuel loads and 

improving wind stability that can prevent large trees from being blown down (Curtis et 

al., 1998).  It can also be used to salvage material from disturbances and to avoid insect 

outbreaks (Goyer et al., 1998). Thinning a stand also provides some income from small 

trees that can help offset the cost of management (Barbour et al. 2004), and the reduction 

in stand density increases the annual growth rate of the remaining trees and accelerates 

the amount of merchantable timber available at the time of harvest (Curtis et al., 1982).  

The key component of thinning that we investigate in this paper is the ability to reduce 

the risk of a crown fire as small trees, ladder fuels, and surface fuels are removed from 

the stand, and that it is the best silvicultural treatment for a fire-prone stand that is also 

seeking carbon credits.  The improved yields associated with intensive silvicultural 

treatments is also a beneficial aspect of our model worth investigating, as it raises the 

level of carbon that can be sequestered in growing biomass and subsequently stored in 

long-lasting wood products after harvests (Sedjo et al., 1995). 

 

3.  Economic Model: Discrete Time, Mixed State Model with Endogenous Risk 

 

Endogenous risk appears whenever there is the conjunction of (i) individuals 

reacting to their environment and (ii) where the individual actions affect their 

environment.  In practice, landowners with valuable timberland will take risk into 

account when deciding how to manage their stands, so that if the stands are prone to 

wildfire they will undertake management decisions to minimize the chance that their 
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investment will be destroyed before the optimal harvest age, subject to the costs of 

various management alternatives.  In the case where landowners are also obtaining 

benefits from carbon sequestration, they must also account for the lost revenues (or 

penalties) that may occur if fire damages or destroys their stand.     

In this paper, the optimal forest management problem is modeled as an infinite 

horizon, discrete time, mixed state model.  The numerical optimization procedures used 

to solve the model (described below) allow us to simultaneously determine the optimal 

management regime and rotation age for a stand that faces catastrophic forest fire risk 

and benefits from carbon sequestration and timber sales.  The two continuous states in the 

model are (i) the quantity of standing timber (m3/ha), q = [qo,qmax]; and (ii) the amount of 

combustible fuel in the stand (tons/ha), m =  [m0,mmax].  The state variable m is positively 

correlated with—but not included in—the quantity of standing timber (q).  The discrete 

state captures whether or not a forest fire occurs during a given time period.  It is a 

random variable, {0,1}θ =% .  For the purposes of this model, the probability of a fire 

occurring, P(θ=1), is assumed to be an “act of God” (e.g. lightning), which cannot be 

prevented or controlled.1  The probability of fire occurring in any period depends on the 

fire return interval (FRI), which is widely available for different types of forests in 

different regions.  This probability is given as: 

1 
P( =1) =  

1
P( =0) = 1-   

FRI

FRI

θ

θ

     (1). 

 

                                                 
1 Historical data show that fires in the Pacific Northwest Douglas-fir stands are caused by both humans and 
lightning, however in this paper we assume that none of these fires can be prevented and are therefore 
considered “natural.”   
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The forest manager has a choice of three different actions during any given time 

period, X={1,2,3}.  If X=1, the manager lets the forest continue to grow without active 

management; if X=2, the manager thins the stand to remove excess fuels, to increase the 

annual growth rate of merchantable sawtimber, and to increase the proportion of timber 

that can be salvaged if a fire occurs; or if X =3, the manager clearcuts the forest and 

replants the entire stand.  It is assumed here that only one action can be taken each time 

period (years).   

The forest manager is rewarded for actions undertaken during each time period.  

If a fire occurs in a given time period, θ=1, and the manager is rewarded the amount of 

merchantable timber available from salvage cutting.  Salvage is imposed after all fires, 

although the value of salvage depends on the two continuous state variables q and m, 

which are in turn dependent upon the optimally chosen management regime.  The reward 

function for timber (ftimber) is:  

maint

0

(1 ( ))    if  = 1        (salvage clearcut)

                          if  = 0, X = 1     (do nothing) 
( , , , )

( )        if  = 0, X = 2      (thin stand)

merch fire

timber

bio thin

g m pq c

c
f q m x

m m p c

pq

ς θ

θ
θ

θ

− −

−
=

− −
    

                if  = 0, X = 3    (clearcut stand)merch repc θ






 −

       (2) 

In equation (2), p is the deterministic price of the timber, 0<ς<1 is the fraction of the 

market price of timber that salvaged logs can be sold for2, pbio is the deterministic price 

($/ton) for fuel removed from the stand, and g(m) is a function that represents the 

proportion of timber that is burned and dies if a fire occurs.  Mortality is determined by 

the amount of fuel in the forest at the time of the fire.  The specific path for g(m) is 

                                                 
2 See Baumgartner (1987) and Prestemon and Holmes (2000) for empirical examples 
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discussed in section 3.1.  The volume of merchantable sawtimber that can be salvaged 

after a fire is one minus the mortality rate.   

The model assumes that thinning only produces merchantable pulp and/or 

biomass energy material, but not merchantable sawtimber.  Typically, pre-commercial 

thinning activities for forest fire management do not produce enough merchantable 

material to offset the costs of undertaking the thinning activity (Rummer et al., 2003 and 

Barbour et al., 2004).  For simplicity, the costs of thinning (cthin) are assumed to be fixed 

for each intermediate treatment, with the total cost (or profit) determined by the amount 

of fuel removed from the stand.  Other costs include the costs of maintaining a stand on 

an annual basis (cmaint), costs of replanting the stand after a clearcut (crep), and the costs of 

clearing the site and replanting the stand after a fire (cfire).  Empirically, these costs are 

assumed to differ relatively as cmaint ≤ cthin ≤ crep ≤ cfire. (Reed, 1984; Bair and Alig, 2006).  

There are no variable costs in this model. 

The yield of growing stock (q) has a typical logistic shape such that the stand 

experiences faster growth in the early periods and slower growth as it matures.  The 

amount of standing volume that can be converted to merchantable sawtimber is defined 

as qmerch, such that 0merch
dq

dq
≥ , or the fraction of standing volume that can be converted 

to merchantable sawtimber increases as the stand grows over time (Figure 1).  The 

remainder of the growing stock is used as pulpwood.  The proportion used for sawtimber 

is also influenced by the management regime.  Empirical studies suggest that thinning 

from below can increase merchantable sawtimber by 15% or more at harvest time (Miller 

et al., 1987; B.C. Ministry of Forests, 1997).  Figure 2 shows the merchantable sawtimber 

volume for a hypothetical Douglas-fir stand with annual thinning and no thinning for the 
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lifetime of the stand.  Empirically, thinning is not performed every year, so the actual 

yield of merchantable sawtimber will fall between the two yields shown in Figure 2. 

At the end of a year, all of the state variables face a transition function based upon 

the management decisions (or forest fire) that occur at the beginning of the period.  The 

transition function for the growing stock volume (q’ = qt+1) is:  

0

0

0

                if  = 1              (salvage clearcut)

( ) ( )    if  = 0, X = 1       (do nothing) 
'

( ) ( )   if  = 0, X = 2       (thin stand)

                if  = 0, X = 3    (clearcut

q

f q h m
q

f q h m

q

θ

θ

θ

θ

=   

 stand)

    








  (3). 

In equation (3), q0 is the initial growing stock volume planted after a fire or clearcut, and 

f(q) is the change in the standing volume during the year (annual growth).  The change in 

quantity of growing stock volume (timber) during the year is also influenced by the 

growth of fire-fuel, h(m).  In this model, f(q) and h(m) are assumed to be separable, such 

that the fuel levels influence the rate of growth but not the total yield once the stand 

reaches biological maturity.  This follows from the notion that a thinned stand, i.e. one 

with minimal surface and ladder fuels to hinder dominant tree growth, will increase 

merchantable sawtimber yields at a faster rate than an un-thinned stand.    

 

3.1 Fuel accumulation and stand mortality 

The stock of fuel, and consequently the change in the stock of fuel in the stand, is 

determined by management decisions.  It is assumed that every time the stand is thinned, 
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clearcut, or salvaged, the amount of fuel is reset to an optimal level3 (m0).  The transition 

function (m’ = mt+1) for the state of fuel on the stand is: 

0

( )          if X = 1   (do nothing) 
'     

      otherwise (thin, clearcut, salvage harvest)

k m
m

m


= 


  (4). 

In equation (4), m0 is the initial fuel level, and k(m) is the path of fuel accumulation in the 

stand over time.  The proportion of timber that can be destroyed by a fire is formulated as 

a function of current fuels, 0<g(m)<1, such that 
( )

0
dg m

dm
> (Omi and Martinson, 2002; 

van Wagner, 1977).  As a result, the fuel volume and fire hazard (mortality rate) are 

positively correlated, and fire intensity can be reduced through fuel treatments (Fig. 3).   

As fuel volume increases, the level of mortality when a fire occurs increases as well.  

When the stand is managed, by thinning, final management, or salvage harvest after fire, 

the fuel level and mortality rate are reset to the initial state, such that the proportion of 

trees destroyed in the event of fire is reduced. 

 

3.2 Carbon benefits 

Thus far, the model captures only timber market benefits.  In order to take into 

account carbon benefits associated with holding mature trees and storing carbon in 

marketed products, the returns for carbon sequestration must be described.  The value of 

carbon sequestration is assumed to a direct function of the stock of standing timber, and 

the quantity of timber harvested.  The reward function for carbon sequestration is fcarbon, 

which is given as:    

                                                 
3 In this example, we consider “optimal” to be the amount of fuel that minimizes the risk of fire without 
compromising the growth of the stand.  Different management objectives (e.g. increase biodiversity or 
riparian benefits) might require other levels of fuel.   
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stand)(clearcut      3 ,0 if               

thin)nothing, (do  2,1 ,0 if                      

  clearcut) (salvage          1 if    ))(1(

),,,(








==

==

=−

=

Xqp

Xqrp

qpmg

xmqf

merchc

c

merchc

carbon

θαβ

θα

θαβ

θ      (5). 

In equation (5), pc is the price of carbon in $/ton C (assumed to be constant in this 

analysis), α is amount of carbon in tons per cubic meter of growing stock, r is the interest 

rate, and β is the proportion of carbon that is permanently stored in finished wood 

products after the stand is harvested (i.e. the “pickling rate”).  Using a rental price of 

carbon approach allows landowners to receive annual payments when the stand remains 

intact, thereby improving the incentives to reduce fuel levels.  It is uncertain whether 

incorporating payments for converting timber into long-lasting wood products will 

increase or decrease the number of intermediate treatments or the rotation age.  Also we 

assume that if the stand is thinned, landowners do not receive a carbon payment for 

removing the surface and ladder fuels, as there is no guarantee that it will be used as 

biomass energy.   Material left on-site or converted into pulpwood is assumed to decay 

immediately. 

 

3.3 Numerical analysis 

The optimal management path can be solved by combining the state variables, the 

action variables, and the reward and transition functions for both the timber and carbon 

sequestration markets into a single Bellman equation: 

0 0

{1,2,3}

0

(1 ( )) [ ] ...

               ( , )                            if =1

{ , , } max ( ', ')                if =0, X=1

( ', )

merch c fire

maint c t
x

bio thin c t

g m q p p c

E V q m

V q m c p rq E V q m

mp c p rq E V q m

θ

θ

θ

ς αβ

δ θ

θ α δ θ

α δ
=

− + −

+

= − + +

− + +

%

%

%

0 0

        if =0, X=2    

[ ] ( , )      if =0, X=3 merch c repq p p c E V q m
θ

θ

αβ δ θ








 + − + %

    (6) 
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V{q,m,θ} is the expected present value of stage returns from applying the derived optimal 

policy X* across an infinite amount of stages, starting with a freshly planted stand.  The 

maximand is the expected return of the current period from applying the optimal policy 

decisions plus the expected present value of continuing to apply the optimal policy 

starting at the next period, which is discounted by δ = 1/(1+r).  This problem accounts for  

the stochastic effect of forest fires by incorporating the probability that a random 

shock, {0,1}θ =% , will occur equally in the next period or the subsequent periods that 

follow.   

The endogenous specification and functional equations in this optimal rotation 

problem do not allow a closed form solution.  Therefore, we approximate a solution to 

the Bellman equation using computational methods, specifically the method of 

collocation.  This is achieved by writing the value function approximant as a linear 

combination of n known basis functions whose coefficients are to be determined, and 

then fixing the basis function coefficients by requiring that the value function 

approximant satisfy the Bellman equation, not at all possible states, but rather at the n 

collocation nodes (Miranda and Fackler, 2002).  Once the collocation equation has been 

solved, residuals from the chosen collocation method are calculated to verify that the 

approximation errors are minimal across the entire domain of the value function.  For our 

analysis, cubic spline basis functions were chosen to solve equation (6) in MATLAB 6.1 

using the dpsolve routine included in the Miranda and Fackler (2002) COMPECON 

library.     
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4.  Empirical data and application to Pacific Northwestern Douglas-fir stand 

 

The model described above is implemented for a representative Douglas-fir 

(Pseudotsuga menziesii ) stand in the Pacific Northwestern United States.  Douglas-fir is 

important as a timber species and, potentially, as a warehouse for carbon sequestration.  

An average old-growth Douglas-Fir stand in the Pacific Northwest can hold over 200 

metric tons of above-ground carbon per hectare (Birdsey, 1992).  Stands in the Pacific 

Northwest are already susceptible to various levels of forest fire risk depending on the 

slope, elevation and weather and climate conditions of the stand. We test for alternative 

management regimes depending on the different fire return intervals using sensitivity 

analysis, and specifics are discussed below. 

The specific functions and parameters used in the base case model are listed in 

Table 1.  Alternative values used in the sensitivity analysis are also listed.  The growth 

and yield functions are for an average Site III Douglas-fir with a site-index of 140 

(average tree height at 100 years) were based upon stand tables compiled by McArdle 

(1949, 1961).  The effects of thinning on stand growth were estimated based on USDA 

Forest Service technical reports on silviculture in Douglas-fir plantations (Miller et al., 

1988; Curtis et al., 1998) 

The price for timber is given as the average annual real stumpage sale prices 

(deflated to 1997 dollars using general producer price index) of Douglas-fir from national 

forests in Washington and Oregon from 1965 to 2002 (Howard, 2003).  Carbon prices are 

varied across several different levels, consistent with other literature on the economics of 

climate change (van Kooten et al., 1995; Murray, 2000).  Both the timber and carbon 
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prices are assumed to be constant over time.  Stand maintenance (cmaint) and replanting 

costs (crep) are assumed to be $10/ha/yr and $800/ha respectively. Thinning costs (cthin) 

are varied across $200/ha, $400/ha, and $800/ha in the analysis to test the sensitivity of 

the results to different levels of marketable outputs from thinning (Rummer et al., 2003).  

Post-fire replanting costs are assumed to be 25% greater than replanting costs after a 

regular clearcut because of the extra work necessary to prepare a site for regeneration 

(Reed, 1984). 

The discount factor, δ, is set equal to 0.95 for most scenarios, implying a real rate 

of interest of approximately 5%.  This is consistent with the commonly used discount 

factors that range from 0.93 to 0.97 in other forest investment research, which are also 

tested in two alternative scenarios.  On average, fire return intervals for many Pacific 

Northwestern Douglas-fir stands are 50 years (Morrison et al., 1994), however, the actual 

fire return interval for a site will depend on slope, elevation and climate.  To assess 

differences in fire return intervals caused by stand location, the fire return interval in the 

analysis is varied across three values, 25, 50, and 100 years.   

The fuel accumulation and mortality rate functions are developed based on 

research by Brown et al. (2003), Omi and Martinson (2002), and Smith et al. (2003) (see 

Fig. 3).  The salvage function is based on the potential for a stand-destroying crown fire 

based upon the current state of the fuel loads.  This function was generated by multiple 

runs of the USDA Forest Service’s Forest Vegetation Stand (FVS) growth simulator 

(Dixon, 2002) and the FVS-Fire and Fuels Extension Model (Reinhardt and Crookston, 

2003).  The FVS model projects stand conditions under a range of thinning alternatives 

(timber quantity and quality, fuel loads, likely fire severity, and stand mortality under 



 19 

fires with different levels of severity). The model was used with site conditions similar to 

those for our representative Douglas-fir stand to develop a representative fuel 

accumulation function, and to develop the stand mortality and salvage function shown in 

Figure 3.  

 

 

5.  Results  

 

 

A number of different scenarios are developed in order to test the effects of 

different assumptions about fire frequency, thinning costs, carbon prices, the pickling of 

carbon in long-lasting wood products, and the discount factor on management intensity 

and the final rotation age.  In the results, both stochastic and deterministic results are 

presented for each scenario.  The stochastic results show what happens when simulations 

are conducted assuming a positive probability of fire.  The deterministic results assume 

that this probability is 0.00. 

 

5.1 Baseline 

  

The baseline scenario in this example assumes that there is no value for carbon 

sequestration, and the fire return interval is 50 years (P(fire)=0.02).  Under these 

conditions, the optimal rotation length in the stochastic model for Douglas-fir is 48 years.  

One thinning is found to occur optimally at 31 years after planting (Table 2).  A 

deterministic version of the same model assumes no fire risk, and finds an optimal 

rotation age of 53 years, with one thinning, at 35 years.  Thinnings are projected to occur 

earlier when there is a positive probability of fire, and the rotation age is five years 
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younger for the baseline case when there is a probability of fire versus no risk.  Thus, 

landowners invest in management and reduce their rotations to limit the potential losses 

from fires.  Findings for the baseline are consistent with the other fire and optimal 

rotation literature.  Bare land value (BLV)4, a common method of measuring stand value 

in forest rotation problems, is only slightly higher in the deterministic case ($194/ha) than 

in the stochastic case ($189/ha).   

 

5.2 Scenario analysis 

Scenarios 2 and 3 examine the effect of a change in the fire return interval, 

holding all other parameters constant.  As expected, an increase in the fire return interval, 

or probability of a fire, reduces the final harvest, while a decrease in the probability of a 

fire results in a longer rotation.  The increase in fire return interval also results in one 

thinning that will occur earlier in the rotation, thus limiting the economic loss associated 

with the higher fire probability.  The shorter rotation period relative to the deterministic 

model is consistent with results from others that modeled the stochastic risk of forest fires 

(Reed, 1984; Yoder, 2004), however the expected net present value of the stand does not 

decline all that much in the stochastic model. Where P=0.04, BLV is $187/ha suggesting 

that a doubling of the fire probability from 0.02 to 0.04 only reduces BLV by 4%,  

assuming that the stand reaches the optimal rotation age.   Where P=0.01, the result is 

similar to the baseline case with no risk of fire, as the rotation age is 51 years, with one 

thinning at 33 years.  The BLV is $190/ha, a decline of 2% relative to the deterministic 

baseline scenario.   

                                                 
4 In this analysis, the bare land value is equivalent to the maximum net present value of a stand that is 
harvested over an infinite horizon.  Calculations are based upon modified Faustmann equations that are 
prevalent in the literature (see Reed (1984), and van Kooten et al. (1995) for examples). 



 21 

The implications of carbon prices are introduced in scenarios 4, 5, and 6, with a 

price of $50/t C.  The optimal rotation age increases relative to the baseline in each of the 

scenarios to 65, 62, and 58 years, respectively.  Management becomes more intensive as 

well, with three thinnings in each case.  Valuing carbon has a substantial effect on the 

value of land, as BLV rises substantially, to $1044/ha under scenario 4.  Setting the 

probability of fire to zero reveals that the optimal harvest age is 69 years, with three 

thinnings, both similar to the stochastic case.  BLV in the deterministic scenario is 

$1050/ha.  All of the thinnings for the deterministic case are projected to occur later than 

the scenarios with a positive carbon price and risk of destruction.  As before, BLV 

calculations for the stochastic and deterministic cases are similar, indicating that active 

management in a fire prone stand can yield similar payoffs if the risk of destruction is 

kept to a minimum.   

Scenarios 7 and 8 examine the influence of changing the carbon price, but holding 

the fire return interval constant (50 years).  Lower carbon prices reduce the rotation 

period, reduce the number of thinnings, and reduce BLV compared to higher carbon 

prices.  In all cases, however, rotation ages are longer and management is more intensive 

than in the baseline case without carbon prices.  Tests of carbon prices higher than those 

shown in Table 2 indicate that the rotation age continues to expand, management 

becomes more intensive (i.e., more thinnings), and BLV rises.  In the presence of fire 

risk, landowners enrolled in a carbon sequestration program will continue to increase 

rotation lengths, and they will invest more in risk-reducing thinnings throughout the 

rotation period.   
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Altering the net financial effects of thinning does influence the rotation period and 

management (see scenarios 8 & 9).  Lower net costs of fuel treatments (e.g., there are 

many opportunities to convert material to markets nearby) result in more frequent 

thinnings, and higher BLV.  Not only are expected losses from fires minimized by 

frequent fuel removals, but growth is also enhanced.  Interestingly, with lower fixed fuel 

costs and many thinnings, as the stand approaches the optimal harvest age, it is managed 

more intensely (i.e. less time between each thinning).  Thus, in regions where there are 

many opportunities for harvesting pulpwood, or biomass material, nearby stands are 

likely to end up being highly managed, with many thinnings before final harvest.  Of 

course, if net costs of fuel treatments are higher, fewer thinnings would occur, and stands 

are under more risk over their lifecycle.  If society wishes to reduce the risk of fires, it 

may need to subsidize landowners or have large carbon payments to engage in more 

intensive management.     

Scenarios 11 and 12 assess the effect of changing the pickling rate for carbon that 

is permanently stored in wood products.  In scenario 11, the pickling rate is set to zero, 

such that the carbon is assumed to be immediately turned over in wood products and 

emitted into the atmosphere.  When compared to scenario 5 (P(fire)=0.02, Pc=$50), with 

all other parameters the same except that the pickling rate is 40%, the rotation age 

increases only 1 year, to 63.  In scenario 12, where the pickling rate is 1 (i.e.,wood is 

permanently stored "forever"), the rotation age decreases relative to scenario 5, but only 

by 1 year. BLV differs only modestly across scenarios 5, 11, and 12.  There is little 

influence on thinnings because the material thinned is not assumed to enter market 

storage.  While pickling of carbon does have a slight impact on the rotation age, it does 
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not have large effects on thinning rates, final rotation ages, or BLV when active forest 

management is taken into account.   

Scenarios 13 and 14 test how rotations differ if we alter the discount factor 

relative to scenario 5.  A lower discount factor (higher interest rate) reduces the rotation 

age, the number of thinnings and the BLV.  A higher discount factor increases the all 

three indicators significantly.  These findings are consistent for both the stochastic model 

and the deterministic case with no probability of fire.  The changes in rotation age, 

thinnings and BLV are greater for the case where there is a lower interest rate, as 

investors are assume to discount the future less and are therefore willing to hold on to 

their investment for longer periods of time.  Additionally, the frequent thinnings for the 

longer rotation insures against large losses in timber and carbon in the event of a fire.   

Comparisons over the fourteen scenarios show that the deterministic model had at 

least as long of a rotation as the stochastic model for all twelve scenarios.  A comparison 

of the number of thinnings performed for each rotation reveals that most of the scenarios 

had the same number of thinnings for the stochastic and deterministic case.  The key 

difference between the stochastic and deterministic solutions is the age at which the 

thinnings occur.  For every scenario, thinnings are performed earlier when the stand faces 

a positive risk of fire. 

 

5.3 Comparison with previous research 

It is perhaps useful to compare the results of the stochastic model developed in 

this paper with the earlier models of Reed (1984), van Kooten et al. (1995) and Stainback 

and Alavalapati (2004).  These earlier models assume that the sole adjustment 
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landowners can make in the face of forest fire, or other risks, is to adjust the rotation age.  

This is one important adaptation, but landowners can also work to "fire-proof" their 

forests by thinning.  This section compares the results in this study with those in the 

earlier papers across several of the scenarios. 

The four models compared are (1) The traditional Faustmann (1849) approach, 

which ignores fire risk entirely and which does not accommodate thinning; (2) The 

deterministic version of the model developed above, which sets P=0.00; (3) Reed's 

model; and (4) the stochastic model developed in this paper.  For the implementation of  

Reed's (1984) model, the fire probability is simply added to the interest rate and the 

optimal rotation period and BLV are calculated.  The exact methods and equations used 

to calculate models (1) and (3) are highly cited in the literature.  The solutions5 for stands 

with and without carbon pricing are calculated in a similar manner as models (2) and (4), 

with the exception that there is no option for intermediate management to influence both 

the growth and fire risk (see van Kooten et al., 1995, for example).  The results for 

optimal rotations and BLV are shown for the baseline and scenarios 2, 3, 4, 5, and 6 in 

Table 3.   

The Faustmann and deterministic models, as expected, show no differences across 

the different fire probabilities.  Both show an increase in rotation age and an increase in 

BLV when carbon prices are incorporated.  In the Reed and stochastic models, increasing 

fire probability reduces the rotation age.  Adding carbon prices increases the rotation age 

in all cases.  Of particular interest, however, is the notion that the Reed model suggests 

that land values are negative when fire probabilities are incorporated and there is no 

market for carbon sequestration.  As fire probability increases, BLV becomes more 

                                                 
5 Functional forms and calculations are available upon request. 
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negative.  Under the stochastic model with endogenous fire risk, land values are positive 

in all cases.  In fact, the Reed model would indicate that it is not economically efficient at 

all to invest in timber in the presence of fire risk, unless there is a positive price for 

carbon.   

The results from our stochastic model found that in the presence of fire risk, 

landowners will continue to increase rotation lengths, although they will invest in risk-

reducing thinnings throughout the rotation period.  This result contrasts the findings of 

Stainback and Alavalapati (2004), who suggest that rotations in stands that were at risk of 

total destruction should decrease as the price of carbon increases because carbon storage 

is more effective as permanent storage in durable wood products.  The model presented 

here allows for permanent storage of wood in products as well, but finds that rotations are 

still extended.  Results from our study are more consistent with van Kooten et al., (1995), 

and Murray (2000), who both had deterministic models with no risk of fire.   

 

5.4 Carbon storage 

 The results show that it is feasible to sequester carbon in forests that have fire 

risk. While it is true that higher fire risk reduces the carbon sequestered, with carbon 

prices, regions that face fire risk can still sequester carbon by intensifying management 

and increasing the rotation age.  To show this, the following formula is used to calculate 

the present value of the carbon stock (S0) over 200 years:  

200

0

0

'( ) rt
S c t e dt

−= ∫      (7) 

where c’(t) is the annual change in carbon stock (tons C) in both growing stock, and the 

wood product stock (accounting for turnover).  To account for the carbon turnover in 
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durable wood products, we assume that merchantable sawtimber faces a decay rate of 1% 

per year (Winjum et al., 1998).  Longer rotations extend the period for which carbon is 

accumulating as biomass and also delay the time when it is reintroduced to the 

atmosphere through harvesting and product emissions.  Therefore, S0 is representative of 

the present value of the carbon stock benefits of bare land allocated to rotational forestry.   

Fig. 4 presents the path of the NPV of carbon stock per hectare for the four forest 

fire probabilities analyzed in this paper, assuming that all other base case parameters are 

held constant.  In the baseline ($0/ton C) around 20.4 t C/ha is stored over the life of the 

stand, assuming no fire risk.  With fire risk, sequestration decreases.  This makes sense 

given that stands are likely to undergo a fire if they are not managed.  Harvesting also 

reduces carbon stock by removing the carbon stored on the site.  With carbon prices, 

however, rotations are extended, growth rates for merchantable wood are increased, and 

carbon storage increases.  This is apparent in the graph, as the NPV of carbon stock goes 

increase with the price of carbon before reaching an asymptote of approximately 28 tons 

C/ha for all probabilities of fire.   

 
6.  Conclusion 

 

 

This paper develops an optimal rotation model with endogenous risk for a stand 

with both timber and carbon sequestration benefits in a fire prone region.  Silvicultural 

practices (specifically thinning) that allow risk and growth to be endogenous are 

introduced in the model.  Because of the context of the stochastic optimization model 

developed in the paper, it is not possible to present analytical solutions to the optimal 

rotation problem.  Instead, we use numerical simulations to show how timberland 
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management and optimal rotations adjust when fire risk is present.  Douglas-fir stands in 

the Pacific Northwestern United States are used for our numerical example, as they are 

important as a timber species and, potentially, as a warehouse for carbon sequestration.    

Previous research on the effect of non-timber values on optimal rotation have 

shown mixed results.  Englin et al. (2000) suggest that amenity values would still 

increase the optimal rotation period, but Stainback and Alavalapati (2004) find that 

rotations would decrease as the price of carbon increases.  Their result hinges on the 

inclusion of wood product pools for carbon, which implies that it is better to store carbon 

in wood products than accept the risks of emissions associated with fires.  Neither of 

these studies account for risk reducing management strategies that forest landowners may 

have.  Amacher et al, (2005) developed a model with intermediate fuel treatments and a 

general non-timber amenity, but did not acknowledge its effect on timber yields.  This 

paper improves upon previous research by directly incorporating the endogenous growth 

and stand mortality rates in the case of a forest fire into the decision making process.  It 

also investigates the impacts that carbon prices could have on the optimal management 

regime.   

A number of different scenarios are developed in order to test the effects of 

different assumptions about fire frequency, thinning costs, carbon prices, the pickling of 

carbon in long-lasting wood products, and the discount factor on management intensity 

and the final rotation age.  Both stochastic (P(fire)>0) and deterministic results 

(P(fire)=0) are presented for each of the fourteen scenarios.  Results indicate that a 

probability of fire always results in a lower rotation age relative to the deterministic case 

when there is no risk of fire.  Higher carbon prices have a counter-effect, as the length of 
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rotations increase regardless of the probability of a fire.  This finding contradicts 

Stainback and Alavalapati (2004), who find that rotations would decrease as the price of 

carbon increases if there is a risk of total stand destruction.    

Results also determine that thinnings used to reduce the risk of a stand-destroying 

crown fire increase in frequency as the stand approaches the optimal harvest age, 

especially when carbon prices are high.  The amount of thinnings also increase when 

fixed costs for the fuel treatment is low.  Thus, in regions where there are many 

opportunities for harvesting pulpwood, or biomass material, nearby stands are likely to be 

highly managed, with many thinnings before the final harvest.  On the contrary, if net 

costs of fuel treatments are higher, fewer thinnings occur, and stands are under more risk 

over their lifecycle.   

The Faustmann (1849) and Reed (1984) models are used to check the effect that 

endogenous risk and growth have on the optimal rotation problem.  The Faustmann and 

deterministic models both show an increase in rotation age and an increase in BLV when 

carbon prices are incorporated.  In the Reed and stochastic models, increasing fire 

probability reduces the rotation age.  The Reed solution always indicates a shorter 

rotation relative to the stochastic model with thinnings, as there was no option to reduce 

fire risk with intermediate fuel treatments.  Adding carbon prices increases the rotation 

age in all cases.  Of particular interest, however, is the notion that the Reed model 

suggests that land values are negative when fire probabilities are incorporated, unless 

carbon prices are high.  Under the stochastic model with endogenous fire risk, land values 

are positive in all cases, and shows that it can be economical to invest in fire prone areas 

if landowners exhibit active forest management.   
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According to our findings, enrolling a typical Douglas-fir plantation in a carbon 

sequestration program can provide significant benefits even when carbon prices are low.  

Carbon payments of $50/ton C can increase rotation ages by more than twenty percent 

and the present value stock of carbon by 10 to 25 percent compared to when there is no 

carbon market.  This result was consistent regardless of the probability of fire, as 

landowners account for the risk of timber loss by increasing fuel treatments.  Reduced 

thinning costs for a stand enrolled in a carbon sequestration program can increase carbon 

stocks by more than 25 percent relative to the baseline case as both the expected rotation 

age and sawtimber yields are increased with frequent stand management.   

As the desire to curb global warming continues to rise, the benefits for investing 

in afforestation efforts in the Pacific Northwest and starting new plantations that can be 

used for long-term sequestration are expected to increase (USEPA, 2005).  Having the 

knowledge and ability to mitigate the chance that a valuable stand will be destroyed in 

the fire prone areas of the Western U.S. further enhances the benefits of investing in 

timber plantations and enrolling in carbon sequestration programs.  The overall reduction 

in emissions from forest fires coupled with the increase in carbon sequestration from 

optimal forest management provide benefits to landowners and society as a whole.  

Further research is needed to determine the effects of thinning and carbon prices on the 

optimal management of other stands that might vary in species composition, growth rates, 

or risk of mortality.  This model could also be extended to research the optimal rotation 

problem with other non-timber amenities (riparian benefits, water quality, etc.), other 

risks (hurricanes, invasive species, etc.), and the role of biomass energy markets on large 

fuel removal programs.   
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Fig. 1. Yield functions for Pacific Northwest Douglas-fir growing stock and sawtimber. 
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Fig. 2. Yield functions for Pacific Northwest Douglas-fir sawtimber with and without 
thinning. 
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Fig. 3. Surface and ladder fuel volume and corresponding mortality rate, no thinning. 
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Fig. 4. Net present value of carbon stock (metric tons/ha) over 200 years for varying 
carbon prices and forest fire probabilities. 
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Table 1  

Parameters and values used for Douglas-fir optimal rotation model 
  

Parameter name Symbol Functional form / value Alternative 
value(s) 

Maintenance cost cmaint  10  n/a 

Thinning cost cthin  400  200, 800 

Replanting cost crep  800 n/a 

Salvage cost cfire  1000 n/a 

Discount factor δ 0.95 0.93, 0.97 

Rental rate of carbon r (1-delta)/delta  n/a 

Stumpage price p  60 n/a 

Fraction of stumpage 
price for salvage sales 

ς 0.75 n/a 

Pulp price pbio 30 n/a 

Min. forest stock q0  q0=1*10-23 n/a 

Max. forest stock qmax  1150 n/a 

Optimal fuel level m0  0.05 n/a 

Standing volume q  q + h(m)f(q) n/a 

Annual growth function h(m)f(q) 
0.280

max max

(3 )(1 ) 
m q q

q
m q q

  
+ −  

   

 n/a 
 

Merchantable timber yield qmerch  q2/1300 n/a 

Mortality function g(m) mγ 
γ = 0.93 

Carbon price pc  50 0, 25, 100, 200 

Carbon conversion  α 0.2 n/a 

Permanent storage 
(pickling rate) 

β 0.4 0.00, 1.00 

Probability of natural fire P(θ) 
P(θ =1) =  0.02 
P(θ =0) = 0.98 

0.01, 0.04 

Fire return interval FRI 50 25, 100  

Fuel accumulation 
function 

k(m) 15(1+m^γ) 
γ = 0.93 
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Table 2 
Results for stochastic and deterministic optimal harvest and management model 

 

 Parameters Baseline Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

stumpage price $60 $60 $60 $60 $60 $60 $60

discount factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95

fixed thinning cost $400 $400 $400 $400 $400 $400 $400

price of carbon $/ton $0 $0 $0 $50 $50 $50 $25

fraction perm. storage 0 0 0 0.4 0.4 0.4 0.4

probability of fire 0.02 0.01 0.04 0.01 0.02 0.04 0.02

Solutions (years)

Stochastic Rotation 48 51 44 65 62 58 54

Deterministic Rotation 53 53 53 69 69 69 60

Stochastic Thinnings 31 33 29 26, 41, 54 26, 41, 51 26, 39,49 26, 41

Deterministic Thinnings 35 35 35 27, 43, 57 27, 43, 57 27, 43, 57 28, 46

Stochastic BLV $189 $190 $187 $1,044 $1,040 $933 $382

Deterministic BLV $194 $194 $194 $1,050 $1,050 $1,050 $504

Parameters Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12 Scenario 13 Scenario 14

stumpage price $60 $60 $60 $60 $60 $60 $60

discount factor 0.95 0.95 0.95 0.95 0.95 0.93 0.97

fixed thinning cost $400 $200 $800 $400 $400 $400 $400

price of carbon $/ton $100 $50 $50 $50 $50 $50 $50

fraction perm. storage 0.4 0.4 0.4 0 1 0.4 0.4

probability of fire 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Solutions (years)

Stochastic Rotation 73 61 66 63 61 59 74

Deterministic Rotation 73 65 73 69 67 61 84

Stochastic Thinnings
19, 33, 45, 

56, 65

18, 30, 40, 

47, 54
38, 55 26, 40, 52 26, 39, 51 28, 44

25, 38, 50, 

59, 67

Deterministic Thinnings
19, 35, 48, 61

18, 30, 41, 

50, 58
48 26, 44, 58 26, 42, 55 30, 49

26, 40, 53, 

66, 75

Stochastic BLV $2,302 $1,210 $907 $1,020 $1,141 $410 $2,984

Deterministic BLV $2,310 $1,214 $918 $1,030 $1,149 $415 $3,005
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Table 3 
Comparison of endogenous risk models with Faustmann (1849) and Reed (1984) models 
without thinning option  
 

Scenario Faust. Deter. Reed    Stoch. Faust. Deter. Reed    Stoch.

            Rotation length (years)              Bare land value ($/ha)
Baseline

    Pc=0 51 53 42 48 $180 $194 -$189 $189

    P(fire)=0.02

Scenario 2

    Pc=0 51 53 45 53 $180 $194 -$50 $190

    P(fire)=0.01

Scenario 3 

    Pc=0 51 53 40 44 $180 $194 -$339 $187

    P(fire)=0.04

Scenario 4 

    Pc=$50 64 69 59 65 $1,050 $1,050 $590 $1,044

    P(fire)=0.01

Scenario 5 

    Pc=$50 64 69 55 62 $1,050 $1,050 $352 $1,040

    P(fire)=0.02

Scenario 6 

    Pc=$50 64 69 51 58 $1,050 $1,050 $69 $933

    P(fire)=0.04  
 


