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Prediction of Loan Deficiency Payments  

 

 

Abstract 
 
This paper develops a stochastic model for estimating potential loan deficiency payments 

to U.S. corn producers in a discrete-dynamic context. We minimize the potential for 

misspecification bias by using nonparametric and semi-nonparametric approaches as 

specification checks in the model.  The model permits the forecast at planting time of the 

resulting empirical distribution of LDP payments for that crop year. Using this model, the 

paper examines the sensitivity of this distribution to changes in expected price levels.  
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Prediction of Loan Deficiency Payments 

Introduction 

Direct commodity support is provided in several forms to U.S. producers of the major 

bulk crops.  Of these, marketing assistance loans are tied to current production. Producers 

are eligible for marketing assistance loans when they harvest the eligible commodities. If 

market prices are below the loan rate, farmers are allowed to repay commodity loans at a 

loan repayment rate (reflecting market prices) that is lower than the loan rate (except for 

extra-long staple cotton).  The resulting “gain” is defined as the domestic support 

payment. To participate, farmers decide how much of their current year’s production they 

want to place under loan and pledge that amount as collateral. Marketing assistance loans 

have a 9-month maturity and accrue interest, but the interest does not need to be repaid if 

the loan repayment rate is less than the loan rate. These loans are “non-recourse loans,” 

meaning that the government must accept the collateral as full payment of the loan at 

loan maturity if a producer so chooses. Alternatively, the producer can choose not to take 

out the marketing loan and can instead take the benefit as a cash payment in the form of a 

loan deficiency payment (LDP) if the repayment rate is less than the loan rate. The LDP 

tends to be the primary vehicle by which marketing loan benefits are delivered to 

producers. The producer can take the LDP and then be free to sell the crop on the open 

market.   

 Loan deficiency payments are highly variable from year to year and can represent 

a substantial cost to the U.S. Federal government.  For instance, LDP payments for corn 

for the 2005 crop year amounted to $4.3 billion dollars.    LDP payments to a producer 
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are made on the basis of a daily or weekly posted county price (PCP) at the time that the 

farmer takes the LDP payment or repays the marketing loan.  Among the drawbacks from 

the government’s standpoint of this frequent updating of prices is that an unusual short-

term event may cause a short-term decline in market prices, triggering a large volume of 

LDP requests at a high LDP rate that may not reflect the longer-term or underlying 

market conditions (USDA, 2007).  The frequent updating of PCPs may induce producers 

to seek out the bottom of the market when taking their LDPs.  Hence, the flexibility in the 

current loan structure may lead to excessive costs of the marketing loan program. To 

reduce the sensitivity of LDPs and marketing assistance loans to short-term price 

fluctuations, USDA (2007) proposes that daily calculated PCPs be replaced with monthly 

calculated PCPs.    

 We take the USDA proposal as an opportunity to develop a stochastic model for 

estimating potential loan deficiency payments to U.S. corn producers in a discrete-

dynamic context. We minimize the potential for misspecification bias by using 

nonparametric and semi-nonparametric approaches as specification checks in the model 

of LDPs based on a monthly price structure. With this model, we forecast at planting time 

the empirical distribution of LDP payments for that crop year and examine the sensitivity 

of this distribution to expected price levels.   Such an approach could aid the 

government’s budgetary forecast process.  
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Background 

The LDP is based on shortfalls in market price with respect to a statutory loan rate. 

Formally, for producer i of a qualifying crop in time t, the marketing loan benefit,  or 

equivalently, the loan deficiency payment,  is calculated as:  

(1) LDPit = max{ 0, (LLRit − ALRit)}·Qit, 

where the statutorily-set local loan rates, or LLR, is the national loan rate LR adjusted by 

various county-specific and quality factors. The alternative loan repayment rate, or ALR, 

is essentially a USDA-determined posted county price (PCP) that varies daily or weekly 

(depending on the crop) according to market conditions, and is adjusted to reflect product 

quality. Depending on the crop, the ALR may be a county (wheat, feed grains, oilseeds), 

national (peanuts), or world (upland cotton and rice) “posted” price.  The quantity Qit 

(measured in bushels for our corn application) is the output that the farmer takes the LDP 

on.  Alternatively to the LDP, producers can potentially receive support benefits from 

nonrecourse marketing assistance loans. These marketing loan gains (MLGs) occur if a 

marketing loan is repaid at less than the loan principal, and follow the same formula as in 

equation (1).  We do not distinguish between the marketing loan benefits (MLB) taken by 

the farmer as an LDP or an MLG as the marketing loan benefit is the same in either case.  

Effectively, our analysis is of marketing loan benefits, but we will use the term LDP 

given that most of the gains come in that form and the latter is perhaps a more commonly 

known term.  

 Producers may obtain loans or receive LDPs on all or part of their eligible 

production anytime during the loan availability period.  For corn, this period would run 

from around October or November (when the crop is normally harvested) to May 31 of 

the next year.   For output to be eligible for LDPs, the farmer must have a “beneficial 
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interest” in the output (FSA, 2003). Among other things, the farmer must have control 

over the output at the time the LDP is applied for, e.g., the farmer cannot have already 

sold the output.  

 As the lowest corn prices tend to occur around harvest time or soon after, that also 

tend to be the time of year when most LDPs are taken. For example, Farm Service 

Administration records show that for Hardin County, Iowa, approximately 60 percent of 

total electronic LDP applications for the 2005 crop year were taken by mid-November 

and 90 percent by the end of the first week of December.   

 To address the question of when producers would most likely take LDP payments 

under a monthly PCP system, we look to historic price data.1  We use the CBOT 

(Chicago Board of Trade) December futures contract for corn given the availability of 

this data back to 1969, and given its high correlation with cash price data.2   Figure 1 

shows that historically over the months covering the LDP availability period, December 

most frequently represents the lowest monthly price.  Hence, unless the producer’s cost 

of storing the commodity into December outweighs the expected price differential in 

LDPs from waiting until the end of December to take the LDP, it seems likely that most 

producers taking an LDP based on a monthly PCP will likely do so at the end of 

December. 

 

Methodology for estimating payments 

We estimate the distribution of payments based on the historic relationship between 

national price and national average yield.  Payments in crop year t are assumed to be a 

function of planted acres at the beginning of t, the loan rate, and the stochastic price-yield 
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relationship in which within-season price change is a function of within-season yield 

change.  

 

Modeling the within-season price-yield relationship  

Our focus is on estimating the distribution of payments for a given reference crop year, in 

our case 2005, given the difference in realized yield and price over the levels expected at 

the beginning of the crop year. Hence, for the purposes of estimating the relationship 

between price and yield, we re-express the historic price and yield data as proportional 

changes between expected and realized price and expected and realized yield within each 

period, respectively. We can then apply this history of proportional changes in yield and 

price to 2005 data to develop the distribution of payments.    Specifically, the realized 

national average yield, Yt , is transformed to tYΔ  =  ( )( )
( )t

tt
YE

YEY − . The expected 

value of Yt, or E(Yt),  is calculated from an estimated trend equation (as described in 

detail below). Similarly, the realized price at harvest, Pt , is transformed to  =  tPΔ

( )( )
( )t

tt
PE

PEP − , where E(Pt) is derived from futures prices as discussed in the Data 

section below.  

 The historic yield data needs to be detrended before it can be used for our 

analysis. Namely, the upward trend in corn yields since the mid-1940s has been quite 

remarkable, and even mean corn yields from the 1970s are significantly lower than that 

which would be expected today.  To generate a distribution for  based on historic 

yield shocks, the historic yields must be rescaled to reflect the proportional change in the 

2005Y
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state of technology between that in 2005 and that in time t, i.e., Yt is rescaled to 2005 

terms as 

(2) ( )( )12005 +Δ= t
d

t YYE ∀Y ,  t periods, t ≠  2005. 
 

A specific detrending approach used in the literature is to assume that expected yield 

evolves according to a time trend, or E(Yt) = f(t), e.g., Chavas and Holt (1990), who fit a 

linear model to the time trend.   

 To separate the stochastic component of yield from the upward trend in yields 

over time due to technological and managerial innovations, we detrend the yield data 

using a simple linear model as generally used in the literature.  In addition, as a 

specification-check, we also detrend yields using a nonparametric LOESS (Cleveland, 

1979; Cleveland and Devlin, 1988) prediction of yield trends instead of the simple 

parametric approaches used in the literature.   As the LOESS (LOcally weighted 

polynomial regrESSion) procedure is available as a canned procedure in several common 

statistical and econometric packages, it is not described in detail here. In brief, at each 

point in the data set a low-degree polynomial is fit to a subset of the data. The polynomial 

is fit using weighted least squares, giving more weight to points near the point whose 

response is being estimated and less weight to points further away. A smoothing 

parameter denotes the degree of the local polynomial, and controls the flexibility of the 

model.  

 Our goal in fitting the trend regression was to model yield as a function of 

technological change and other factors that are correlated with time. Any deviations from 

the trend are assumed to be due to stochastic shocks. A model that is linear with respect 

to the time trend, e.g., E(Yt) = α + β t + εt, may in certain cases be too restrictive in its 
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assumption with regards to technical change.  However, note that even if the equality of a 

restricted model to a fully flexible model is not accepted from a statistical standpoint, this 

result does not imply that the fully flexible model should be used for detrending the data 

– doing so will be at odds with the goal of separating the yield shocks from trend effects.  

The LOESS yield trend provides some flexibility to f(t) over the linear model while 

minimizing the chasing of the stochastic yield shocks. 

 Figure 2a plots the yield per planted acre trend for corn for grain and silage over 

1946 to 2006 and 2b over 1975 to the present.  As the figures show, the nonparametric 

trend is roughly linear, whether over 1946 to the present or over the more narrow span of 

1975 to 2005 that we use later in the analysis. Figure 2a shows the pre-1940s yields to 

demonstrate the that most yield growth over the last century dates from the post Second 

World War period, with an annual postwar growth rate of 2.81 percent.  The dashed lines 

in Figure 2a represent hypothetical 99 percent confidence intervals assuming a constant 

coefficient of variation over 1946 to 2005, where the estimated coefficient of variation is 

calculated from detrended yield over 1996 to 2005.  These confidence bands suggest that 

the increase in yield and in its standard deviation have been roughly proportional over 

time, thereby providing some justification for using historical corn yields as a guide to 

future corn yields.  Figure 3 presents the deviations in actual corn yields from expected 

yields over the 1950 to 2005 period. The variability in the data in the figure suggest that 

one will need more years of observed data to determine whether or not corn varieties are 

becoming significantly less sensitive to weather shocks over time. 

 Given the estimated trend yields as the predictions of E(Yt), we can construct 

 and estimate the relationship between it and  d
tYΔ tPΔ . In particular, we assume that  
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tPΔ  can only be partially explained by , and that the uncertainty in this relationship 

can be incorporated into the empirical distribution.  We do so by specifying  as  

d
tYΔ

tPΔ

(3)  = tPΔ ( )t
d

t zYg ,Δ  + εt,   

where εt is i.i.d. with mean 0 and variance  given2
εσ { }td

t zY ,Δ .3   We expect that 

d
t

t
Yd

Pd
Δ

Δ < 0, that is, the greater the realization of national average yield over expected 

national average yield, the more likely harvest time price will be lower than expected 

price.   

 Based on the econometric estimate of the function for tPΔ , we can then generate a 

distribution of estimates of  , or tPΔ [ ]( )t
d

tgt zYgP ,ˆ ΔΔ , for each .  As will be 

explained in the next section, to reduce the potential for bias due to the misspecification 

of equation (3), we utilize a semi-nonparametric (SNP), or flexible, econometric 

approach as a specification check on a parametric estimate of g(.).  

d
tYΔ

   

Semi-nonparametric estimation of the price-yield relationship 

A potential drawback of a parametric model for the estimation of equation (3) is that it could 

potentially be subject to biases associated with incorrect specifications of functional form of 

g(.). As a specification check on a parametric model, we use the Fourier flexible functional 

form (e.g., Fenton and Gallant, 1996) to model equation (3). The Fourier functional form is 

one of the few functional forms known to have Sobolev flexibility, which means that the 

difference between a function g(x,θ) and the true function f(x) can be made arbitrarily small 

for any value of x as the sample size becomes large (Gallant, 1987). Letting xt represent the 

 8



vector of explanatory variables in equation (3) with 3 or more unique values each, our SNP 

specification of g(x,θ) is:  

(4) ,     ( ) ( )[ ] ( )[(∑∑
= =

′−′+′==
M

m

L

l
tmjilmjtmjlmjtttt slwslvgY

1 1
sincos, xrxrβxθx ])

where the   vector xt contains all arguments of the utility difference model, k  is the 

number  of coefficients in θ, which consists of the β, vlm, and wlm coefficients to be 

estimated,
 M and L are positive integers, and  rm  is a 

1×p

1×p  vector of positive and negative 

integers that forms indices in the conditioning variables and that determines which 

combinations of variables in xt from each of the transformed variables.4  The integer m is 

the sum of the absolute value of the elements in the multi-indexes in vector rm  and L is 

the order of the transformation, and is basically the number of inner-loop transformations 

of xt. For example, if xt contains 3 variables and M = L= 1, then the rm vectors are (1,0,0), 

(0,1,0), and (0,0,1), resulting in k = 9 (not counting the constant). The  function s(xi) 

prevents periodicity in the model by rescaling xt so that it falls in the range [0, 

2π−0.000001] (Gallant, 1987).  This rescaling of each element in xt is achieved by 

subtracting from each element in xi its minimum value (from across the sample), then 

dividing this difference by the maximum value (from across the sample), and then 

multiplying the resulting value by [2π−0.000001].  For example, if bid is the only 

explanatory variable, then rm is a (1x1) unit vector and max(M) equals 1.    If a variable 

has only three unique values, then only the v or w transformation may be performed.  A 

dummy variable is not transformed. In practice, the level of transformation embodied in 

M = L= 1 generally adds sufficien

1×p

t flexibility to the model, and the parametric model is 

nested in the SNP model.    
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 A formal criterion for choosing M and L is not well established.  Chalfant and 

Gallant (1985) suggest a rule of thumb that the dimension of θ = N2/3.  Asymptotic theory 

calls for θ = N1/4 (Andrews, 1991), but Fenton and Gallant note that θ  = N1/2 is likely to 

be more representative of actual practice.  Hong and Pagan (1988) found that the Fourier 

approximation had low bias in the estimators even for sample sizes as low as n = 30. 

 Taken individually, Fourier coefficients do not have an economic interpretation. 

To give those regression coefficients an economic interpretation, they must be re-

expressed in terms of the base variables. One way to do this is to evaluate ∂g(x,θ) / ∂x, 

noting that  

(5) [ ] [ ]( )∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

′+′+=∂
∂ A J

j
jj sjwsjvjx

g
1 1

)(sin)(cos2),(
α

ααααα
θ rxrxrbx .   

 

Generating the empirical distribution of payments 

To generalize our empirical distribution of payments, we use a general bootstrap method 

that can allow for flexible right-hand-side regression modeling and allow for modeling 

interactions between variables. In particular, we use a bootstrap approach in a joint 

resampling methodology that involves drawing i.i.d. observations with replacement from 

the original data set (Efron, 1979; Yatchew, 1998).  The bootstrap data-generating 

mechanism is to create replications by treating the existing data set of size T as a 

population from which samples of size T are extracted. Equation (3) is re-estimated for 

each of these bootstrapped data sets. Variation in estimates results from the fact that upon 

selection, each data point is replaced within the population.  We use this standard 

bootstrap to generate a distribution of tPΔ  given .    d
tYΔ
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Data 

Data on planted yields and acres for corn are supplied by the National Agricultural 

Statistics Service (NASS) of the U.S. Department of Agriculture.  As payments can be 

collected for corn for silage as well as corn for grain, and because silage can be a 

significant portion of corn production in some regions outside the Heartland, we merge 

together data on corn for grain and corn for silage.  We convert tons of silage to bushels 

using a conversion rate of 7.94 bushels per ton, as per FSA (2006). 

 Since we use national level yield figures for our analysis, we simplify Equation 

(1) by not adjusting the national loan rate for county-specific and quality factors.  In 

addition, since we use the national loan rate, we also use the actual national market price 

as the alternative loan repayment rate rather than the institutionally-determined “posted 

county prices.”    

 In particular, for Pt, we use the average of the daily December prices of the 

December CBOT corn future in period t.  Note that perhaps a better consensus for a 

harvest time price would perhaps be the average of the November prices, but we are 

interested in modeling the prediction of the price when LDPs are most likely to be taken, 

and not the harvest time price. 5  For the expected value of price Pt, or E(Pt),  we utilize a 

non-naive expectation, namely the average of the daily February prices of the December 

Chicago Board of Trade corn future (CBOT abbreviation CZ) in period t, t = 

1975,…,2005.  While we have prices back to 1969, the data before the mid-1970s does 

not reflect China and Russia as regular participants in global grain markets, and is 

unlikely to be representative of contemporary global markets.  The immediate post-

harvest time price Pt is the average of the daily December prices of the December CBOT 
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corn future in period t. The choice of expected corn price is consistent with that of the 

USDA’s Risk Management Agency in pricing certain crop revenue insurance products 

for corn.   To best match the price deviations, the yield deviations are estimated using the 

nonparametric specification of expected yield estimated over the same time period of 

1975 to 2005. The data in Figure 4 suggests that this time span strikes a balance between 

covering a representative range of yield shocks while at the same time modeling the 

price-yield relationship over a span more likely to represent the future. 

 

Analytical results 

Table 1 provides the econometric results for the parametric and the SNP models over 

1975 to 2005. The dummy variable FarmAct takes the value of “1” for years 1996 and 

above (and 0 otherwise), reflecting the Federal government being out of the commodity 

storage business under recent Farm Acts.  We would expect the market to be more 

efficient in predicting harvest time price without the government build-up of stocks, 

suggesting a negative sign for  FarmAct. Regression results show its coefficient to be 

negative and significant at the 10 percent level in the parametric regression and 12 

percent in the SNP regression.  Of course, being a dummy variable, FarmAct is treated as 

fully parametric in the SNP regression.  

 In addition to the t-statistics for the actual data, the table presents confidence 

intervals for the regression results that were produced with the bootstrap approach using 

1,000 simulated data sets.  The confidence intervals presented in Table 1 are constructed 

from the regression results on each simulated data set and are of the bias corrected 

accelerated (BCa) type (Efron, 1987), which gives the bootstrap results an interpretation 

 12



analogous to t-statistics by making the estimated confidence interval symmetric around 

the mean.  Using this statistic, the coefficient on FarmAct on the SNP regression is 

significantly different from 0 at the 10 percent level. 

  The coefficient on  is significant at the 1 percent level in both regressions. 

The higher order transformation terms in the SNP regression are not significant, and the 

value for 

tYΔ

tt YdPd ΔΔ  is nearly the same for both regressions.6  In fact, a likelihood ratio 

test cannot reject the hypothesis of the equivalence of the parametric and SNP results.    

 While the expectation is that the within season yield change would be the most 

significant explanation of within season change in corn prices – and the R2 values show 

that over 50 percent of the variation in the within season change in corn prices is 

explained by the within season change in corn yields –  other potential nonendogenous 

explanatory variables were examined as well. These included tYΔ  for corn produced in 

the rest of the world, which was not significant in explaining tPΔ  for U.S. corn.    The 

 for soybeans was not included in the regression as the correlation coefficient 

between  for soybeans and  for corn is quite high, as one would expect, at 0.74.  

A proxy for the  for corn in the regression is the 

tYΔ

tYΔ tYΔ

tYΔ tYΔ  for all U.S. feed grains. 

However, substituting this latter value for the former produced almost identical 

regression results, suggesting that corn is the driving force in producing within season 

changes in corn prices.7   Also examined was the change in the corn trade-weighted U.S. 

exchange rate (Economic Research Service, 2007) between the beginning of the crop 

year and the end of the crop year, and the change in GDP between the first quarter and 

the fourth quarter of the calendar year.  Neither variable was significant in the regression. 
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Another factor that could explain within season change in corn prices is the stocks-to-use 

ratio, but variables such as this were not included in the analysis as our goal was to model 

corn price change in a reduced form purely as a function of exogenous shocks, and in 

particular, yield uncertainty.  We treat all other variables as exogenous shocks via the 

error term in Equation (3). 

 To generate the forecast of the probability distribution of LDP payments, we use 

the regression results of the bootstrap analysis discussed above to generate the 

distribution of price shocks associated with each yield shock. Specifically, the simulated 

(1 x G) vector  = { , ,…, } corresponding to each deviation in planted 

yield  is generated from coefficients sets corresponding to the G = 1,000 

bootstrapped data sets, with FarmAct set equal to 1 in the equation to adjust the 

predictions of  to reflect the post-1996 Farm Act regime:

tP̂Δ tP1̂Δ tP2
ˆΔ GtP̂Δ

d
tYΔ

tPΔ 8

(6)   t = 1,…,T and g = 1,…,G tg
d

tgggt FarmActYP δββ ˆˆˆˆ *
21 +Δ+=Δ

To increase the smoothness in the empirical distribution of the forecast, is divided 

into T = 1,000 increments in the ascending sequence = {min( )…max( )}.  

The end result is therefore a 1,000,000 x 1 vector of estimated price shocks. 

dYΔ

*d
tYΔ d

tYΔ d
tYΔ

 For our example, we forecast the 2005 LDP distribution at the beginning of the 

2005 crop year. The estimated price deviation   used to derive the harvest time price 

in 2005, ,  is determined as 

gtP̂Δ

2005
ˆ

gP ( ) ( )1ˆˆ
20052005 +Δ⋅= gtg PPEP . Since LDP payments are 

based on cash prices, and since the deviation in cash and futures prices are quite close, we 

set E(P2005) to the February cash price for that year ($1.86/bu., Illinois No. 2 yellow 

Corn), and thus, remove the need to add  the basis to the price prediction to convert from 
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futures to cash prices. We assume that the producers take out the LDP on total farm 

production of corn for the crop year, where  =   · , where  is the 

planted corn acreage in 2005.  

2005Q̂ 2005A *d
tY 2005A

 

Discussion of Results 

Given the February 2005 cash price of $1.86 per bushel, planted acres of 81.76 million, 

and the 2005 Farm Act loan rate of $1.95 per bushel for the 2005 crop year, the mean and 

standard error of the forecasted LDPs for December 2005 are $3.01 and $2.78 billion, 

respectively. The 90 percent confidence interval is   $0.00 to $8.00 billion, and the 

coefficient of variation = 0.924.  This band may seem wide, but actual LDPs do vary 

greatly from year to year, and include $0 payments some years. Note that the actual total 

corn LDP payment of $4.3 billion for the 2005 crop year is within this 90 percent 

confidence interval. 

 Figure 4 summarizes the bootstrap results at each yield deviation increment using 

the 2005 expected price and planted acreage.  Read vertically, it gives the mean and 90 

percent confidence interval in LDPs associated with each yield shock relative to the 2005 

expected yield. The vertical dotted line represents the actual 2005 baseline yield level 

(i.e., yield deviation is zero).  As the figure suggests, the estimated price in February 

2005 was low enough that it would have taken substantial yield shortfalls to reduce LDP 

payment to zero that year.   

 Our approach can be used to predict the distribution of LDPs as a function of 

other market conditions at planting time. Figure 5 presents the mean LDP payments for a 

range of expected prices listed in the figure, where again, expected price is taken as that 
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in February.9  As expected, payments fall substantially as the expected price increases. 

We do not examine payments under expected prices lower than the $1.86/bu value of 

February 2005, as in real terms, prices have not been much lower than that in recent 

years.  

 Mean LDP payments effectively fall to zero when expected prices reach $2.90, 

although at that price and at the maximum observed percent yield increase, the 90 percent 

upper bound is $0.54 billion (not shown in figure).   With the biofuel-induced February 

2007 price of $3.90, the forecasted 90 percent upper bound for LDP payments in 

December 2007 is $0 for any feasible yield increase.  

 

Future Research Directions 

In the options literature, an American put option is one that can be exercised before its 

expiration. For example, the LDP based on daily posted county prices is equivalent to an 

American put with payment based on the end of May price (the end of the LDP 

availability period). However, with an American option, payment can be taken early by 

exercising the option, i.e., taking payment on the current price.  Option pricing theory 

implies that this type of option will be exercised and the underlying asset (corn in this 

paper) sold when the option time value falls to zero (Stoll and Whaley, 1993, pp. 187- 

190).  Exercising an option in our context here is taking the LDP payment.  Gaming with 

this type of option refers to waiting for the option’s time value to fall to zero.  Time value 

sometimes falls to zero when there is a short-term aberration in the county posted price.   

 The USDA (2007) proposed LDP payment based on the average posted county 

price for a month is equivalent to an average price European option. The option expires at 
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the end of month for which the average price is calculated. There is no gaming with this 

option because it cannot be exercised if posted county price takes an unexpected dip.  

Future research could examine the producer’s timing of taking LDP using Stoll and 

Whaley’s American option pricing model (Stoll and Whaley, 1993). This approach could 

aid in understanding producer behavior by determining if LDP payment timing decisions 

are influenced by option time value. 
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Endnotes 

                                                 

d
tYΔ tYΔ

tY

1 USDA (2007) recommends that the monthly PCP be an average of five daily PCPs on 

pre-set days during the previous month, excluding the high and low daily PCP.   For the 

sake of generality in our application, we assume that the monthly average PCP would be 

calculated as a simple average over the whole calendar month.   

2 The level of correlation between cash and futures prices for corn depends to some 

extent on the time span examined, but Plato and Linwood (2007) find it to be at least 

0.95. 

3 For the purposes of the regression itself, either or can be used as the 

difference between the two is simply that the former is expressed with respect to a 

particular base year.   

4 In addition to appending xβ to the Fourier series in Equation (4), Gallant suggests 

appending quadratic terms when modeling nonperiodic functions.  Our experiments 

suggest that inclusion of the quadratic terms as well in the regressions had little impact on 

the slope estimates. Hence, we leave them out for the sake of efficiency. 

5 These same products use the November price of the December contract as the harvest 

time price for corn. We depart a bit from RMA practice by calculating average price over 

a whole month instead of a portion of the month. 

6 These results also hold for the analysis of the data over 1969 to 2005, which is available 

upon request.  

7 The correlation coefficient between Δ  for U.S. feed grains and tYΔ  for U.S. corn is 

0.96. 
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8 Note that as the FarmAct coefficient is not strongly significant in the SNP regression, it 

would not be expected to have much of an impact on the predicted price deviations. 

Nonetheless, it still needs to be included given that FarmAct was one of the regressors 

included in the regression upon which the prediction is based.  

9 Farmers would be expected to change their planted acres in response to changes in expected price.  For 

the purpose of this simulation, we use a simple a simple single crop acreage response model that assumes a 

Cobb-Douglas functional form, i.e.,  ( ) βα tt PEAcres ⋅=

( )
⎩
⎨
⎧

>
≥

= .Feb
t

Feb
t

Feb
t

t PLRifLR
LRPifP

PE

.  We assume a corn acreage supply elasticity 

of 0.303, a value which is used for certain USDA market analysis procedures (e.g., the Partial Equilibrium 

Agricultural Trade Simulator [PeatSim] model).  We calibrate the model for 2005 expected price and 

planted acreage data to derive α.  In calibrating the acreage response model, as the loan rate is effectively 

the farmer’s price floor (e.g., Chavas and Holt, 1990),  the farmer’s expected price can take one of two 

values, .   Given this calibration of the acreage response 

model, we can estimate the planted acreage associated with each alterative expected price 

(ceteris paribus) scenario, and forecast the LDP payments. 

 19



References 

Andrews, D. “Asymptotic Normality of Series Estimators for Nonparametric and 

Semiparametric Regression Model.” Econometrica 59(March 1991): 307-345. 

Chalfant, J. and A. Gallant, “Estimating Substitution Elasticities with the Fourier Cost 

Function: Some Monte Carlo Results,”  J. Econometrics 28(May 1985):205-222. 

Chavas, J. and M. Holt. “Acreage Decisions Under Risk: the Case of Corn and 

Soybeans,” American Journal of Agricultural Economics 72 (1990): 529–538. 

Cleveland, W and S. Devlin, “Locally Weighted Regression: An Approach to Regression 

Analysis by Local Fitting”, J. Amer. Statist. Assoc., 83(Sep., 1988):596-610. 

Cleveland, W. “Robust Locally Weighted Regression and Smoothing Scatterplots,” J. 

Amer. Statist. Assoc., Vol. 74 (Dec., 1979), pp. 829-836. 

Economic Research Service. “Agricultural Exchange Rate Data Set,” U.S. Department of 

Agriculture, Washington, DC,  March 2007 update.   

Efron, B. “Better Bootstrap Confidence Intervals.” J. Amer. Statist. Assoc. 82(1987):171-

185. 

Efron, B. “Bootstrap Methods: Another Look at the Jackknife,” Annals Statist. 7(1979: 

1–26. 

Farm Services Agency, 2006. “Direct and Counter-Cyclical Program 1-DCP Amendment 

38”, U.S. Department of Agriculture, August 4, 2006. 

Farm Services Agency 2003. “Nonrecourse Marketing Assistance Loan and Loan 

Deficiency Payment Program,” Fact Sheet, U.S. Department of Agriculture, 

Washington, DC, June 2003. 

 20



Fenton, V., and A. Gallant. “Qualitative and Asymptotic Performance of SNP Density 

Estimators.” J. Econometrics 74(1996):77-118. 

Fenton, V. and Gallant, A. “Qualitative and Asymptotic Performance of SNP Density 

Estimators,” J. Econometrics 74 (1996):77-118. 

Gallant. A “Identification and Consistency in Semi-Nonparametric Regression.” 

Advances in Econometrics, T. F. Bewley, ed., pp. 145-169, New York: 

Cambridge University Press, 1987. 

Gallant, A. "Unbiased Determination of Production Technologies. J. Econometrics 

20(1982):285-323. 

Greene, W. Econometric Analysis, 4th Edition, Prentice Hall, 2004. 

Hong, Y and Pagan, Adrian, 1988. "Some Simulation Studies of Nonparametric 

Estimators," Empirical Economics, Springer, vol. 13(3/4), pages 251-66. 

Plato, G. and L. Hoffman. “Measuring the Influence of Commodity Fund Trading on 

Soybean Price Discovery,” paper presented at the NCCC-134 Meeting on Applied 

Commodity Price Analysis, Forecasting, and Market Risk Management, Chicago, 

Illinois, April 16-17, 2007 

Stoll, H. and R. Whaley.  Futures and Options: Theory and Applications, South Western 

Publishing Co., Cincinnati, Ohio, 1993. 

USDA. “USDA 2007 Farm Bill Proposals,” USDA, Washington DC, February, 2007. 

Yatchew, A. “Nonparametric Regression Techniques in Economics,” J. Economic Lit., 

Vol. XXXVI (June 1998): 669-721. 

 
 

 21



0

2

4

6

8

10

12

14

O N D J F M A M

Month

Figure 1. Month in the LDP availability period with the lowest monthly average price 
Frequencies are calculated over October 1969 through May 2006 corn price data.
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Note: Prices are the CBOT prices for the December corn futures contract.
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Figure 2a. National Average Yield per Planted Acre of Corn for Grain and Silage
Annual growth rate in trend yield is 2.81 percent, or 1.95 bushels, over 1946 - 2006.
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Figure 2b. National Average Yield over 1975 - 2005
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Figure 3. Deviation in Actual Yield from Expected Yield for Corn
Deviations derived from the nonparametric yield trend.

Percent change

 
Note: Yield is defined as yield per planted acre of corn for grain and silage
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Table 1. Parametric and Semi-Nonparametric (SNP) Regression  
Results for the Function Explaining tPΔ   
 
Variable Parametric SNP 
   
Constant -0.054902 -0.053 
 (-1.878){-0.103, -0.008} (-2.000){-0.101,  -0.006} 
   

tYΔ  -1.334 -1.284 
 (-5.154){ -1.794, -0.889} (-4.547){-1.757,  -0.827} 
   
sin s( ) tYΔ  –  0.008 
  (0.495){-0.020, 0.036} 
   
cos s( ) tYΔ – 0.004 
  (0.248){-0.026, 0.035} 
   
FarmAct -0.081 -0.079 
 (-1.838){ -0.144,  -0.020} (-1.602){-0.155, -0.006} 
   
Ln-L 24.738 24.918 
R2 0.529 0.534 
   

tt YdPd ΔΔ  -1.334 -1.329 
 {-1.796, -0.891} {-1.803, -0.887} 

 
Notes: T-values are shown in parentheses.  
The BCa 90% confidence intervals apply the bias corrected accelerated approach (Efron) to  
1000 bootstrap runs, and are shown in brackets. 
For the parametric case, the parameter value for tt YdPd ΔΔ  is the same the coefficient on .  tYΔ
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Figure 4. LDP Payments as a Function of  Yield Shock  –  Corn
The results are derived from the boostrap analysis of the parametric model.
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Figure 5. Forecasted Mean LDP Payments for a Range of Expected Prices –  Corn

LDP (Billion $)

E(P) = $1.86/bu. 

E(P) = $2.20 

E(P) = $2.70 

Note: At E(P) = $1.86, the producer's effective price is the $.195 loan rate.
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