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INTRODUCTION 
 
The ElNino Southern Oscillation (ENSO) phases have distinct impacts on the climate in the 
Southeastern United States. It is reasonable to expect that they also affect crop yields (Hansen, 
Hodges, and Jones). If this is the case, it is important to know whether the effects are significant 
enough to be accommodated in agricultural decision making. 

The ElNino Southern Oscillation (ENSO) is an atmospheric phenomenon observed with 
irregular periodicity which is believed to affect global climate. The phases are determined by 
warming or cooling of the ocean surface in the western Pacific ocean, which changes the trade 
wind patterns and, subsequently, global weather for the duration of the phase and beyond (see 
http://meted.ucar.edu/climate/enso/index.htm for the basics of the process). The effects of ENSO 
phases on climate in different geographical regions are complex and are not discussed here. 
In the Southeastern United States, more or less distinct ENSO dependent climate patterns have 
been observed. In addition, the likelihood of a severe freeze is much greater during a neutral 
phase than during either an El Nino or a La Nina event. The table below provides a summary of 
the effects on temperature and precipitation across the Southeast. 
 

El Nino/La Nina Impacts Across the Southeast U.S.  
Seasons  Phase  Region  

Oct-Dec Jan-Mar Apr-Jun Jul-Sep 

Peninsular Florida Wet & cool Very wet & cool Slightly 
dry 

Slightly dry to 
no impact 

Tri-State Region Wet Wet Slightly 
wet No impact 

Western Florida 
Panhandle No impact Wet Slightly 

dry No impact 
El Nino 

Central and North 
Ala. & Ga. No impact No impact No 

impact Slightly dry 

Peninsular Florida Dry & slightly 
warm Very dry & warm Slightly 

wet Slightly cool 

Tri-State Region Slighly dry Dry Dry No impact 
Western Florida 

Panhandle Slightly dry Dry Dry No impact 
La 
Nina 

Central and North 
Ala. & Ga. Dry Dry in the south, 

wet in NW Ala. 
No 

impact Wet in NW Ala. 

Neutral All Regions No impact No impact No 
impact No impact 

Source: http://www.coastalclimate.org/climate/seimpacts.php 
 
In this paper, we report results of non-parametric analysis of peanut, corn, and cotton yield 

distributions by the ENSO phases in the Southwestern Georgia, Northwestern Florida, and 
Southern and Northwestern Alabama. For comparison and validation purposes, historical yield 
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data are complemented by a set of simulated peanut yields generated using daily weather, soil, 
and management practices data for Colquitt county, Georgia.  

The focus of the analysis is on establishing ENSO-dependent differences in the yield 
distributions and on evaluating their implications for area yield crop insurance the expected 
losses for which are calculated using county average yield series. The hypothesis is that different 
climate conditions during ENSO cycles translate into different yield distributions, which is 
justified by the observed South-Eastern climate differences and previous research showing the 
importance ENSO cycles for optimal planting dates.  

For estimating yield distributions, we use the non-parametric technique of kernel density 
estimation as it appears more suited for the purpose than the parametric methods in that it 
accommodates skewness, bi-modality, and other peculiarities observed in crop yield densities.  

The results of kernel density estimates of historical county yield data show consistent 
patterns in actuarially fair insurance rate schedules grouped by ENSO phases and geographical 
areas. In particular, corn yield insurance premiums appear to be the most dependent on the 
ENSO phases and are the highest, regardless of coverage, during ElNino and the lowest during 
LaNina. Cotton premiums are the highest for ElNino (except for North-Central AL) and the 
lowest during LaNina. Peanut premiums are higher during Neutral years and lower during 
LaNina (except of Southern Alabama). The results appear to be robust to the transformations 
used to make the yield series stationary. While these dependencies do not necessarily correspond 
to the precipitation and solar radiation characteristics of the corresponding ENSO cycles in the 
Southeastern US, drawing direct analogies with yield variability is premature as many less 
documented factors, like the spacing of sunny and rainy days, may be just as important.  

The validity of these findings is reinforced by comparison of the empirical and simulated 
peanut yield distributions. The comparisons show that the distributions are similar in many ways 
and that the dissimilarities can be explained by known factors. These findings should be more 
relevant for the area yield insurance as opposed to the APH arrangements as the yield data used 
in designing contracts for the former reflects the systemic risk more influenced by climate than 
by the farm-level, basis risk factors accommodated in the APH plans.     

The rest of the paper is structured as follows. The Methodology section explains the density 
estimation techniques and insurance rate calculation. The Simulated Yields section describes the 
peanut yield simulation process and the resulting yield distribution by ENSO phases. The 
Historical County Yields section describes methodologies used to make the series stationary and 
compares the simulated and empirical distributions. The Insurance Rates section presents the 
results of area yield insurance premium calculations for corn, cotton, and peanuts in Georgia, 
Florida, and Alabama.  
 
 
Methodology 
 

Non-Parametric Density Estimation 
  Conventional parametric approaches to insurance analysis assume known functional 
forms for yield distributions. The most commonly assumed density is normal, which is justified 
by the Central Limit Theorem. However, empirical yield data do not always conform to 
theoretical priors due to a number of physical and biological attributes of plant growth. In 
particular, bi-modality and skewness of yield distributions are often observed. Non-parametric 
density estimation accommodates these and other distributional idiosyncrasies. 
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The simplest way to estimate non-parametric density is to use a histogram. This, however, 
poses the problem of discontinuity and requires large samples. Smoothing the density between 
observations utilizes a kernel function, an estimator of local density around a datum. Each 
observation is surrounded by a symmetric weighting (probability density) function K satisfying: 
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where h is the bandwidth parameter assigning the weight to neighboring observations (the 
amount of smoothing), usually chosen on the basis of minimizing the mean integrated square 
error.  

The local density estimates overlap (to the degree of the kernel width), so that each kernel 
density depends not only on its own but also adjacent observations. The resulting density 
estimation is continuous and is a more adequate representation of true yield distributions than 
parametric densities. Kernel density estimates can also be compared to other (non)parametric 
densities using Kolmogorov-Smirnov tests. There is a range of possible kernel functions and 
kernel widths, the latter arguably being a more important specification. For this analysis, we 
chose Gaussian kernels as more commonly used in economics and the kernel width according to 
the Silverman’s “rule of thumb” as optimal for the normal distribution family. However, 
different specifications did not dramatically change the results. For a more thorough discussion 
of kernel density estimation, see Li and Racine. 

 
Non-Stationarity of the Yield Series 

In order to properly single out the impact of the ENSO phases on yield distributions, it is 
necessary to remove trends, autoregressive effects, heteroscedasticity, structural breaks, and 
other systematic influences affecting the distributions. Many of these are expected in the yield 
time series mainly due to technological changes (trends and heteroscedasticity) and 
drought/moisture effect persistence (auto-regression and moving average). A variety of tests and 
methodologies are available for dealing with these problems, the results of which are reported in 
the Non-Stationarity and Detrending sub-section of the paper. 

 
Crop Area Yield Insurance 
Area yield, or group risk (GRP), insurance was chosen for the analysis because, unlike 

individual (farm-level) crop insurance based on actual production history, area yield insurance 
contracts are based on yield forecasts. Besides, county yields comprise often offsetting farm 
level influences and thus are more likely to depend on climate variability as a universal impact. 
The major disadvantage of the county yield data is that it does not distinguish between irrigated 
and non-irrigated yields. 

A basic GRP contract insures a certain percentage of the expected yield (the coverage 
usually ranging from 70% to 95%), the indemnity being equal to the difference between the 
covered percentage of the expected yield and the actual below coverage yield. The expected loss 
for the insurer is thus a probability weighted sum of indemnities for all possible yield 
realizations:  
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where Y  is the expected yield and f(Y) is the yield distribution density. The actuarially fair 
premium, i.e., the risk-neutral insurer’s break-even point, is a ratio of the expected loss and 

coverageY * . While the actual rates are different because of the loading factors and subsidies, 
the fair premium is at least a component and provides a good ceteris paribus reference point. 
Actuarial fairness is also important for the risk-averse producer (the insured) as it corresponds to 
a competitive industry outcome and is thus welfare improving.  
 Obviously, the accuracy of insurance premiums depends on the area below the yield’s pdf 
and to the left of the coverage. Thus, the exact shape of the underlying distribution and/or the 
ability of its estimate to accommodate skewness, bi-modality, and other idiosyncrasies observed 
in crop yield data are important for establishing actuarial fairness and contract efficiency. The 
figure below illustrates: a right skewed distribution with the same mean may result in a smaller 
expected loss than the one for an otherwise identical but symmetric density.  
 
Figure: expected losses and the density shape 
 
a) symmetric pdf    b) right skewed pdf 
 
 
 
 
 
 
 
 
 
 

In the analysis, we use the trapezoid rule for integrating the empirically estimated pdf’s. 
For a sufficiently large number of grid points generated by kernel density estimation, it provides 
accurate enough estimates.  
 
 
Simulated Yield Data 
 

Crop Simulation Methodology 
The simulated peanut yield dataset was generated using the Cropping System Model 

(CSM)-CROPGRO-Peanut model (Boote, Jones, and Hoogenboom, 1998; Jones et al., 2003) and 
made available to us courtesy of Joel Paz (UGA) and Clyde Fraisse (UF). The CSM-CROPGRO-
Peanut model, which is part of Decision Support System for Agrotechnology Transfer (DSSAT) 
Version 4.0 (Hoogenboom et al., 2004), is a process-based model that simulates crop growth and 
development. Long-term historical weather data (1900-2004) were obtained from the National 
Weather Service (NWS) Cooperative Observer Program (COOP) network and compiled by the 
Center for Oceanic-Atmospheric Prediction Studies (COAPS), through the South-Eastern 
Climate Consortium (SECC). The weather variables include daily maximum and minimum 

E[y] yield

E[yield loss] PDF [yield] 

E[y]*coverage 
E[y] yield 

E[yield loss] PDF (yield) 

E[y]*coverage 
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temperatures and precipitation. A solar radiation generator, WGENR, with adjustment factors 
obtained for the southeastern USA, was used to generate daily solar radiation data. 

Georgia Green was selected as the representative variety for Georgia and other 
southeastern states.  The soil profile data of three representative soils for each Colquitt county, 
GA, were obtained from the soil characterization database of the USDA National Resource 
Conservation Service.   Nine planting dates (April 16 – June 12) represented all possible planting 
dates at weekly intervals.  Peanut yields were simulated assuming no irrigation. 

Regardless of their complexity and accommodation of biological and physical processes, 
the crop simulation models are deterministic. Therefore, whatever randomness in simulated 
yields is observed for same plots and management practices comes from random weather 
realizations. In this way, the simulated data is analogous to a controlled experiment. At the same 
time, it is nearly impossible to translate weather variability, expressed in so many ways, into 
yield variability through the model mechanics. For instance, cumulative measures of 
precipitation and solar radiation may not be correlated with yields if the weather patterns are 
different, as evidenced by a comparison of the effect on plant growth of a week with four rainy 
days each followed by a sunny one with a week in which it rains four days in a row (the first one 
is likely to be more favorable for growth). Thus, we do not try to deliberately draw parallels 
between climate indexes and our findings. Instead, we independently estimate the distributions of 
the simulated yields without forming any a priori expectations based on climate research. 
 The simulated annual data covers the period from 1911 to 2003 and assumes modern 
“best” management practices. This time period covers 14 ElNino, 17 LaNina, and 39 Neutral 
years. This is barely enough for distribution analysis, but the actual daily weather observation 
records do not go back much further. The records are from a weather station in Colquitt County 
in Southwestern Georgia, located in the heart of the Southeastern peanut producing region. 

The nine simulated planting dates and three soil types make for 2511 observations. The 
three soil types assumed are Tifton Loamy Sand, Cowarts Loamy Sand, and Troup Sand, the first 
being the most prevalent in the county (NRCS). As the differences in yields between the soil 
types were negligible and because peanuts are planted on all these soils, we did not distinguish 
between the soil types in most of the analysis. 
 

Simulated Yields Analysis 
The table below provides some basic parameters of the distribution of the simulated peanut 
yields by the ENSO phase.  
 
Simulated peanut yield distribution, average of planting dates and soils 
enso mean sd skewness kurtosis min max 
ElNino 2329.25 1003.81 0.43 2.92 357 4902 
LaNina 2588.70 1282.87 0.31 2.03 337 5519 
Neutral 2298.67 1179.43 0.85 3.29 454 6297 
All years 2373.53 1177.45 0.66 2.85 337 6297 
 
LaNina yields have the highest mean, which is associated with higher variance. The skewnesss 
of the simulated yield distribution during neutral years is fairly high (>0.5), while during the 
ElNino and LaNina phases it is below moderate. Higher kurtosis is normally interpreted as 
greater “peakedness”, which means more of the variance is due to infrequent extreme deviations, 
as opposed to frequent modestly-sized deviations. However, these moments convey more 
information when applied to parametric distributions.  
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The statistics for different planting dates and soil types show that the highest yields come 
from planting in between May 8-22 and Tifton Loamy Sand. However, the relative values of the 
distribution statistics are preserved throughout. As evaluating soil productivity and management 
practices is beyond the scope of this paper, we report such differences only in cases where they 
affect the distributional differences. 

Assuming the simulated data represents a controlled experiment in that the yields do not 
depend on unknown stochastic influences, the important question is whether the yields depend 
on the ENSO phase. The results of t-tests of mean equality are reported in a table below. 
 
Mean equality tests, simulated peanut yields 
Ha: diff < 0 Ha: diff != 0  Ha: diff > 0 
H0: mean(yield, EL) – mean(yield, LA) = 0 
Pr(T < t) = 0.0001 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.9999 
H0: mean(yield, EL) – mean(yield, Neu) = 0 
Pr(T < t) = 0.6992          Pr(|T| > |t|) = 0.6016           Pr(T > t) = 0.3008 
H0: mean(yield, LA) – mean(yield, Neu) = 0 
Pr(T < t) = 1.0000          Pr(|T| > |t|) = 0.0000           Pr(T > t) = 0.0000 
 
The tests confirm that LaNina year yields are the highest in comparison to Neutral and ElNino, 
while there is no statistical difference between Neutral and ElNino. It has been suggested that the 
effects of the ENSO phases can carry over to the next year, but we did not find indications of 
such influences in the simulated data. 

The significant difference in average yields depending on the ENSO phase is an 
interesting find, especially considering the fact that little ENSO climate impact has been found in 
south Georgia, south Alabama, and north-western Florida. One reason for this discrepancy might 
lie in the details of the crop growth functions and their dependence not on the average 
temperature or precipitation, but on the finer details of climate, like the spacing of rainy and 
sunny days. 
 As the moments do not describe empirical distributions completely, we proceed by 
reporting the differences between the distributions. As common procedures for testing equality 
of variances rely on distributional assumptions which might not hold for the yield data, we use 
the non-parametric Kolmogorov-Smirnov test. The two sample test is based on the maximum 
absolute difference (D) between the CDFs for two continuous random variables. Unlike 
conventional statistical tests, this is a non-parametric test that does not require the variables to be 
normally distributed. The null hypothesis for the Kolmogorov-Smirnov test is that there is no 
difference in the CDFs between two groups. The largest observed difference between the two 
CDFs being examined was compared to the critical value of D at the 5 percent level of 
significance to determine if there is a statistically significant difference between the curves. The 
table below reports the results. 
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Kolmogorov-Smirnov tests for distribution differences 
H0: f(EL) = f(LA) 
Smaller group D P-value   Corrected 
EL 0.1702     0.000  
LA -0.0595     0.142  
Combined K-S 0.1702     0.000       0.000 
H0: f(EL) = f(Neutral) 
Smaller group D P-value   Corrected 
EL 0.0471     0.189  
Neutral -0.1188     0.000  
Combined K-S 0.1188     0.000       0.000 
H0: f(LA) = f(Neutral) 
Smaller group D P-value   Corrected 
LA 0.0164     0.799  
Neutral -0.1333         0.000  
Combined K-S 0.1333     0.000       0.000 

 
The combined K-S statistics clearly show that the yield distributions in El, La, and 

Neutral years are significantly different from each other (the differences are similar across 
planting dates and soil types).  

The observed differences in the distributions have immediate implications for insurance 
design, particularly for the group risk plans where rates for incomplete (less than 100%) 
coverage are calculated on the basis of distributional parameters. Such calculations may assume 
normality or use exponential smoothing but without regard to the differences among ENSO 
phases. The table below reports the results of one-sided Kolmogorov-Smirnov and Shapiro-Wilk 
tests for normality – even the simulated yield data shows that yield distributions are significantly 
different from their normal counterparts. The results imply that the yields during none of the 
three ENSO cycles, and even the pooled yields, are normally distributed with reasonable 
confidence levels. 
 
K-S test against normality (combined) 
 D P-value Corrected 
All Years 0.0632 0.000 0.000 
ElNino 0.0558     0.082       0.073 
LaNina  0.0820     0.001       0.001 
Neutral 0.0788     0.000       0.000 
    
Shapiro-Wilk W test for normal data 
 W z Prob>z 
All Years 0.95871 10.509 0.00000 
ElNino 0.97961       4.690   0.00000 
LaNina  0.96183      6.560   0.00000 
Neutral 0.93921      9.929   0.00000 

 
Finally, plots of the simulated yield non-parametric distribution densities are shown in 

the figure below.  
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Kernel Densities of Simulated Yields (Gaussian kernels, Silverman’s width) 
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Visual inspection suggests that ElNino yields seem to be more normally distributed than even 

the pooled data. Perhaps this means that, indeed, the left skewness of yield data is the norm, and 
the ElNino yields deviate from this general pattern because ElNino years are wetter in the NW 
Florida and SW Georgia, making below average yields less likely. This might also help explain 
the lowest kurtosis of the distribution of the dry LaNina yields.  
 
 
Historical County Yield Data. 

 
Data Description 
County-level annual yield series (appropriate for GRP contracts) were used in the analysis. 

Three crops, corn, peanuts, and cotton were chosen as being most widely produced in the region. 
The planting areas in the southeastern tri-state region were divided into South-Central Georgia, 
South Alabama, North-Central Alabama, North-Western Florida on the basis of distinct ENSO 
impacts. Within the regions, the counties were chosen by the production volumes as defined by 
the NASS county estimates. As an example, the picture below shows the major corn producing      
counties in the SE Georgia in 2005. Accordingly, the analysis included all corn producing 
counties with yields above 10,000 bu.  
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Altogether the set includes 94 corn county yield series, 95 cotton series, and 81 peanut series. 

The series time span ranges from 78 to 45 years (1934-2005), depending on crop/area, which is 
just enough to produce non-parametric density estimates. Obviously, the series can not be used in 
their pristine as they are nonstationary.  
 
 
Non-Stationarity and Detrending of Historical Data 
 
In order to properly single out the impact of the ENSO phases on yield distributions, it is 
necessary to remove trends, autoregressive effects, heteroscedasticity, and other systemic 
influences affecting the distributions. Many of these are expected in the yield time series mainly 
due to technological changes (trends and heteroscedasticity) and drought/moisture effect 
persistence (auto-regression and moving average). Below we discuss these and some other 
problems with the yield data and present the results of testing for them. 
 

Heteroscedasticity:  
The Breusch-Pagan-Godfrey test is used to test for heteroscedasticity in the yield series. The 
table below shows the test statistics for the three crops in the Southeast, which confirm that the 
raw yield series are definitely heteroscedastic. Cotton yields are slightly more heteroscedastic 
than corn and peanuts. An interesting observation is that taking logs of the yields reduces but 
does not eliminate heteroscedasticity (still rejecting H0). The most commonly suggested reason 
for heteroscedasticity is the technological progress which, increases yield variance together with 
the mean. 
 
Heteroscedasticity of yield series 
CROP Breusch-Pagan statistic Prob > chi2 
Corn 6.05 0.0139 
Cotton 9.55 0.002 
Peanuts 5.45 0.0195 
 

The problem of heteroscedasticity in detrending the yield series can be alleviated by 
using White’s Heteroscedasticity-Consistent Variances and Standard errors OLS estimation. The 
resulting errors are also known as robust standard errors or robust variances (parameter 
estimates are unchanged). An alternative is to calculate Newey-West standard errors for 
coefficients estimated by OLS regression. The error structure is assumed to be heteroskedastic 
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and possibly autocorrelated up to some lag. There is also the Prais-Winsten and Cochrane-Orcutt 
regression that accommodates autocorrelation of residuals. However, these techniques only 
marginally improve on the parameter significance.  
 

Autocorrelation and unit roots:  
Autocorrelation in crop yield series has been widely documented. The effects of drought and 
moisture carryover have been suggested as the main reasons. As autocorrelation in regressors 
impairs estimates and autocorrelation in the error terms (serial correlation) leads to series non-
stationarity, detecting it is important.  

While the most standard test for autocorrelation is Durbin-Watson, it has pitfalls due to 
the regions of indecision. We use the Breusch-Godfrey (BG, also LM) test for autocorrelation the 
results of which are reported in the table below (1 lag, higher rhos’ significance declines slowly): 
 
Serial correlation in the yield series 
CROP Breusch-Godfrey LM test statistic Prob > chi2 
Corn 11.379 0.0007 
Cotton 3.515 0.0608 
Peanuts 18.077 0.0000 
 

Correlograms also confirm the presence of serial correlation in the yield series, the most 
significant being in peanuts and only marginally significant in cotton. Apart from the suggested 
moisture/drought carryover effects and possible technological and behavioural adjustments 
(usually responsible for serial correlation in economic time series), one might also suspect 
persistence of ENSO effects but, to the best of our knowledge, ENSO effects persist no longer 
than a few months.  

The correlograms show slowly declining autocorrelation coefficients, confirmed by the 
Portmanteau Box and Pierce Q-statistic, suggesting a possible RW process. The statistic has chi-
squared distribution with df = lag length and is computed for every lag length. If Q exceeds 
critical value for chosen significance, one rejects the null of all zero rho’s – at least some of them 
must be non-zero (non-stationary time series). The figure below shows two correlograms typical 
for the corn series – one for the level and the other for first differenced series. The correlogram 
patterns of autocorrelation and partial autocorrelation (alternating signs) suggest the presence of 
both autoregression and moving average. 
 
Correlogram of the corn yields in levels 
                                            -1       0       1  -1       0       1 
 LAG       AC       PAC      Q     Prob>Q   [Autocorrelation]  [Partial Autocor] 
------------------------------------------------------------------------------- 
1        0.9041   0.9651   45.819  0.0000           |-------            |-------  
2        0.8638   0.4247   88.469  0.0000           |------             |---      
3        0.8239   0.3436   128.04  0.0000           |------             |--       
4        0.7747  -0.0047   163.75  0.0000           |------             |         
5        0.7402   0.1413   197.02  0.0000           |-----              |-        
6        0.6809   0.1315   225.77  0.0000           |-----              |-        
7        0.6161   0.0389   249.83  0.0000           |----               |         
8        0.5566  -0.0588    269.9  0.0000           |----               |         
9        0.5020   0.0776    286.6  0.0000           |----               |         
10       0.4568  -0.1514   300.74  0.0000         |---                    -|         
11       0.4227   0.1658   313.15  0.0000          |---                |-        
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12       0.3630  -0.3038   322.51  0.0000         |--                    --|         
13       0.3162   0.3395    329.8  0.0000          |--                 |--       
14       0.2806   0.1101   335.69  0.0000          |--                  |         
15       0.2203   0.2645   339.41  0.0000           |-                   |--       
16       0.1783   0.3394   341.91  0.0000           |-                  |--       
17       0.1021  -0.1221   342.76  0.0000           |                   |         
18       0.0535   0.0793      343  0.0000           |                   |         
19       0.0014   0.1296      343  0.0000           |                   |-        
20      -0.0671  -0.1717   343.39  0.0000           |                       -|         
21      -0.1101   0.1593    344.5  0.0000           |                   |-        
 
Correlogram of differenced corn yield series 
                                            -1       0       1  -1       0       1 
 LAG       AC       PAC      Q     Prob>Q   [Autocorrelation]  [Partial Autocor] 
------------------------------------------------------------------------------- 
1       -0.4087  -0.4324   9.1961  0.0024            ---|               ---|         
2       -0.1048  -0.3451   9.8126  0.0074           |                --|         
3        0.2031   0.0038   12.177  0.0068           |-                 |         
4       -0.1671  -0.1411   13.811  0.0079              -|                 -|         
5       -0.0308  -0.1299   13.868  0.0165           |                 -|         
6        0.0830  -0.0395   14.289  0.0266           |                  |         
7        0.0065   0.0576   14.291  0.0462           |                  |         
8       -0.0962  -0.0794   14.882  0.0615           |                  |         
9        0.1693   0.1487   16.754  0.0527           |-                 |-        
10      -0.1575  -0.1690   18.413  0.0484             -|                 -|         
11       0.1837   0.2999   20.725  0.0363           |-                 |--       
12      -0.2254  -0.3442   24.293  0.0186             -|                --|         
13       0.0437  -0.1046   24.431  0.0274           |                   |         
14       0.0874  -0.2618   24.995  0.0346           |                --|         
15      -0.2284  -0.3426   28.953  0.0163             -|                --|         
16       0.2451   0.1000    33.64  0.0061           |-                 |         
17      -0.1314  -0.1052   35.025  0.0062             -|                  |         
18      -0.0230  -0.1891   35.068  0.0093           |                 -|         
19       0.1217   0.0261   36.329  0.0096           |                  |         
20      -0.0697  -0.3018   36.755  0.0125           |               --|         
21      -0.1121  -0.3746   37.893  0.0133                           --|         

The analysis suggests that the series, at least in levels, may have a unit root as a reason 
for its non-stationarity. The table below reports the results of the Dickey-Fuller and the Phillips-
Perron unit root tests. The latter is preferable because it takes care of possible serial correlation 
in the error terms by adding lagged difference terms of the regressand. The asymptotic 
distribution is the same as for the DF. The tests were performed on both the raw yield series for 
each crop and on the linearly detrended (with robust variance estimates) yield series. This is 
important in considering difference versus trend stationarity of the series. 
 
Unit-root test results, level series 
CROP Dickey-

Fuller yield 
series 
statistic 

DF linearly 
detrended 
series 
statistic 

5% critical 
value 

Phillips-
Perron 
Statistic 

PP linearly 
detrended 
series 
statistic  

5% critical 
value 

Corn -0.800 -4.356 -2.928 -0.446 -29.317 -13.316 
Cotton -1.826 -4.218 -2.920 -4.222 -30.283 -13.396 
Peanuts -1.583 -2.813 -2.913 -3.002 -12.971 -13.468 
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The detrended series in levels are likely to possess unit roots; however, many linearly 
detrended series do not have unit root, particularly in case of corn. This suggests yields might be 
trend stationary processes (TSP) instead of difference stationary processes (DSP). The table 
below shows the results of unit root testing of the first differenced yield series.  

 
Unit-root test results, first difference series 
CROP Dickey-

Fuller yield 
series 
statistic 

5% critical 
value 

Phillips-
Perron 
Statistic 

5% critical 
value 

Corn -10.746 -2.929 -64.336 -13.308 
Cotton -12.336 -2.923 -78.192 -13.372 
Peanuts -11.610 -2.914 -11.970 -2.914 

 
However, as certain variation in unit root test results exists among the county yield series (the 
reported values are just averages), we did not automatically assume TSP over DSP. Instead, we 
tried both linear detrending of the series using robust variance estimates  and various 
specifications of the ARIMA models, as well as ARIMA(p, 0, q) run on linearly detrended 
series.  

The model selection criteria were the (1) Akaike and (2) Schwarz's Bayesian information 
criteria.  Both are better than the R2 not only in that they punish for adding regressors but also 
because they are good for out of sample forecasts. The AIC is also used to determine the lag 
length in the AR(p) models. Another model selection criterion was the residuals being white 
noise (using correlograms and the tests described above).  

 
Cointegration in yield series (among similar ones): 

To confirm consistency of the historical county average yield series, the Breusch-Godfrey (LM), 
Engle-Granger, and cointegrating regression Durbin-Watson (CRDW) tests were performed. The 
procedures test the residuals from regressing one time series on another for unit root and 
autocorrelation, also confirmed by correlogram analysis. As expected, same crop and 
geographical area yield series were found to be highly cointegrated, whereas different crop and 
area yields were only slightly less cointegrated. Also, the residuals from regressing even 
“unrelated” series showed little signs of heteroscedasticity, based on the Breusch-Pagan / Cook-
Weisberg test. This may suggest that the yields were largely influenced by the climate 
variability. The table below shows some typical results of the cointegration testing.  
 
Cointegration tests 
Cointegration R-squared Dickey-

Fuller 
Z(t) 

Phillips-
Perron 
Z(t) 

Breusch-
Godfrey 
Prob>Chi2 

Breusch-
Pagan 
Prob>Chi2 

Corn-Corn 0.65 -5.946 -5.937 0.7730 0.8795 
Cotton-
Cotton 

0.8 -6.296 -6.451 0.2661 0.3302 

Peanuts-
Peanuts 

0.91 -5.448 -5.555 0.1855 
0.0257 

0.2590 

Corn-Cotton 0.17 -5.126 -5.128 0.8551 0.5643 
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Corn-Peanuts 0.34 -4.335 -4.395 0.0473 0.9157 
Cotton-
Peanuts 

0.28 -4.392 -4.407 0.0001 0.1858 

 
Structural breaks:  

Another potential problem is the presence of structural breaks in the yield series, the reason for 
which might be the introductions of technological innovations (irrigation, etc.). In looking for the 
structural breaks, it is useful to use recursive LS:  start with a sub-sample and add one 
datum/year at a time re-estimating the model (rolling window). The search for structural breaks 
in our dataset did not reveal any (also confirmed by the Chow’s Prediction Failure test that 
compares the actual out-of sample data with predictions).  
 

Volatility clustering:  
Volatility clustering (heterogeneity and autocorrelation in the error variance) has been observed 
in economic series (particularly in the stock market indices), and plausible behavioral and 
technological explanations for it have been suggested. While there is no a priori reason to expect 
volatility clustering in yield series, we estimated autoregressive conditional heteroscedasticity 
(ARCH) models, for which squared residuals from a regression of yield series on time (squared 
deviations from the mean of detrended series) were regressed on own lagged values. The results 
showed highly insignificant coefficients at the lagged values, leading to a conclusion that the 
series do not possess autocorrelation in the error variance (hence no volatility clustering). 
 

Taking logs of the yield series:  
Taking logs of time series has been suggested as a universal remedy for serial correlation and 
autoregression. This seems to be true in case of the southeastern crop yields: 

- Phillips-Peeron and Dickey-Fuller tests of the logged series show only weak evidence of 
unit roots, and usually no unit root in the linearly detrended logs of the series. The 
conclusion is supported by correlogram analysis.  

- The Breusch-Godfrey LM test for autocorrelation shows evidence of zero autocorrelation 
in the error terms. The only reason to expect this is that, as crops are planted in rotation, 
there’re no moisture carryover effects.  

- Breusch-Pagan-Godfrey / Cook-Weisberg test shows no heteroscedasticity in the logged 
yields. 

However, as is shown in the results section below, yield distribution estimation based on 
linearly detrended logged yield series (take logs, detrend, unlog, proceed density estimation) 
shows results consistent with both linear detrending of raw yield series and ARIMA residuals. 
The only difference is that the actuarially fair premiums estimated using logged series are a little 
higher – probably the result of the transformation. Overall, the results are pretty robust to the 
different models used in detrending and “stationarizing” the series. 

 
ARIMA estimation: 

Estimation of correctly specified ARIMA (autoregressive integrated moving average) models 
removes the non-stationarity of time series that is due to autoregression and serial correlation. A 
simple ARIMA(p,d,q) model lets the data explain itself by regressing a variable on its own 
differenced, lagged, and error values:  
 

qtqttptpttt YYYY −−−−− +++++++= εθεθεϕϕϕ ...... 11
**

22
*

11
*
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where Y* is d-times differenced value of the series and the ε’s are IID normal errors. Parameters 
p and q specify the order of AR and MA processes, and d specifies the degree of differencing the 
analyzed variable that is necessary in case of unit roots.  

Using the Akaike and Schwartz information criteria, we found ARIMA(1,1,2) 
specification to be the most adequate for most of the yield series. In reporting the results below, 
unless otherwise specified, we use distributions derived from the ARIMA(1,1,2) residuals. 
However, the results seem to be robust to detrending/refining methodology, and most often yield 
distribution estimates derived from linearly detrended series and exponential smoothing (a 
simplified version of ARIMA) show the same patterns of the ENSO phase dependent actuarially 
fair premiums. 
 

Comparison of Simulated and Empirical Yield Distributions 
  In comparing the historical county-level yields with the simulated ones, we did not expect 
to get a perfect match. In particular, there is no reason to expect the average county yields to be 
similar as the NASS data includes both irrigated and non-irrigated yields (for instance, about 
20% of the peanut acreage in the southwest Georgia has been irrigated during the last 20 years, 
and the yields from irrigated production are typically ~30% higher). Irrigated yields are less 
volatile due to independence of precipitation, which dampens any possible ENSO influences. 
The ENSO effects are further reduced because of the averaging of individual data in the county 
estimates. However, there is no reason not to expect similarities between the distributions of the 
real and simulated yields as those are shaped by a group of biological and physiological factors 
common to both practices. The table below lists the four moments of the Colquitt county 
empirical peanut yield distributions. 
 
Colquitt county (GA) peanut yield distribution moments 
enso mean sd skewness kurtosis 
ElNino 3316.9 362.5 -0.073 2.77 
LaNina 3369.8 478.8 0.441 1.838 
Neutral 3192.6 555.2 0.178 2.735 
All years 3260.5 503.8 0.110 2.802 
 
The average yields by ENSO phase preserve the same relation as the simulated data: LaNina > 
ElNino > Neutral. However, he average yields are statistically different only at levels greater 
than 23.4%. While the reasons for LaNina yields being the largest are still unclear, the Neutral 
year yields are probably the smallest because of the suggested higher freeze probability. The 
relative magnitudes of variance, skewness, and kurtosis seem to be different from the simulated 
yields, but then their ENSO phase differences are not statistically significant. The significantly 
smaller variance of actual yields is explained by irrigation and by county-level averaging. 
Normally, higher differences between simulated and county yield variances should indicate 
greater heterogeneity among individual producers, which may account for the differences in the 
other distribution parameters (Barnett, Black, Hu, Skees, 2005). 

As was mentioned before, higher moments are less relevant when dealing with non-
parametric distributions, when visual inspection is of greater importance. The table below 
presents comparisons of the kernel densities of the simulated and actual yield distributions by 
ENSO phase with overlaid normal densities (in red).   
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Simulated and Historical Yield Distributions, Colquitt, GA (normal overlay) 
All Years ElNino LaNina Neutral 
Colquitt County  Simulated yields (all planting dates, all soils) 
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Colquitt County Average Yields, 1934-2005 
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The ENSO-dependent distribution similarities are largely preserved across counties. In 
both simulated and empirical series, the ElNino densities seem the least skewed and closest to 
normal, while the LaNina densities show the greatest evidence of bi-modality. The Neutral year 
densities are the highest peaked, as evidenced by the kurtosis value. In most cases, LaNina yields 
also show the strongest, and Neutral year the weakest, evidence of bi-modality which is also 
reflected in their variance. In drawing these conclusions, it should be mentioned that the data 
span is sufficiently long making it unlikely that the differences in the ENSO dependent 
distribution patterns are due to chance.  

For illustrative purposes, we computed the frequencies of the incidences of yield 
distribution moments being the highest or the lowest during an ENSO phase for the 17 counties 
and compared them to the simulated data:  
 
Frequencies of Empirical Distribution Moments being Highest and Lowest among the ENSO 
Phases, % of total 

 mean std skewness kurtosis 
 EN LA NE EN LA NE EN LA NE EN LA NE 
max 29 71 0 0 82 18 29 65 6 12 24 65
min 0 6 94 100 0 0 47 6 47 47 47 6
Frequencies of Simulated Distribution Moments being Highest and Lowest among the ENSO Phases, %

 mean std skewness kurtosis 
 EN LA NE EN LA NE EN LA NE EN LA NE 
max 0 100 0 0 100 0 0 0 100 0 0 100
min 0 0 100 100 0 0 0 100 0 0 100 0
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Clearly, there are similarities. The empirical data show that the majority of highest county 
average yields happen in the LaNina years and the overwhelming majority of lowest average 
yields happen in the Neutral years, which agrees with the simulated data. The empirical data also 
indicate that about 30% of the highest average county yields happen in the ElNino years. The 
high yields in LaNina years may be due to the observed higher cumulative solar radiation and the 
low yields during Neutral years may be due to the lack of it and also to the relative lack of 
rainfall. It is reasonable to expect that, ceteris paribus, higher yields during LaNina years should 
reduce expected insurance losses. The standard deviations of the average county yield series are 
the highest during LaNina in 82 percent of the counties and they are always the lowest during 
ElNino, which also matches the simulated data. However, the skewness coefficient’s relative 
frequency does not match the simulated data. Finally, the kurtosis is the highest during the 
neutral years in 65% of the counties analyzed and happen with equal frequencies during ElNino 
and LaNina years.  

Apart from this, it is hard to describe these empirical distributions in much greater detail. 
The significance of distributional differences is determined by their effect on the application that 
uses these data. Our primary interest is the area yield insurance implications of using non-
parametric distribution estimates.  

 
Comparison of Insurance Premiums  
The methodology for calculating ENSO phase dependent insurance premiums is 

described in the Methodology section. The omission of unusually low (catastrophic) yields in the 
non-parametric densities/distributions drives down the estimated premium rates. Without reliable 
information on how ENSO phases affect crop failures, there is little reason to try to 
accommodate them here. Thus, comparison with the actual GRP premiums is premature at this 
point, and the term “premiums” is used interchangeably with “expected losses”. 
 Below are two tables showing expected losses for Colquitt county data.  
 
GRP Insurance Rates by ENSO Phase Derived from Simulated Colquitt County Yields 
Actual Ranges Expected Loss to Coverage Ratio 
MEAN 2509.886  All Years ElNino LaNina Neutral Normal  
COVERAGE 70% 1756.92 8.51% 5.99% 8.30% 9.63% 6.59%
 80% 2007.909 11.39% 8.05% 10.71% 12.79% 8.89%
 90% 2258.897 14.49% 10.52% 13.29% 16.05% 11.51%

GRP Insurance Rates by ENSO Phase Derived from Historical Colquitt County Yields 
Actual Ranges (smaller rates) Expected Loss to Coverage Ratio 
Av. Yield 3260.508  All years ElNino LaNina Neutral Normal  
COVERAGE 80% 2608.406 0.63% 0.01% 0.07% 1.21% 0.75%
 90% 2934.457 2.31% 0.92% 0.99% 3.51% 2.44%

Legend: __ - largest values; __ - smallest values.     
 
The big difference between the simulated and actual data rates is due to (1) the averaged 

nature of the county data (only systemic risk), (2) the presence of much more stable irrigated 
yields in the county data, and (3) the broader range of simulated (individual) yields.  

These differences notwithstanding, in this research, we are interested exclusively in the 
ordinal properties of the expected losses, i.e., in their differences between ENSO cycles. There is 
clearly a pattern in the differences among the expected losses that persists in both the simulated 
and the empirical data. In both cases, premiums (losses) are clearly the highest in the Neutral 
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years and the lowest in the ElNino years for all coverage levels. This is a result of the generally 
lower mean and higher kurtosis in ElNino years, meaning that the bulk of the mass is 
immediately to the left of the series average, hence the higher expected loss. Predictably, the 
expected losses estimated with pooled data fall in between the extremes. It is also worth noting 
that the expected losses based on the assumption of normality (using the series’ mean and std) 
are relatively higher for the actual data and for the simulated data, which is probably a result of a 
smaller span of the former. 

The premiums (losses) are also bigger in LaNina than in ElNino years. This is because 
the ElNino distribution is less skewed (although the variance seems counter-intuitive). 
Obviously, estimated loss probabilities and premium rates approach zero in spite of the fact that 
the true expected losses are likely to be positive, albeit small. Catastrophic loss probability can 
be constructed to address this issue (see Goodwin and Ker). However, investigation of the ENSO 
impact on catastrophic crop losses is beyond the scope of this paper. 

The differences in the absolute values of expected losses among the counties are due to 
different variance of the county series (ranges from 387 to about 650), which is a universal factor 
for “inter-county” estimates (ENSO phases for the same county) but differs between the 
counties.  

Again, it is important to note that these results are not readily comparable to the actual 
premiums because the latter are not likely to be actuarially fair and because our data do not 
include catastrophic losses (usually defined as yields more than two standard deviations below 
last four years’ average). The most important finding is that they differ among the ENSO phases, 
and that can only be explained by the differences in their true non-parametric (as opposed to 
assumed theoretical) densities, even if the moments of the distributions seem to be similar.  
 The simulated and historical yield distribution differences notwithstanding, the analysis 
of historical yield data on corn, cotton, and peanuts reveals distinct ENSO dependent patterns in 
non-parametrically estimated insurance rates across counties and regions in the Southeastern US 
reported in the next section. 
 
 
Insurance Rates Based on Historical Yield Data 

 
In this section, we report the results of actuarially fair GRP rate estimation using county 

average annual yield time series. As was mentioned before, the rates are calculated for yield 
distributions for distinct ENSO phases (ElNino, LaNina, and Neutral). The distributions are 
estimated non-parametrically using kernel density estimates. The ENSO data used for grouping 
the yield series was constructed specifically for the purpose by adjusting the monthly ENSO 
indices to reflect the ENSO conditions prevailing during the crops’ growth season, not calendar 
time.  

The crops used in the analysis are corn, cotton, and peanuts. The areas from which the data 
were collected include South-Central Georgia, South Alabama, North-Central Alabama, and 
North-Western Florida (defined by major producing counties as reported by the NASS). The 
time span for the series ranges form 78 to 45 years, which includes 16-11 ElNino, 17-10 LaNina, 
and 45-25 Neutral years, depending on crop/area.  

Alternative methodologies used for detrending and “stationarizing” the yield series include: 
-  Linear using robust variance estimator; 
-  Double exponential smoothing (used in crop insurance); 
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-  ARIMA models, parameters determined by testing. 
On the basis of statistical tests and model fitting criteria, ARIMA(1,1,2) specification was chosen 
as most appropriate.  

The results of parametric distribution analysis and testing of yield data thus refined can be 
summarized as follows: 

- There are no ENSO-dependent differences in yield averages or variances; 
- Normality tests are rejected in most cases; 
- There are some ENSO-dependent patterns in yield distribution skewness (discussed 

above); 
- Most importantly, GRP rates calculated using parametric yield distribution specification 

show no ENSO impact. 
However, yield distribution densities derived using non-parametric kernel density 

estimation do show ENSO-dependent differences in most cases. While visual inspection of 
detrended yield density plots reveals noticeable but not easily quantifiable differences, the  
insurance rates calculated using the above methodology show distinct ENSO-phase dependent 
patterns. Graphically, the area yield insurance premiums calculated using Gaussian kernel 
density estimation of ARIMA(1,1,2) detrended county yield series compare as follows (averages 
of county groups by crop and region).  

Corn yield loss to coverage rations (actuarially fair premiums) appear to be the most 
dependent on the ENSO phases, the premiums being the highest, regardless of coverage, during 
ElNino and the lowest during LaNina years (except for Southern AL). The figure below shows 
plots of the rates for the four geographical regions. 

 
GA Corn, South-Central        AL Corn, North-Central 

 
 
 
 
 
 
 
 
 
AL Corn, South    FL Corn, North-West 
 
 
 
 

 
 
 

 
 
 
These results appear to be robust to the detrending methodologies tried in the analysis. 
Comparison of the rate schedules in the figure below shows that, while the magnitudes of the 
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ENSO phase dependent insurance rates differ, their relative values are preserved throughout the 
alternative treatments. 
 
GA Corn, Linear Detrending        GA Corn, Linear Detrending, Logged Series  
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GA Corn, Double Exponential Smoothing  GA Corn, ARIMA(1,1,1) 
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Cotton yield premiums show a pattern similar to that of corn, being the highest during 
ElNino (except for North-Central AL) and the lowest during LaNina years.  
 
GA Cotton, North-Central    FL Cotton, North-West 
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AL Cotton, South     AL Cotton, North-Central 
 
 
 
 
 
 
 
 
 
 
 
  Finally, peanut premiums are higher during Neutral years and lowest during LaNina 
(except for Southern AL), the differences being muffled in NW Florida. 
 
GA Peanuts, South-Central    AL Peanuts, South  
 
 
 
 
 
 
 
 
 
 
 
FL Peanuts, North-West 
 
 
 
 
 
 
 
 
 
 
 
At this point, it is hard to reason how exactly the ENSO climate differences affect yields. 
However, the estimations for peanuts in GA using historical data correspond to those using 
peanut growth simulation data in Colquitt county, GA, which lends validity to our findings.  

These results suggest that incorporating information on the ENSO cycle in insurance 
premiums in the Southeast can be beneficial for both producers and insurers, even if the actual 
insurance premiums include other components. The benefits to the producer depend on the actual 
risk aversion of the farmer – more accurate estimation of expected losses results in larger utility 
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gains from purchasing insurance that hedges against yield risk. The magnitude of the benefits 
depends on risk aversion and the amount of insurance purchased, among other factors. Better 
structured contracts may also increase demand for insurance. The benefits to the insurance 
companies consist of increased demand for insurance and of avoiding short-term losses because 
of their more accurate estimation which, depending on the companies’ financing policies and 
planning horizon, might also increase the long-term return on investment.  
 
 
Conclusions 
 

In this paper, we report results of non-parametric analysis of peanut, corn, and cotton 
yield distributions by the ENSO phases in the Southwestern Georgia, Northwestern Florida, and 
Southern and Northwestern Alabama. For comparison and validation purposes, the historical 
yield data is complemented by a set of simulated peanut yields generated using daily weather, 
soil, and management practices data in the Colquitt county, Georgia.  

The focus of the analysis is on establishing ENSO-dependent differences in the yield 
distributions and on evaluating their implications for area yield crop insurance the expected 
losses for which are calculated using county average yield series. The hypothesis is that different 
climate conditions during ENSO cycles translate into different yield distributions, which is 
justified by the observed South-Eastern climate differences and previous research showing the 
importance of ENSO cycles for optimal planting dates.  

 The results of kernel density estimates of historical county yield data show consistent 
patterns in actuarially fair insurance rate schedules grouped by ENSO phases, crops, and 
geographical areas. In particular, corn yield insurance premiums appear to be the most dependent 
on the ENSO and are the highest, regardless of coverage, during ElNino and the lowest during 
LaNina. Peanut premiums are higher during Neutral years and lower during LaNina (except of 
Southern Alabama). Cotton premiums are the highest for ElNino (except for North-Central AL) 
and the lowest during LaNina years. The results appear to be robust to the transformations used 
to make the yield series stationary. While these dependencies do not necessarily correspond to 
the precipitation and solar radiation characteristics of the corresponding ENSO cycles in the 
Southeastern US, drawing direct analogies with yield variability is premature as many less 
documented factors, like the spacing of sunny and rainy days, may be just as important.  

The validity of these findings is reinforced by comparison of the empirical and simulated 
peanut yield distributions. The comparisons show that the distributions are similar in many ways 
and that the dissimilarities can be explained by known factors. These findings should be more 
relevant for the area yield insurance as opposed to the APH arrangements as the yield data used 
in designing contracts for the former reflects the systemic risk more dependent on climate than 
on the farm-level, basis risk factors accommodated in the APH plans.     



 23

References: 
 
Barnett, B.J., J.R. Black, Y. Hu, and J.R. Skees. 2005. "Is Area Yield Insurance Competitive 

With Farm Yield Insurance?" Journal of Agricultural and Resource Economics, 30(2): 
285-301. 

Boote, K.J., J.W. Jones, and G. Hoogenboom. 1998. “Simulation of Crop Growth: CROPGRO 
Model,” Agricultural Systems Modeling and Simulation, R.M. PEart and R.B. Curry, 
Eds., Marcel Dekker, New York, 113-133. 

Cabrera, V.E., C.W.Fraisse, D. Letson, G. Podesta, J. Novak. “Impact of Climate Information on 
Reducing Farm Risk by Optimizing Crop Insurance Strategy,” Working Paper, 
University of Miami. 

Fraisse, C.W., A. Garcia y Garcia, J.L. Novak, J.W. Jones, and G. Hoogenboom. “Using Crop 
Models and ENSO-Based Climate Forecast to Aid in Peanut Crop Insurance Decisions,” 
Working Paper, University of Florida. 

Garcia y Garcia, A., G. Hoogenboom, L.C. Guerra, J.O. Paz, and C.W. Fraisse. “Analyzing 
Long-Term Historical Peanut Yield in Georgia with a Crop Simulation Model,” Working 
Paper, University of Georgia. 

Goodwin, B.K., and A.P. Ker. 1998. “Nonparametric Estimation of Crop Yield Distributions: 
Implications for Rating Group-Risk Crop Insurance Contracts,” American Journal of 
Agricultural Economics, 80:139-153. 

Hansen, J.W., A.W. Hodges, and J.W. Jones. 1998. “ENSO Influences on Agriculture in the 
Southeastern United States,” Journal of Climate, 11:404-411. 

Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. 
Wilkens, U.Singh, A.J. Gijsman, and J.T. Ritchie. 2003. “DSSAT Cropping System 
Model,” European Journal of Agronomy, 18:235-265. 

Li, Q., J.S. Racine. Nonparametric econometrics. Princeton University Press, 2007. 
Mavromatis, T., S.S. Jagtap, and J.W. Jones. 2002. “ElNino Southern Oscillation Effects on 

Peanut Yield and Nitrogen Leaching,” Climate Research, 22:129-140. 
Mjelde, J.W., H.S.J. Hill, and J.F. Griffiths. 1998. “A Review of Current Evidence on Climate 

Forecasts and Their Economic Effects in Agriculture,” American Journal of Agricultural 
Economics, 80(5):1089-1085. 

Orlove, B.S., J.C.H. Chiang, and M.A. Cane. 2000. “Forecasting Andean rainfall and crop yield 
from the influence of El Niño on Pleiades visibility,” Nature 403, 68-71. 

Podesta, G., D. Letson, C. Messina, F. Royce, R.A. Ferreyra, J.W. Jones, J.W. Hansen, I. Llovet., 
M. Grondona, and J. O’Brien. 2002. “Use of ENSO-related Climate Information in 
Agricultural Decision Making in Argentina: A Pilot Experience,” Agricultural Systems, 
74(3):371-392. 

Sherrick, B.J., F.C. Zanini, G.D. Schnitkey, and S.H. Irwin. 2004. “Crop Insurance Valuation 
under Alternative Yield Distributions,” American Journal of Agricultural Economics, 
86(2):406-419. 

Silverman, B.W. Density Estimation for Statistics and Data Analysis. Chapman and Hall, New 
York, 1986. 

Skees, J.R., J.R. Black, and B.J. Barnett. 1997. “Designing and Rating an Area Yield Crop 
Insurance Contract,” American Journal of Agricultural Economics, 79(2):430-438. 

 


