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Abstract 
This paper applies growth optimization with downside protection as a portfolio selection 
technique. The model is based on power-log utility functions that combine portfolio growth 
maximization with the behavioural tenets of prospect theory. We use three assets (a farm return 
index, a stock market index, and a Treasury bond index) to illustrate how effective this technique 
is compared to the standard model of growth maximization. 
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Introduction 

A problem facing many farmers today is the risk-return imbalance often associated with farm 

asset returns. When considered as independent, individual investments, the returns to farm assets 

often prove uncompetitive with the return performances of non-farm assets given the level of risk 

involved (Bjornson and Innes, 1992). The historic variability of returns to farm assets appears set 

to continue as competition in agriculture increasingly occurs on a global scale and traditional 

sources of risk remain. Encouraging farmers to use effective investment and portfolio planning 

methods should improve the risk-return efficiency of farm and total assets as well as force 

rationality upon current capital allocations in the face of competition from alternative 

investments. 

If investors take a long-time view on their capital, maximization of the rate of growth of 

available investment opportunities is an operational criterion for multiperiod portfolio selection. 

Growth maximization means that the investor maximizes the probability of exceeding a certain 

wealth (capital) within a fixed time (Breiman, 1961). Furthermore, the criterion implies decision 

rules that are myopic (Hakansson, 1971). Ways to construct portfolios that maximizes long-term 

growth are well documented (e.g. Hakansson, 1971; Luenberger, 1998; Hunt, 2002). A standard 

approach in multiperiod portfolio theory is to determine a portfolio that maximizes the expected 

utility for a specified utility function (Ingersoll, 1987; Moss, Featherstone and Baker, 1987). 

Results from Luenberger (1993; 1998) shows that it is rational for an investor who considers only 

long-time performance to evaluate the portfolio “based on its logarithm of single-period return 

using only the expected value and the variance of this quantity” (Lunberger, 1988, p. 427) given 

that investment alternatives are independent and identically distributed between periods. The 

latter requirement becomes intriguing when applying standard growth maximization to a portfolio 

selection where farm assets are included. Our data set of farm level data on return to farm assets 
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(ROA) suggests that the return distributions may have significant higher moments and that 

characteristics of the return distributions varies over time. Besides invalidating the log mean-

variance efficiency criterion as suggested by Luenberger (1998), such a situation also invalidates 

the mean-variance model by Markowitz (1952). 

Recently, interest in combining long-term portfolio growth maximization with the 

behavioral implications of prospect theory has been developed (Kane, 2006). Tversky and 

Kahneman (1992) defined an S-shaped utility function characterized by reference dependence 

and loss, as well as, risk aversion. An additional characteristic of the S-shaped utility function is 

that of diminishing sensitivity to both gains and losses. Kane (2006) introduced growth 

optimization with downside protection as a portfolio selection technique based on power-log 

utility functions which is an interesting extension of Tversky and Kahneman’s approach if the 

objective of the investor is to construct portfolios that reflect both desire for high growth over 

long term and monotonic aversion to losses. Kane’s model treats portfolio gains and losses 

asymmetrically. With positive returns the model is identical to the log-optimal growth portfolio 

but with negative returns, a power utility function is proposed such that lower (more negative 

power) values of downside protection represent greater loss aversion, while the utility value of 

gains remains unchanged. The myopic property of both the log and power utility function allows 

the optimal portfolio selection problem to be solved as a one-period problem. 

Maximizing long-term portfolio growth is a reasonable goal for agricultural investors 

given the fixity of major farm assets. Considering the importance of expected portfolio growth to 

farm operators, it is surprising that so few examples of studies that focus on the empirical 

strategies to maximize farm household portfolio growth exist. This study aims to redress this 

need by applying the growth optimization with downside protection technique to investigate the 

possibilities of obtaining risk-return efficiency benefits and gains through holding more optimal 
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combinations of farm and financial assets (common stocks and long-term government bonds). It 

should be noted that we derive optimal portfolios imposing a no-short sale constraint. Improving 

and maintaining farm asset return performances may consume the majority of the farmer’s capital 

budget. This leaves limited capital for acquiring the non-farm assets. Moreover, we are not aware 

of that farmers engage in short-selling assets to a considerable extent. The model in this study 

represents a way of constructing portfolios that reflect both desire for high growth over long term 

and aversion to losses. No other studies have been found that have looked at the optimal 

combination of assets using real data for in a dynamic setting including the behavioral tenets of 

prospect theory. The model applied is solved by simulation under optimization in order to 

recognize higher-order moments of the return distribution in the portfolio selection.  

Our main results are: (a) the farm asset is not competitive in the growth optimal portfolio 

without downside protection; (b) if downside protection is introduced as an objective the situation 

changes so that the farm asset becomes more competitive; and (c) the classification of farms 

according returns has a significant impact on the portfolio returns as well as on the degree of 

competitiveness of the farm asset in relation to financial assets.  

 

Methodology 

The class of power utility functions ( ) ( )XXU γγ1=  with 1≤γ , where γ  denotes the degree of 

power is flexible. It includes the logarithmic utility function since 

( ){ } XX ln11lim 0 =−→ γγ γ
γ ; and it includes the risk neutral linear utility  for ( ) XXU =

1=γ  (Luenberger, 1998). Selecting the degree of power to zero for portfolio selection purposes 

will therefore result in the growth optimal portfolio. The power utility function with a more 

negative value implies an increasingly conservative behavior. Suppose that 2−=γ , and that an 
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investor has two opportunities: (i) capital will double with certainty, and (ii) with probability 0.5 

capital remains constant and with probability 0.5 capital is multiplied by 10 Million. Since -

0.5*2-2 > -0.5*0.5 - 0.5*0.5*(10*106)-2, an investor will prefer (i). Similarily, if 20−=γ  and 

assuming the same possible outcomes, since – (1/20)*2-2 > -0.5*(1/20) - 0.5*(1/20)*(10*106)-2, 

an investor will prefer (i) but now the utility difference in favor of (i) is larger. The power utility 

function thus has higher degrees of risk aversion (related to positive augments) for more negative 

powers. On the other hand, a more negative power implies greater aversion to losses. 

Following the work by Kane (2006) growth optimization with downside protection is 

based on a two-segment utility function. The utility of gains is modeled by a log utility function 

while the utility of losses is modeled with a power utility function (with degree of power less than 

or equal to zero). The model is 
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≥+=
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where is portfolio return in state s, r s γ  is the degree of power, less than or equal to zero,  is 

portfolio weight of asset i in the portfolio, and  is return on asset i in state s. It should be 

noted that these utility functions are continuously differentiable and that the power utility 

function by a transformation have a value of zero when the return is zero. Applying this model in 

portfolio selection will allow investors to take benefit from growth maximization if returns turn 

out positive since the utility function for gains is always the log utility function, while it also 

wi

r si,
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allow for a shield against adverse outcomes through the specification of degree of downside 

protection because the power utility function then penalizes losses. 

Figure 1 displays an example of log and power utility functions (degrees of power set at 

-2 and -20, respectively). The growth optimization with downside protection resembles the 

behavioral tenets of prospect theory, except for that there is no diminishing loss aversion. Instead, 

lower values of the degree of power in the power utility function represent greater loss aversion, 

i.e. an increasing sensitivity to losses as the size of the losses increases. 
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Figure 1. Log and power utility functions. Power utility functions illustrated with degrees of 
power equal to -2 and -20, respectively. 
 
 

Data 

Returns from three investment alternatives are considered in this study; farm assets, common 

stocks, and government bonds. Annual data from 1969 through 2001 for common stocks and 
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government bonds are from www.economagic.com. Data series extending further than 2001 was 

unavailable. Farm data are from the Southwestern Minnesota Farm Business Management 

Association records. The time series initially collected covers the period 1984 through 2001 only 

sole proprietors are included. Approximately 220 farms in 12-15 Minnesota counties annually 

submit firm information with which the data has been developed. The farms from which data was 

derived are primarily involved in soybean, corn, hogs, cattle, milk, and combinations of these and 

other activities of lesser importance. 

The rates of return to farm assets are the return on farm assets divided with average farm 

investment, where the return to farm assets equals the net of net farm income plus farm interest 

minus value of operator’s labor and management, and average farm investment equals the 

average of beginning and ending total farm assets. Farm assets are set at fair market values. Data 

are available for each individual farm operation as from 1993. 

Common stock returns are based upon the Standard and Poor’s Composite Index, 

including 500 of the largest companies in the U.S. Capital appreciation and dividends are 

included in the returns. The bond return includes coupon payments (interest) and appreciation 

and is based upon the 10-year-to-maturity U.S. Government Index. 

 

Simulation 

For each year included in the analysis the individual farm return data was used to fit a probability 

distribution by the chi-square method using the @Risk software (Palisade). Distribution fitting 

was performed for two subsets of the farm assets for subsequent use in the simulation process. 

First, the return distributions were fitted for all farms. Secondly, return distributions were fitted 

for farms with above median returns. It is noted that the return distribution for the latter subset 

exhibit significant higher-order moments. Table 1 displays the characteristics of the fitted 

 6

http://www.economagic.com/


probability distributions. Furthermore, an ARIMA analysis did not indicated any deviations from 

the normality assumptions for returns on common stocks and government bonds. Table 2 

summarizes the mean and standard deviations for the returns on common stocks and government 

bonds. For each period k the mean and standard deviation is calculated based on the data from the 

n previous periods using 1970 as the first date of observation. 

 
Table 1. Probability distributions fitted to farm asset returns. Southwestern Minnesota 
Farm Business records 1993 through 2001 
 
Year Distributions (All farms) Distributions (Farms with above median 

returns) 
1993 Logistic(α =0.036044; β = 0.046258) Pearson5(α =3.2599; β = 0.17703) 
1994 Logistic(α =0.037992; β = 0.036252) Gamma(α =1.0643; β = 0.041451;shift 

=0.039475 
1995 Logistic(α =0.064561; β = 0.038645) InvGauss(μ =0.055224;λ = 0.035245; 

shift = 0.060819) 
1996 LogLogistic(γ = -0.24251; β = 

0.3103;α =8.0095) 
Pearson5(α =1.8081; β = 0.074922; 
shift = 0.05274) 

1997 Logistic(α =0.069506; β = 0.039147) Expon( β = 0.056332; shift = 0.06665) 
1998 Logistic(α =0.029373; β = 0.037082) Expon( β = 0.045449; shift = 0.031066) 
1999 Logistic(α =0.053059; β = 0.032380) ExtValue(a = 0.078696; 0.024474) 
2000 LogLogistic(γ = -0.71779; β = 

0.79027;α =24.511) 
InvGauss(μ =0.062738;λ = 0.093039; 
shift = 0.058905) 

2001 Logistic(α =0.044565; β = 0.032021) Expon( β = 0.042197; shift = 0.045005) 
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Table 2. Continous time mean return and associated standard deviations (in parenthesis) of 
common stocks (Standard and Poor’s Composite Total Return Index and the 10-year-to-
maturity Total Return Index for U.S. Government Bonds) 
Year Common stocks Government bonds 
1993 0.108517 

(0.152173) 
0.093987 
(0.105983) 

1994 0.107996 
(0.14899) 

0.089487 
(0.105973) 

1995 0.104201 
(0.147159) 

0.091393 
(0.104251) 

1996 0.112463 
(0.150098) 

0.088688 
(0.103117) 

1997 0.115953 
(0.148363) 

0.088339 
(0.101205) 

1998 0.122094 
(0.149144) 

0.09022 
(0.099861) 

1999 0.126552 
(0.148436) 

0.088641 
(0.098479) 

2000 0.128699 
(0.146398) 

0.086122 
(0.09777) 

2001 0.121468 
(0.149364) 

0.087177 
(0.096353) 

 
 

To simulate the joint return distribution for the three assets, we first tested if the index 

series are independently distributed. If investment returns are correlated across time, there is a 

need of adjusting the subsequent analysis to take into account the contemporaneous correlations. 

A system of vector-autoregressive (VAR) regressions was estimated. An equation for each asset’s 

rate of return was estimated as a function of all assets previous year’s returns using ordinary least 

squares, following Moss, Featherstone and Baker, 1987. The residuals from the VAR systems 

were then used to estimate contemporaneous covariance matrices. The data do not reject the null 

hypothesis that the rates of returns for the three assets are uncorrelated.  

We assume that the decision problem is, in the beginning of each period, to successively 

rebalance the three investment opportunities with a rebalancing period of one year (by data 

availability). In addition, a short-selling constraint is imposed to make the strategy more realistic. 

At any period k, the following steps are undertaken: 
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1. The mean and standard deviation of the continuous return data for common stocks and 

government bonds on the previous n periods (years) are employed to fit a normal 

distribution for each asset type, respectively. 

2. Expectations for farm asset returns in period k are based on the probability distribution 

corresponding to period k-1. 

3. Probability distributions from steps 1 and 2 are used to maximize the mean of the 

simulated distribution corresponding to Eq.(1) by using the RiskOptimzer software 

(Palisade). A budget solving method is applied to ensure that the aggregated portfolio 

weights sums to one, and a non-negativity constraint is imposed on each asset type to ease 

interpretation. 1,000 simulations with 200 iterations in each simulation are performed for 

each choice of downside power. Each simulation uses the same random number seed. 

4. The time-frame is moved forward one year. 

Steps 1 to 5 are repeated until the data set is exhausted. 

 

Results 

Table 3 displays the optimal portfolios constructed using power-log utility functions for 

downside powers of 0 to -20 for each year, respectively. For each year, two subsets of optimal 

portfolios are simulated. The first part, denoted ‘All’, refers to the case where farm asset returns 

are represented by the return distribution for all farm operations. The second subset, denoted 

‘Best 50%’, refers to the case where the farm asset return distribution is derived from farm 

operation with above median returns. 

The first notable result is associated with the optimal portfolios in the first row of each 

year represented in Table 3. These portfolios have been constructed with a downside power of 0, 

which makes them to represent the growth optimal portfolios. These portfolios are, more or less 
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exclusively, based on common stocks. These portfolios are very risky with a wide range of 

possible returns (given by the difference between the maximum return and the minimum return). 

Second, introducing downside protection by increasing the negative power substantially 

alters the portfolio composition. For the subset of optimal portfolios using all available farm asset 

returns it is observed that the farm asset is the most competitive for lower (less negative) degrees 

of downside power. It is then observed that the farm asset portfolio weight decreases as the 

downside power becomes stronger (more negative). However, for the extreme downside power of 

-20, the farm asset weight is then again higher. For the subset of portfolios that is based on the 

above median farm asset returns, the situation is similar. The farm asset is then, however, much 

more strongly competitive across the included range of downside powers. 

Third, optimal portfolios constructed with downside protection reveals substantially 

different return characteristics compared to the growth optimal portfolios. Typically, the expected 

return is 2 to 3 percentage units less for a portfolio with downside protection versus a growth 

optimal portfolio but the standard deviation is, more or less, only one-half, or even lower for the 

subset of portfolios based on above median farm returns. In addition, the range of possible 

outcomes also varies substantially between growth optimal portfolios and portfolios with 

downside protection. The latter portfolios reveal narrower return ranges. This finding is 

emphasized for the subset of portfolios based on the above median farm returns. Note also that 

the minimum return for portfolios constructed using subsets of farm asset returns above median is 

very different from the minimum return from portfolios based on all farm asset returns.  
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Table 3. Return and portfolio composition for optimal portfolios 
 
  Return Weights 

1993 
downside 
power mean 

standard 
deviation min max 

farm 
weight 

stock 
weight 

bond 
weight 

All 0 0.108517 0.154686 -0.30716 0.556132 1.61E-06 0.999994 3.9E-06
 -0.1 0.083471 0.068601 -0.09744 0.245527 0.246666 0.259922 0.493412
 -0.5 0.08675 0.073919 -0.11114 0.277151 0.179991 0.219706 0.600303
 -1 0.093984 0.085835 -0.14929 0.328423 0.050654 0.201763 0.747583
 -2 0.100775 0.09124 -0.13393 0.302312 0.000488 0.46914 0.530371
 -4 0.100844 0.091622 -0.1336 0.300765 0.001214 0.476752 0.522035
 -20 0.09595 0.083202 -0.1209 0.291377 0.064432 0.392045 0.543524
         
  Return Weights 

Best 50% 
downside 
power mean 

standard 
deviation min max 

farm 
weight 

stock 
weight 

bond 
weight 

 0 0.108516 0.15468 -0.30714 0.556113 1.58E-05 0.99996 2.42E-05
 -0.5 0.083704 0.05207 0.00016 0.362741 0.806055 0.160548 0.033398
 -2 0.083693 0.049824 0.000399 0.346545 0.776824 0.128306 0.09487
 -20 0.092429 0.061809 -0.05791 0.263585 0.40898 0.333341 0.25768
         
  Return Weights 

1994 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.107996 0.150193 -0.27697 0.61779 2.03E-07 1 6.73E-08
 -0.1 0.07732 0.062274 -0.08907 0.222951 0.319562 0.231739 0.448699
 -0.5 0.079479 0.065638 -0.09126 0.241648 0.273289 0.21962 0.507091
 -1 0.075951 0.060679 -0.08815 0.213858 0.345555 0.230049 0.424396
 -2 0.098178 0.090115 -0.13437 0.298712 4.68E-05 0.469665 0.530289
 -4 0.098109 0.090008 -0.13413 0.298408 0.00116 0.469078 0.529762
 -20 0.090864 0.078814 -0.11045 0.268976 0.115943 0.396965 0.487091
         
  Return Weights 

Best 50% 
downside 
power mean 

standard 
deviation min max farm  stock bond 

 0 0.107996 0.149514 -0.29898 0.479874 4.73E-07 0.999992 7.63E-06
 -0.5 0.088905 0.043826 0.000981 0.254585 0.775848 0.21569 0.008463
 -2 0.088855 0.042831 0.000159 0.250128 0.761019 0.208256 0.030725
 -20 0.091108 0.050655 -0.02113 0.246541 0.655932 0.296497 0.047572
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Table 3 (continued). Return and portfolio composition for optimal portfolios 
 
  Return Weights 

1995 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.104201 0.149587 -0.29777 0.537061 8.11E-06 0.999982 9.6E-06
 -0.1 0.079521 0.054287 -0.06866 0.215161 0.553984 0.233648 0.212367
 -0.5 0.08434 0.058698 -0.07612 0.198369 0.391375 0.269225 0.339399
 -1 0.084488 0.058928 -0.07626 0.199282 0.387204 0.272047 0.340749
 -2 0.083987 0.058271 -0.07523 0.194853 0.406355 0.273092 0.320553
 -4 0.087952 0.066455 -0.08433 0.25036 0.24625 0.247209 0.506541
 -20 0.089111 0.067779 -0.08102 0.230846 0.252517 0.350855 0.396629
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best 50% 0 0.104201 0.147676 -0.29777 0.471508 1.3E-05 0.999987 2.99E-07
 -0.5 0.116042 0.065054 0.06469 0.459986 0.999969 9.73E-07 3.05E-05
 -2 0.116043 0.065056 0.06469 0.45999 0.99999 9.28E-06 1.1E-06
 -20 0.11604 0.065056 0.06469 0.45999 0.99999 3.5E-06 3.46E-06
         
  Return Weights 

1996 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.11201 0.149619 -0.29043 0.54292 0.00014 0.98085 0.01901
 -0.1 0.08852 0.058559 -0.05452 0.26921 0.54103 0.28405 0.17492
 -0.5 0.08767 0.056562 -0.05591 0.26115 0.53906 0.24734 0.21359
 -1 0.09009 0.060065 -0.05977 0.25086 0.46072 0.30711 0.23216
 -2 0.08858 0.058716 -0.05445 0.26965 0.54082 0.28649 0.17268
 -4 0.08872 0.058949 -0.05459 0.26942 0.53722 0.29046 0.17233
 -20 0.09291 0.066735 -0.07194 0.24593 0.38299 0.38358 0.23342
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best 50% 0 0.11201 0.149314 -0.28958 0.54190 0.00089 0.97888 0.02023
 -0.5 0.14545 0.121364 0.06327 0.46284 0.99990 7.67E-05 2.23E-05
 -2 0.14545 0.121376 0.06326 0.46291 0.99999 4.77E-06 1.65E-06
 -20 0.14545 0.121375 0.06327 0.46290 0.99999 6.96E-06 5.85E-06
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Table 3 (continued). Return and portfolio composition for optimal portfolios 
 
  Return Weights 

1997 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.115953 0.150813 -0.28931 0.552362 2.93E06 0.999997 1.4E-07
 -0.1 0.088012 0.058077 -0.06706 0.212467 0.45008 0.295129 0.25479
 -0.5 0.08801 0.058077 -0.06706 0.21247 0.45008 0.29513 0.25479
 -1 0.08806 0.058037 -0.06748 0.21062 0.44389 0.29255 0.26355
 -2 0.08681 0.056601 -0.06594 0.21578 0.48493 0.27524 0.23983
 -4 0.08781 0.058034 -0.06619 0.21611 0.46471 0.29772 0.23758
 -20 0.09546 0.073213 -0.08411 0.26670 0.27253 0.44388 0.28359
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best50% 0 0.11595 0.150813 -0.28931 0.55236 3.24E06 0.99999 1.86E06
 -0.5 0.12298 0.055017 0.066917 0.35346 0.99999 8.8E-06 6.12E07
 -2 0.12298 0.055016 0.06692 0.35346 0.99997 3.22E-05 2.04E07
 -20 0.12298 0.055017 0.06692 0.35346 0.99998 1.66E-05 3.89E07
         
  Return Weights 

1998 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.12209 0.151607 -0.28531 0.56080 2.7E-08 1 1E-07
 -0.1 0.07879 0.060829 -0.08402 0.21948 0.30988 0.23298 0.45714
 -0.5 0.07980 0.061839 -0.08432 0.22571 0.29269 0.23191 0.4754
 -1 0.10229 0.084216 -0.12282 0.30921 0.00024 0.37919 0.62057
 -2 0.10226 0.084198 -0.12288 0.30941 8.72E05 0.37805 0.62186
 -4 0.10234 0.084259 -0.12276 0.30897 0.00027 0.38088 0.61885
 -20 0.10336 0.085336 -0.1213 0.30341 0.00228 0.41659 0.58113
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best50% 0 0.12209 0.151607 -0.28531 0.56080 8.85E07 0.99999 7.23E10
 -0.5 0.08555 0.044195 0.00123 0.26287 0.79879 0.19715 0.00406
 -2 0.08553 0.043912 0.00116 0.26175 0.79554 0.19494 0.00952
 -20 0.10046 0.073231 -0.07304 0.28456 0.33138 0.46387 0.20475
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Table 3 (continued). Return and portfolio composition for optimal portfolios 
 
  Return Weights 

1999 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.126552 0.148959 -0.27891 0.49705 3.66E07 0.999997 2.15E06
 -0.1 0.08346 0.04906 -0.04851 0.198469 0.44459 0.28065 0.27475
 -0.5 0.08076 0.046984 -0.04418 0.19196 0.50372 0.26479 0.23149
 -1 0.08235 0.048386 -0.04606 0.19866 0.47629 0.28100 0.24270
 -2 0.09949 0.070886 -0.07258 0.24704 0.11215 0.39137 0.49647
 -4 0.10489 0.080225 -0.0834 0.26505 3.44E05 0.42856 0.57140
 -20 0.10492 0.080248 -0.08361 0.26535 0.00062 0.43001 0.56937
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best50% 0 0.12655 0.150888 -0.27892 0.56317 8.61E09 1 8.76E08
 -0.5 0.10289 0.04777 0.001023 0.24072 0.69949 0.29862 0.00188
 -2 0.10278 0.047458 0.00022 0.23862 0.69108 0.29679 0.01212

 -20 0.10778 0.067226 -0.05034 0.30753 0.55646 0.44353 
7.79E-

06
         
  Return Weights 

2000 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.12869 0.148816 -0.2712 0.55933 1.7E-10 1 1.49E10
 -0.1 0.09350 0.055677 -0.03992 0.23257 0.54128 0.31923 0.13949
 -0.5 0.09341 0.05664 -0.03699 0.24187 0.57912 0.32724 0.09363
 -1 0.09363 0.056193 -0.03901 0.23565 0.55075 0.32467 0.12458
 -2 0.09370 0.055353 -0.04318 0.22371 0.50299 0.31366 0.18335
 -4 0.09370 0.055567 -0.0419 0.22735 0.51709 0.31741 0.16550
 -20 0.10416 0.077091 -0.07934 0.30350 0.28367 0.5 0.21633
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best50% 0 0.12869 0.148816 -0.2712 0.55933 3.64E08 1 6.71E09
 -0.5 0.12415 0.059477 0.00211 0.32089 0.64346 0.35653 1.22E06
 -2 0.12418 0.059782 0.00144 0.32067 0.64049 0.35949 8.49E06
 -20 0.12420 0.060156 0.00061 0.32040 0.63691 0.36309 8.31E08
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Table 3 (continued). Return and portfolio composition for optimal portfolios 
 
         
  Return Weights 

2001 
downside 
power mean 

standard 
deviation min max farm  stock bond 

All 0 0.12147 0.151831 -0.28653 0.56082 3.1E-07 0.99999 2.44E07
 -0.1 0.07611 0.052376 -0.0664 0.17874 0.46019 0.24919 0.29062
 -0.5 0.07611 0.052456 -0.06614 0.18004 0.46337 0.25304 0.28359
 -1 0.07451 0.050957 -0.06634 0.17682 0.47941 0.22642 0.29417
 -2 0.09912 0.081232 -0.11747 0.29814 0.01468 0.36659 0.61873
 -4 0.09982 0.082294 -0.11998 0.30161 0.00207 0.37141 0.62652
 -20 0.09954 0.081285 -0.10851 0.27920 0.05120 0.42424 0.52455
         
  Return Weights 

 
downside 
power mean 

standard 
deviation min max farm  stock bond 

Best50% 0 0.12148 0.150073 -0.22625 0.56089 2.36E06 0.99999 4.38E06
 -0.5 0.09725 0.049757 0.00112 0.26233 0.70643 0.29331 0.00016
 -2 0.09707 0.049097 0.00073 0.26108 0.70556 0.28821 0.00623
 -20 0.10185 0.065486 -0.02761 0.29333 0.57321 0.42671 7.84E06
 
 
Conclusion and discussion 

Many developed countries consistently expend a tremendous amount of resources in assisting 

farmers with the reduction and management of risk to enhance of farm incomes. An underlying 

goal of such policies is to improve farm asset risk-return imbalances. However, using policy 

mechanisms to stabilize and enhance farm asset returns has met with mixed results and often 

times proved counter productive (Clark, Klein, and Tompson, 1993; Kalaitzandonakes, 1994; 

Featherstone, Moss, Baker, and Preckel, 1988). In fact, the existence of such policies often acts as 

an additional source of uncertainty and risk as farmers are not guaranteed the continuance or 

consistency of the existing policies (Lagerkvist, 2005). Encouraging alternative means of 

decreasing the volatility of farm cash flows and improving the performance of farmer's total 

assets could be beneficial to all concerned parties. 

This paper employs an optimal growth portfolio model with downside protection and 

simulation under optimization approach to investigate the possibilities of obtaining risk-return 
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efficiency benefits and gains through holding more optimal combinations of farm and financial 

assets. Our main results are: (a) the farm asset is not competitive in the growth optimal portfolio 

without downside protection; (b) if downside protection is introduced as an objective the situation 

changes so that the farm asset becomes more competitive; and (c) the classification of farms 

according returns has a significant impact on the portfolio returns as well as on the degree of 

competitiveness of the farm asset in relation to financial assets. The farm asset is highly 

competitive in the downside protection portfolios when data is taken from farms with return on 

assets above median. Substantial risk reduction is obtained from portfolios with downside 

protection. 

For many farms, improving and maintaining farm asset return performances at 

competitive levels may consume the majority of the farmer’s capital budget. This leaves limited 

capital for acquiring the non-farm assets that optimal portfolio solutions suggest are in order. 

However, this does not dismiss the fact that risk-reduction benefits may be realized for all classes 

of farms by incorporating other assets into the farmers’ total portfolios.  

Classes of farms that exhibited strength in the portfolio setting were found to perform 

well as independent investments. Therefore, the results in this respect may serve to underscore 

the benefits of holding certain sizes and types of farm operations or assets. There would, 

therefore, seem to be incentives for farmers to expand the farm operation in order to achieve the 

scale economies and accompanying return performances that farm assets must yield to effectively 

compete with alternative assets.  

Many farmers will continue to appear to engage in irrational investments. These farmers 

may gain from securing even limited diversification measures, where such optimal strategies are 

developed by adjusting the model, model inputs, and constraint set to fit the individual farm and 

decision maker. 
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The poor performance of farm assets in the analysis may not be an accurate reflection of 

the risk-return efficiency position of these farms. Farms generally take the form of family farm 

economic units, where on small farms off-farm labor income can often supercede income from 

farm assets in importance. The potential interdependence between off-farm income cash flows 

and farm-based cash flows may significantly improve the risk-return efficiency stance of many 

farms and should be recognized in drawing conclusions from the present study.  

Finally, to provide a perspective on the results developed here future work should be 

directed to a comparison of our results with optimal portfolios using mean-variance analysis to 

compare our results with matched expected returns. We also would like to exert effort in 

comparing our results to previous notable studies (e.g. Moss, Featherstone, and Baker, 1986). 

Further distinguishing the classification of farms based upon financial leverage levels, or 

type of farm specialization, for example may provide interesting results. Highly leveraged farms 

should display more variable return cash flows and therefore prove less competitive in the 

portfolio environment. Classifying farms in this way will allow us to analyze the impact of 

capital structure on farm asset risk-return efficiency. 
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