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I. Introduction 

Nonpoint source (NPS) pollution from agriculture remains a major source of water degradation 

in the U.S. despite the devotion of substantial resources to its control over the past two decades. 

By definition, NPS pollution comes from many sources whose contributions to water pollution 

are hard to measure. Numerous economic studies have investigated the efficiency of different 

policy instruments in this context; Shortle and Horan (2001) provided an excellent survey of the 

literature.  

However, some attributes of NPS pollution that can be critical in the design of policies 

have received little attention. The first is that there are multiple NPS pollutants which may 

interact with each other, including nitrogen, phosphorous, sediment, pathogens, and pesticides. 

Conservation practices that are effective at controlling one pollutant are not necessarily equally 

good at controlling other pollutants. A second understudied feature of NPS pollution control is 

the multiple spatial scales at which water quality standards may be set. For example, there may 

be distinct phosphorus standards at upstream and downstream subwatersheds based on the 

conditions of each subwatershed. Control measures taken to meet the upstream standard may be 

adequate to meet or exceed the downstream standards, or actions to meet those standards might 

actually exacerbate the downstream problems. Another characteristic of NPS pollution control is 

that multiple conservation practices can be implemented simultaneously in the same field and 

different fields within a watershed can have distinct practices. Some practices achieve more 

pollution reduction than others on a given field. Moreover, the effectiveness of a given 

conservation practice on a given field depends on the conservation practices and cropping 

systems in place elsewhere in the watershed. In other words, off-site impacts of land use on any 

given field in a watershed are endogenous to land use choices on other fields of the watershed.  
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 In this study, we examine the policy implications of these three attributes of NPS 

pollution using a spatially explicit model of a large and critically important agricultural region: 

the Upper Mississippi River Basin in the central U.S. Specifically, we study (1) the tradeoffs 

between the costs of pollution control and the level of water quality; (2), the tradeoffs between 

meeting the water quality targets of different pollutants; and (3) the tradeoffs between meeting 

water quality targets at different spatial scales. While the fact that higher control costs are 

necessary to achieve larger water quality improvements is intuitive, the nature of the second and 

third tradeoffs is less obvious and will depend on the nature of the pollutants and the physical 

conditions of a watershed. In this paper, we will quantify these tradeoffs and explore the 

subsequent policy implications.  

To empirically estimate these tradeoffs, we develop a modeling framework that (a) 

realistically incorporates the key attributes of NPS pollution and (b) is able to approximate the 

efficient solutions by optimally choosing the set of conservation practices for each field. Neither 

(a) nor (b) is an easy task, as manifested by the dearth of economic studies that reflect both 

features. Instead, economists have in general utilized simplified representations of the 

biophysical process of water pollution so that optimization could be performed with conventional 

approaches. For example, early studies used a simplified model with fixed, exogenous pollution 

delivery coefficients (e.g., Montgomery, 1972; Ribaudo, 1986 and 1989).  Given such 

assumptions, it is straightforward to solve for cost-efficient allocations of pollution abatement 

using calculus-based constrained optimization techniques.  

Development in the past two decades of realistic, physically-based, spatially distributed 

hydrologic simulation models highlighted the fact that field-level off-site impacts are 

endogenous and led several economists to incorporate some features of these models into their 
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analyses via one of two approaches: full spatial optimization using a simplified version of the 

hydrologic process or incorporation of the hydrologic process but comparing the efficiency of a 

few select scenarios without explicit optimization. 

One example of the first type is Braden et al. (1989), who separated a watershed into 

hydrologically independent flow paths and use a hydrologic model to estimate the impact of 

various management alternatives for the flow paths on the resulting sediment yield. As a result, a 

problem of finding cost-efficient sediment reduction solutions becomes a variant of the knapsack 

model in operations research. A study by Khanna et al. (2003) provides another good example of 

the ingenuity demonstrated by researchers to cope with the problem’s complexity. The authors 

capture the interdependencies between upslope and downslope parcels by using coefficients 

derived from a hydrologic model. They restrict their attention to three parcels up from a stream, 

and to two alternatives on each parcel: crop production and land retirement.  

A drawback to these approaches is that hydrologic models developed for the entire 

watershed are broken up; hence, one does not get the full benefit of a hydrologic simulation 

model. By contrast, studies that incorporate the complete hydrologic simulation models typically 

have not attempted optimization of land use choices. Instead, alternative land use change 

scenarios that achieve the pollution reduction goals are evaluated (e.g., Secchi, et al. (2005)). 

Agricultural engineers have recently examined the cost of NPS control with integrated 

modeling systems that incorporate the full water quality models into optimization routines that 

are capable of finding the optimal or near optimal solutions to a problem otherwise intractable 

with conventional optimization methods. Arabi et al. (2006) and Srivastava et al. (2002) are two 

outstanding examples. However, these studies are done at a very small scale (smaller than 15km2 

versus 492,000 km2 of our study region). In addition, none of these studies examined explicitly 
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the tradeoffs between different NPS pollutants and the tradeoffs between meeting targets at 

different spatial scales both of which are important policy issues in the control of NPS pollution. 

In this paper, we develop a modeling framework that closely integrates an optimization 

methodology with a biophysical model. The full biophysical model, not simplified proxies, is 

employed. Second, the modeling framework is built at a regional scale to facilitate the 

investigation of relevant policy analyses related to the growing “dead zone” in the Gulf of 

Mexico and the tradeoff between regional and local pollution reduction targets. Third, we derive 

the conservation production possibility frontier that explicitly incorporates the tradeoffs between 

pollution control costs and water quality benefits, between different pollutants, or between 

different control targets. Although the empirical results of our paper may be specific to the 

region and pollutants considered in our study, the modeling framework and the issues raised in 

the paper have wide applications in the NPS control of any watershed or area.  

The rest of the paper is organized as follows. In the next section, we first set up a 

conceptual framework for water pollution control in a watershed. Then we introduce an 

empirical modeling framework that integrated a water quality model and an optimization 

algorithm. After that, we describe the study region, the pollutants, and the implementation of the 

empirical algorithm. Results are presented in section 6 with regard to the three tradeoffs we 

discussed above. The final section provides concluding remarks. 

 

II. Theoretical framework 

Suppose there is a watershed with subwatersheds. In each subwatershed J j , there are jK  fields 

each of which has its own unique land characteristics and land management practices. A set of 

conservation actions, jkx , can be taken for field  of subwatershedk j  in order to improve the 
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environmental conditions of the watershed. The vector jkx has I elements, which indicate the 

adoption of a set of I distinct conservation practices. That is, if conservation practice, , is taken, 

then ; otherwise,  for all 

i

1jkx =i 0jkx =i 1,2,......i I= . Note that more than one conservation 

practice can be adopted on a field so multiple elements of this vector can be non-zero. For ease 

of reference, we will denote the conservation actions in all fields of the whole watershed as X , 

i.e., . In other words, ( , ,...... , ,... ...... , ,... )
1 211 12 1K 21 22 2K J1 J2 JKX ; ;= x x x x x x x x x

J
X  is a collection 

of conservation actions planned for the watershed. The impacts of any jkx are likely to be 

affected by conservation actions on other fields of the watershed. Thus, for convenience, we will 

refer to a set of conservation actions planned for the entire watershed, X , as a single plan.  

The environmental impact of X is denoted as Y  where Y  is a vector with  elements, 

i.e., . Each element represents one environmental indicator; for example, 

can be any pollutant (nitrogen, phosphorus, etc) loading at the watershed outlet; or some 

index of local water quality indicators. The relationship between Y and 

N

1 2( , ,...... )NY y y y=

ny

X  is denoted as  

(1) , ( ; )n ny f X Z=

for all , where 1,2,......n N= Z is set of factors that affect  but are not part of the conservation 

plan such as soil and land characteristics, crop rotations and other crop management practices, 

climate, etc. Potentially, Z represents a collection of all the land and climate characteristics for 

each field in each watershed.  

ny

One important note on (1) is that an environmental indicator , , can be affected by 

conservation actions on fields within its own watershed as well as any watershed that drains into 

the watershed.   One contribution of our paper is that our modeling framework realistically 

represents such interactions.  

ny
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Denote T as the conservation possibility set that gives all feasible combinations of 

conservation plans and environmental outcomes. In other words, T  is the set of all ( ,  

combinations that are technically feasible given the existing state of technology. The cost of a 

conservation plan is represented by a cost function . In general, different conservation 

plans will result in different costs and different environmental outcomes. Thus, one obvious goal 

of watershed management is to achieve a desirable tradeoff of costs, , and benefits, Y . In 

addition, watershed stakeholders may value different environmental indicators differently. For 

example, a local watershed may have a goal of reducing its phosphorous loading in its lakes but 

does not feel the need to have its nitrate loading reduced, which may be a concern regionally. 

Thus, there can be tradeoffs among the different elements of Y .  

)X Y

( )c X

( )c X

These tradeoffs can be identified through the following multi-objective optimization 

problem: 

(2)  
1 2min     [ ( ),  , ,...... ]

. .,         ( , ) .

Nc X y y y
s t X Y T∈

The set of solutions to (2) consists of all conservation plans that are Pareto-optimal. A 

conservation plan X is Pareto-optimal if there is no ( ', ')X Y T∈  such that ( ') ( )n nf X f X≤  and 

, for all , and ( ') ( )c X c X≤ {1,2, , }n N∈ … {1,2, , }m N∈ … , such that ( ') ( )m mf X f X<  or 

. In other words, the solutions to (2) together make up the efficiency possibility 

frontier given T  and . Since this frontier is conceptually very close to the standard 

production possibility frontier (PPF) in production economics, we will simply refer to it as the 

conservation PPF.  

( ') ( )c X c X<

( )c i

To illustrate the tradeoffs, suppose N=2. We can consider  and  as the nitrogen and 

phosphorus runoff at the watershed outlet, respectively. Alternatively, these indicators might be 

1y 2y
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the local and regional targets for phosphorus. Then the conservation PPF based on problem (2) 

has three dimensions: . One way to interpret this PPF is that it represents the least 

cost necessary to achieve the two environmental outcomes . In our analysis, we 

empirically identify this conservation PPF for our study region. To gain a clear picture of the 

tradeoffs, we can also break down the three dimensional PPF into different two dimensional 

PPFs that are most often used in economic analysis. For example, we can derive a PPF for 

, which is essentially a cost curve for , while holding  at a prefixed value. In 

practice, this can mean that the watershed planner intends to identify the tradeoffs between 

conservation costs and phosphorous loading while insuring the attainment of a nitrogen target, 

set to meet some ecological needs such as the mitigation of the Hypoxic zone in the Gulf of 

Mexico. Similarly, we can derive a two dimensional PPF for  while holding  at a 

prefixed value. This is essentially an output transformation curve for a given cost. This curve 

depicts the combinations of nitrogen and phosphorous loadings that are possible under a given 

budget.  

1 2( ),  ,c X y y

1 and y 2y

2y

2( ) and c X y 2y 1y

1 and y ( )c X

The shape of the output transformation curve at a given cost, and thus the shape of the 

cost curve of for a given , will critically depend on T , the conservation possibility set. In 

other words, they will depend on the functions 

2y 1y

1( )f X  and 2( )f X . At one unlikely extreme, 

there may be a one-to-one correspondence between and , e.g., .  

In this case, the output transformation curve for and at a given cost degenerates to a single 

point, as shown in Figure 1(a). This happens if the impacts of conservation practices are 

proportional with respect to and , and such impacts are the same across different fields. At 

another unlikely extreme, all conservation practices that affect have no impact on  and 

1y 2y 2 2 1 1( ) ( )y f X y f Xα= = =

1y 2y

1y 2y

1y 2y
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those that affect  have no impact on . A single practice that exhibits this property is the 

reduced application of nitrogen or phosphorous fertilizers. In that case, the output transformation 

curve for and at a given cost appears as in Figure 1(b). In particular, both ends of the curve 

touch the axes. Essentially, the funding is split between the control of and . The share of 

each pollutant control can range from zero to one hundred percent. More generally, most 

conservation practices have some impact on both pollutants, which implies that a conservation 

plan will reduce both pollutants even though the degree of reduction may vary across the 

pollutants. Thus, the transformation curve often looks as illustrated in Figure 1(c), with some 

distances between both ends of the curve and the axes.  

2y 1y

1y 2y

1y 2y

Basically, the different forms of the output transformation curves imply the different 

flexibility that watershed managers have in setting targets for different environmental outcomes. 

Figure 1(a) implies there is no flexibility at all—setting a target for is equivalent to setting a 

target for . On the other hand, in a Figure 1(b), the targets are not linked at all which allows 

complete freedom in setting the targets. In the more realistic case, as shown in Figure 1(c),  

setting a target for one pollutant will have some implications for the other pollutant but there 

would be some flexibility for watershed planners. In practice, how much flexibility there is will 

depend on the characteristics of the watershed, the nature of the pollutants under consideration, 

and the practices that are included in the portfolio of pollution control.  

1y

2y
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Figure 1. An illustration of the output transformation curve at a given cost 

2y  
0 

(a) One-to-one correspondence  
between 2y and 1y  

1y  

2y  
0 

1y  

2y  
0 

1y  

2
,l Ay

 
2
,u Ay

(b) Practices having separable 
impacts on 2y and 1y  

(c) The general case 

 

 

III. An integrated empirical modeling framework 

To solve problem (2), we need to know the relationship between water quality outcomes and 

conservation practices, as represented by equation (1). In economic analyses, biophysical 

relationships models are often expressed as a functional form which gives the impression that we 

can apply standard mathematical optimization procedures. However, the relationship between 

water quality and conservation practices is very complex, and often determined by multiple 

processes. For example, to model the nitrogen loading at a watershed outlet, the whole life cycle 

of nitrogen, where mineralization, decomposition, and immobilization are important parts, has to 

be modeled in the watershed. In our empirical analysis, we use the Soil and Water Assessment 

Tool (SWAT) model.  In SWAT, the nitrogen cycle is simulated using two inorganic forms and 

three organic forms. Figure 2 describes the process involved.  
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Figure 2. Nitrogen cycle as simulated in SWAT (adapted from SWAT Theoretical 
Document). 
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To most accurately represent the biophysical processes in a watershed, it is necessary to employ 

the full biophysical model rather than a set of more easily characterizable equations that proxy 

the model.    

 

III.1. A water quality model—the Soil and Water Assessment Tool 

The SWAT model (Arnold et al., 1998; Arnold and Forher, 2005) is a conceptual, physically 

based, long-term, continuous watershed scale simulation model that also operates on a daily time 

step.  In SWAT, a watershed is divided into multiple subwatersheds, which are further 

subdivided into Hydrologic Response Units (HRU) that consist of homogeneous land use, 

management, and soil characteristics.  Streamflow generation, sediment yield, and non-point-

source loadings from each HRU are summed and the resulting loads are routed through channels, 

ponds, and/or reservoirs to the watershed outlet.  Key components of SWAT include hydrology, 

plant growth, erosion, nutrient transport and transformation, pesticide transport, and management 

practices. Outputs provided by SWAT include streamflow and in-stream loading or 

concentration estimates of sediment, organic nitrogen, nitrate, organic phosphorous, soluble 

phosphorus, and pesticides.  Previous applications of SWAT for streamflow and/or pollutant 
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loadings have compared favorably with measured data for a variety of watershed scales (e.g., 

Arnold and Allen, 1996; Arnold et al., 1999, 2000; Santhi et al., 2001; Borah and Bera, 2004; 

Jayakrishnan et al., 2005; Gassman et al., 2007). Arnold et al. (2000) performed a stream flow 

validation study of the UMRB using input data based on the Hydrologic Unit Model for the 

United States modeling framework. The calibration and validation of SWAT for the UMRB 

region can be found in Gassman et al. (2006) and Jha et al. (2006).  

 

III.2. Optimization method—the evolutionary algorithm 

Using SWAT directly in lieu of the function, ( ; )nf X Z , in problem (2) poses practical solution 

challenges. One approach is to run the model for all all possible conservation plans and evaluate 

the cost and the pollution outcome of each combination. The Pareto frontier would then be the 

set of least cost combinations associated with each combination of pollution reductions. 

However, for any realistic watershed problem, this brute force approach is infeasible. 

Specifically, given that there are I  conservation practices possible for adoption on each field 

and there are 
1

J
jj

K
=∑  fields, this implies a total of 1

(
J

jj
)K

I =∑ possible conservation plans to 

compare. In a watershed with hundreds of fields and several conservation practices, this 

comparison quickly becomes unwieldy. The combinatorial nature of the problem was recognized 

by Braden et al. (1989), and was one of the reasons for Khanna et al.’s (2003) decision to focus 

on a narrow band of land around streams.  

Evolutionary algorithms provide a systematic way for searching through large search 

spaces. These algorithms mimic the process of biological evolution, which, in the words of 

Mitchell (1996), “in effect, is a method of searching for solutions among an enormous amount of 

possibilities.” Researchers, beginning with Srivastava et al. (2002) and Veith et al. (2003) have 
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used genetic algorithms (GA) in order to search for single cost-efficient watershed-level 

pollution reduction solutions. However, as discussed in the introduction, these papers focused on 

very small study areas and do not examine the important issues of NPS control considered in our 

study. 

 

III.3. The language and logic of evolutionary algorithms 

Beginning in 1950’s and 1960’s computer scientists came to a realization that the theory 

of biological evolution can be used as an optimization tool for engineering problems. Since the 

field of evolutionary computation owes its origins to observations of biological evolution, the 

terminology used has its analogs in biology, although, typically, the entities used to describe an 

optimization problem are much simpler than the real biological entities bearing the same name. 

A genome (or a chromosome) refers to a complete collection of genes and fully describes an 

individual (a candidate solution in an optimization problem). A set of possible values that any 

gene can take is referred to as an allele set, or alphabet. Often, a genome representing a 

candidate solution is a one-dimensional array, or vector. A gene then is an element of this array 

and encodes a particular element of a candidate solution. A value of a gene comes from its allele 

set, also a vector. Analogous to haploid organisms in real biology, offspring is created from two 

parent individuals.  During sexual reproduction, recombination (crossover) occurs: the 

offspring’s genome consists of portions of each of the two parents’ genomes. As in biological 

evolution, offspring are subject to mutation: a random substitution of a gene’s value with a value 

from its allele set.  
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In this study, the following correspondence between the terminology of evolutionary 

algorithms and entities related to nonpoint source pollution is made. Table 1 provides the 

necessary terms: 

Table 1. Terminology of evolutionary algorithms in relation to watershed optimization. 

Evolutionary computation term Its interpretation in a nonpoint 
source pollution setting 

Allele set A set of mutually exclusive land use 
options and conservation practices 

Individual (genome) A distinct allocation of conservation 
practices and land use options in the 
watershed 

Gene Spatial unit of analysis (HRU) 

 

In this application of evolutionary algorithms to spatial optimization, a genome is a 

vector of length F, where F is the number of spatial decision-making units. Each element of the 

vector (gene) is encoded with a value from the allele set A, and denotes a particular land use 

option.  

As in biological evolution, individuals at every generation form populations, and are 

characterized by their fitness—a score which measures how well each individual is solving the 

optimization problem at hand (for example, a value of an objective function). Individuals 

possessing higher fitness scores are more likely to be selected for reproduction and therefore are 

more likely to pass along the characteristics associated with the candidate solutions they 

represent.  

While there are many variations of evolutionary algorithms, most that can be called 

“genetic algorithms” have the following elements in common: populations of individual 

solutions, selection for reproduction according to fitness levels, crossover to produce new 

solutions (offspring), and random mutation of new offspring.  
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Given that in order to characterize the tradeoffs outlined above, a multiobjective 

optimization problem needs to be addressed, we turn to a class of evolutionary algorithms 

designed to solve multiobjective problems. Recent years have seen emergence of several 

multiobjective evolutionary algorithms. We use an algorithm called Strength Pareto Evolutionary 

Algorithm 2 (SPEA2), developed by Zitzler and Thiele (2002).  

The search process starts with a population of candidate solutions from which a new 

population is created by the process of selection, crossover, and mutation. The fitness score of 

each individual in the population is a function of how many other individuals in the population it 

dominates (in the sense of Pareto) and by how many individuals it is dominated by. The 

algorithm provides an approximate solution to problem (2) by preserving Pareto-nondominated 

individuals, by eliminating Pareto-dominated solutions, and by iteratively creating new candidate 

solutions and assessing how well they perform on the multiple objectives outlined in (2). 

Furthermore, the algorithm takes into account the degree of “crowding” around an individual in 

order to preserve the diversity in the population and to explore a greater region of the objective 

space. Details of the fitness assignment in the algorithm are presented in the Appendix.  

 

III.4. Integrating the optimization algorithm with the water quality model 

In our application, three major components were integrated to arrive at the final modeling 

framework. The first component is the logic and the fitness assignment method of a 

multiobjective evolutionary optimization algorithm, SPEA2. The second component is a publicly 

available C++ library of genetic algorithms, GALib, originally developed by Wall (1996), with 

the current version available online. The third component is the hydrologic model, the SWAT 

model (2005 version), coupled with a Windows-based database control system, i_SWAT (CARD, 
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2007; Gassman et al., 2003). SPEA2 provides the fundamental multiobjective optimization logic, 

while GALib provides the tools that are needed to implement an evolutionary search algorithm. 

Finally, SWAT and i_SWAT provide a way to model the different conservation practices 

considered in this paper and model their watershed-level environmental impacts. 

 

IV. The study region and the pollutants  

The Upper Mississippi River Basin extends from the source of the Mississippi river at Lake 

Itasca in Minnesota to a point just north of Cairo, Illinois. The total drainage area is nearly 

492,000 km2, which lies primarily in parts of Minnesota, Wisconsin, Iowa, Illinois, and Missouri. 

Figure 3 contains a map of the Upper Mississippi River Basin and its position in the central U.S. 

Cropland and pasture are the dominant land uses in the UMRB, which together are estimated to 

account for nearly 67% of the total area (NAS 2000). Nutrient inputs (nitrogen and phosphorus) 

to fertilize the land are the primary sources of nonpoint source pollution in the UMRB stream 

system.  These nutrients are also apparently the cause of a major oxygen-depleted hypoxic or 

“dead” zone in the Gulf of Mexico which has exceeded 20,000 km2 (Rabalais et al., 2002).While 

the task force charged with assessing the causes of Gulf hypoxia in 2000 identified nitrate 

contributions, particularly from the UMRB, as the primary source of the nutrient loading causing 

the problem, more recent evidence suggests that both nitrate and phosphorous loads from the 

region (and elsewhere) are to blame.  
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Figure 3. UMRB and the watershed outlet at Grafton (from Kling et al. (2006)). 

 

While nitrogen and phosphorous loads are believed to be the primary limiting nutrient in the 

dead zone in the Gulf, they are also the culprits of substantial local water quality problems within 

many areas of the UMRB. While phosphorous is more often a target in Total Maximum Daily 

Load programs in the UMRB, there are also many water bodies listed as impaired due to high 

nitrogen concentrations. 

In short, the water quality problems in the UMRB are substantial and multi-faceted.  On the 

one hand, nutrients from the region negatively affect water quality in lakes and streams locally 

throughout the basin, negatively affecting recreation opportunities, wildlife viewing, and 

ecosystem functioning. On the other hand, these nutrients travel out of the watershed and flow in 
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to the Gulf of Mexico where they directly contribute to the large region devoid completely of life. 

No single regulatory authority has identified a standard or set of water quality standards for the 

many impacted lakes and streams in the region, but numerous Total Maximum Daily Load 

regulations, nutrient “criteria,” and “targets” for nutrient reduction are in place or being 

developed by various state and federal agencies. Thus, the model described here representing a 

multitude of  water quality targets at different spatial scales accurately describes the policy 

environment.   

 

V. Algorithm implementation and the allele set  

There are a number of abatement activities that individual farmers can undertake to 

reduce nitrogen and phosphorous transport from their fields.  Various “in-field” conservation 

practices include conservation tillage (where residue from the previous year’s crop is left on the 

ground to help reduce erosion), buffer strips, grassed waterways, as well as complete retirement 

of land from crop production in favor of other uses.1 In addition, nitrogen and phosphorous 

loadings can be directly controlled by reducing the amount of application of nitrogen and 

phosphorous fertilizer to the crop. In this study, we consider several in-field conservation 

practices, a reduction in the quantity of nitrogen fertilizer applied, and retirement of land from 

crop production. With the exception of land retirement, all other practices are modeled in 

conjunction with the cropping system currently in place.2  

                                                 
1 The Conservation Reserve Program (CRP) is a very large, federally funded program that makes direct payments to 
farmers to remove their land from active production and instead plant trees or other perennial ground cover. 
2 Since some conservation practices are currently in place, we assume that the existing conservation practices will 
either remain under new scenarios or be replaced by more costly and effective practices. 

 18



The following table presents the (unconstrained) allele set used in this study. As 

discussed above, for the HRUs which were observed to have the relevant conservation practice 

in the baseline, the allele set was constrained.  

Table 2. Conservation options (allele set). 

Option number Option description 
1 Conventional Till (CT) 
2 Ridge Till (RT) 
3 Mulch Till (MT) 
4 No Till (NT) 
5 CT+Contour 
6 RT+Contour 
7 MT+Contour 
8 NT+Contour 
9 CT+Grassed Waterway 
10 RT+Grassed Waterway 
11 MT+Grassed Waterway 
12 NT+Grassed Waterway 
13 CT+Terraced 
14 RT+ Terraced 
15 MT+Terraced 
16 NT+Terraced 
17 CT+RF 
18 RT+RF 
19 MT+RF 
20 NT+RF 
21 CT+Contour+RF 
22 RT+Contour+RF 
23 MT+Contour+RF 
24 NT+Contour+RF 
25 CT+Grassed Waterway+RF 
26 RT+Grassed Waterway+RF 
27 MT+Grassed Waterway+RF 
28 NT+Grassed Waterway+RF 
29 CT+Terraced+RF 
30 RT+Terraced+RF 
31 MT+Terraced+RF 
32 NT+Terraced+RF 
33 Land retirement 

 

Reduced fertilizer (RF) in the table above refers to a 20 percent reduction in nitrogen fertilizer 

application. The allele set is constructed to take into account the fact that many of the practices 

we consider are not mutually exclusive and can be implemented jointly on any given field.  
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The practices considered are simulated using the SWAT model. In particular, land 

retirement is modeled by assigning a permanent grass cover to the HRU, fertilizer reductions are 

modeled by reducing nitrogen fertilizer applications (USDA-ERS) by 20 percent for all crop 

rotations where nitrogen fertilizer is used, and the in-field practices (tillage, grassed waterways, 

contour farming, and terraces) are modeled by adjusting the SWAT model parameters in a 

manner suggested by Arabi et al. (2007).  

To meaningfully capture a tradeoff between water quality objectives and total control 

costs, detailed information on the costs of all the options in the allele set is needed and came 

from multiple sources. State-level costs of terraces, no till, and contouring were gathered from 

the Natural Resource Conservation Service website3.  The costs of grassed waterways were 

obtained from the CRP program office, and converted to a per acre protected, annualized basis 

using a 5 percent discount rate and a 10 year useful life term.  

The costs of land retirement are proxied by the cash rental rate and the costs of nitrogen 

fertilizer reductions were developed using the yield curves inferred from Iowa State University 

Extension’s N-Rate Calculator information for geographic zones and corn-soybean crop 

sequences for Iowa, Minnesota, Illinois, and Wisconsin. State-level data for fertilizer application 

allowed us to compute the implied reduction in corn yields. Predicted yield reduction, multiplied 

by the price of corn, served as an approximation to the cost of reducing nitrogen fertilizer 

application. Details on the computed cost of nitrogen fertilizer reduction are provided in the 

Appendix.  

                                                 
3 The cost of establishing a terrace had to be converted to an annualized, per acre, basis. To that end, a cost per foot 
reported by NRCS was multiplied by 166.7, as this many feet of a terrace can protect one acre of land (E. Palas, 
IDALS, personal communication). The resulting cost was annualized using a 5 percent rate of discount and a 25 
year term representing the useful life of a terrace. 
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The algorithm was initialized with a population (set of conservation practices on each 

field in the watershed) of 40 individuals. In order to efficiently exploit our prior domain-specific 

knowledge, the initial population was seeded with an individual representing the baseline 

allocation of conservation practices, and an individual representing a scenario of all cropland in 

the UMRB being retired from production and placed under permanent grass cover. These 

individuals represent the boundary points on the conservation PPF: the baseline individual results 

in the lowest cost, and highest nutrient loadings, while the ‘all cropland retired’ individual results 

in the highest cost and lowest nutrient loadings. We further assist the algorithm in exploring the 

search space by seeding it with two more individuals, anticipated to be quite distinct in the 

objective space: an individual assigning all corn HRUs a 20 percent N fertilizer reduction (allele 

#17, “CT+RF”), and an individual assigning terracing, no-till, and fertilizer reductions (allele 

#32, “NT+Terraced+RF”). The rest of the initial population was generated by randomly 

assigning the cropland HRUs with one of the 33 alleles above (subject to the baseline constraint 

discussed above). We expect good initial coverage of the objective space, thus assisting the 

evolutionary algorithm in exploring a wider range of the search space.  

 

VI. Empirical analyses and results 

We apply the evolutionary algorithm to develop a conservation PPF which (approximately) 

solves the multiobjective optimization problem (2), using two distinct sets of objectives. The first 

set of results develops a PPF that relate to the regional water pollution problem of hypoxia in the 

Gulf of Mexico. Specifically, the three objectives to be minimized are: 1) the cost of nonpoint 

source pollution control; 2) the mean annual nitrate loadings at the overall UMRB watershed 

outlet (Grafton, Illinois), and 3) the mean annual total phosphorus loadings at the UMRB outlet.  
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 The second set of results is developed for objectives that relate both to local water quality 

and Gulf hypoxia.. While the cost and nitrate loading objectives remain unchanged, the 

phosphorus objective assumes a different form. In particular, we wish to explore the set of 

tradeoffs between nitrate loadings and control costs, while constraining mean annual phosphorus 

loadings to be reduced by at least 30 percent in each of the subwatersheds in the UMRB (as 

represented by the 8-digit HUC watersheds).   

 The resulting frontiers for the two sets of objectives allows us to provide empirical 

answers to important policy questions . In particular, what is the nature of a tradeoff between the 

NPS control costs and NPS reductions? What are the costs of reducing nutrient loadings at the 

outlet for each of the nutrients separately, and jointly? Given a particular cost of control, what 

are the tradeoffs between nutrients? What practices should be used to control nitrates separately, 

phosphorus separately, and nitrates and phosphorus jointly? How do the answers change with a 

change in a spatial scale of nutrient reduction targets (i.e., when a subwatershed-level targets for 

phosphorus are employed)?   

 

VI.1. Tradeoffs of NPS control costs and water quality benefits 

 The solution to a multiobjective optimization problem (2) is a three-dimensional 

conservation PPF. A set of Pareto-nondominated points surviving after 500 generations 

(iterations of the evolutionary algorithm) provides an approximation to the true frontier. Figures 

4 and 5 provide two-dimensional projections and a three-dimensional visualization of the 

empirical frontier. 
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Figure 4. 2-dimensional projections of the empirical conservation PPF. 
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Figure 5. 3-dimensional vizualization of the empirical conservation PPF. 

 

 

 Figure 6 provides a mathematical approximation to the empirical results by fitting a second-

degree polynomial through the points in cost-nitrate-phosphorus space. 
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Figure 6. Fitted conservation PPF. 

 

 Both the empirical and the fitted frontiers indicate that tradeoffs between both nitrate and cost 

and phosphorus and cost can be represented by convex total cost curves4.  

 Figure 7 contains cost curves for nitrate reductions under two different scenarios. Under 

one scenario, the cost curve is developed from the PPF in the absence of any constraint on 

phosphorus levels (as a lower envelope of the PPF in nitrate-cost space). Under an alternative 

scenario, a 30 percent concomitant reduction in phosphorus loadings is imposed as a constraint. 

As theory suggests, the constrained cost curve can be no lower than the unconstrained one, and 

that is indeed the case.  

 

 

                                                 
4 The fitted polynomial relating cost to nitrate and phosphorus loadings at the watershed outlet was estimated to be: 
Cost=1.05E+10-13.1814*N-316.718*P-1.2E-06*N*P+4.80E-08*N2+1.35E-05*P2. R2=0.999. 
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Figure 7.  Cost-pollution tradeoff for Nitrate loadings at the outlet. 
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 Figure 7 provides interesting insight on the interactions between conservation practices 

considered and the two nutrients. Note that while the unconstrained cost curve starts out at the 

baseline level of nitrate loadings, imposing a phosphorus constraint forces the curve to start at a 

level of nitrate loadings which is almost 25 percent lower than the baseline. In other words, given 

the set of practices considered, once phosphorus loadings are reduced by 30 percent, an 

automatic reduction of about 25 percent in nitrate loadings follows. Further evidence of such 

interactions is revealed by the fact that the phosphorus constraint is only binding up to about a 35 

percent reduction in nitrates. Greater reductions in nitrates lead to simultaneous reductions in 

phosphorus, suggesting a complementarity in the set of practices used to achieve greater nitrate 

reductions.  

 Similar observations can be made for Figure 8, which depicts an unconstrained 

phosphorus cost curve and a constrained phosphorus cost curve, subject to the 30 percent 
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constraint on nitrate loadings. In this case, imposing a nitrate constraint automatically reduces 

phosphorus loadings by about 17 percent, and a nitrate constraint is binding up to a 30 percent 

reduction in phosphorus, and is not binding thereafter.  

Figure 8. Cost-pollution tradeoff for Phosphorus loadings at the outlet.  
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 These findings can be explained as follows. First, the truncation imposed on a cost curve 

for nitrates (phosphorus) by a constraint on phosphorus (nitrates) is most likely due to the 

complementarities in controlling both nutrients imbedded in the land retirement option. As 

discussion below will show, significant additional investments in land retirement are needed to 

achieve 30 percent reductions in either nitrates or phosphorus. This immediately imposes a 

truncation on the constrained cost curves. Second, when greater reliance on land retirement 

becomes necessary to further control nitrates (phosphorus), leading to simultaneous reductions in 

the other nutrient, the constraint on phosphorus (nitrates) becomes non-binding. 
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VI.2. Tradeoffs between different pollutants (Nitrates and P) 

As highlighted in the theoretical discussion above, the tradeoff between different 

pollutants for a particular level of control costs can range from a curve spanning the entire range 

of possible nutrient values to just a single point, or anything in between. Thus, theory alone 

provides fairly limited guidance as to what we should expect from a particular ‘isocost’ curve.  

 The task of looking at the tradeoffs between nutrients is further complicated by a fact that, 

in order to properly explore such a tradeoff curve, all the points on the curve have to have 

identical control costs. This works well in theory, but, in the empirical application, we have a 

finite number of points defining the PPF. Thus, potentially, only a few points may be located in a 

narrow band in a cost dimension to approximate such a tradeoff curve, and it is likely that we 

cannot identify distinct points along nitrate and phosphorus dimensions carrying identical control 

costs. These considerations make the empirical analysis of ‘isocost’ curves somewhat limited.  

 Nonetheless, given these caveats, a set of tradeoffs depicted in Figure 9, drawn for 

successively higher levels of control costs, tell an interesting story.  

Figure 9. Tradeoffs between Nitrates and Phosphorus control. 
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For lower levels of control costs (~140%, 200%), the set of tradeoffs is quite limited in its range. 

This may suggest that the set of practices that can be used to generate different watershed 

configurations subject to these budget constraints may not span a wide range in pollution space. 

However, as the cost levels rise to 300% of baseline cost, a much more pronounced frontier 

emerges, only to be shrunk again as the cost levels rise. This is consistent with the pattern 

observed in developing control cost curves for nutrients: as costs rise, use of land retirement 

becomes more widespread, which leads, eventually, to a collapse of the empirical isocost to a 

single point.  

 It should also be pointed out, that, given the diverse set of conservation practices being 

considered, we expect a set of tradeoffs to exist even for the situation where our algorithm only 

finds a single point, as the tremendous number of possible reallocations of conservation practices 

implies that there is also a large number of possible allocations of conservation practices even for 

a single level of cost. A full development of a (restricted) frontier in nitrate-phosphorus space 

could be undertaken using the methods employed in this study, and could serve as an interesting 

extension of this research. The current set of results can only be used to demonstrate that such 

tradeoffs indeed exist, and that their extent and shape varies with the cost level and the practices 

used.   

 

VI.3. Effects of targeting nutrients separately or jointly.  

 The empirical frontier presented above consists of a fairly large number of individuals, 

each representing a distinct way of placing conservation practices in the watershed. While the 

frontier itself summarizes the tradeoffs for a range of control costs and nutrient reductions, each 

individual on the empirical frontier contains information on the ‘look’ of the watershed, that is, it 
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is essentially a prescription for the application of conservation practices in the watershed. 

Potentially, a regulator makes use of the tradeoff information embedded in the frontier, and 

selects a set of appropriate nutrient reduction targets. A particular individual meeting these 

targets is then selected from the frontier, and it then specifies the subbasin-level distribution of 

conservation practices in the watershed.  

 Of course, whether nitrates and phosphorus at the outlet are targeted separately or jointly 

may have dramatic implications for which set of conservation practices should be used and 

where they should be located within the watershed. Further, this highlights the importance of 

developing and implementing a plan meant to reduce both pollutants, should these reductions be 

needed. If a plan meant to control only nitrates (or phosphorus) is quite different from a plan 

controlling both pollutants, then implementing water quality policy in a piecemeal fashion (e.g., 

control nitrates first, then focus on phosphorus) may be socially costly and inefficient.  

 Our empirical analysis confirms that such considerations are important, at least for a 

range of nutrient reduction targets. Next we demonstrate implications for the allocation of 

conservation practices for a 30 percent reduction goal in nitrates and phosphorus, depending on 

whether each nutrient is targeted separately or jointly.   

 First, Figure 10 below demonstrates how one identifies distinct individuals on the frontier, 

depending on the targeting strategy. Suppose a regulator wishes to reduce nitrate loadings by 30 

percent. Such an individual (highlighted in blue) is located at the intersection of the lower 

envelope of the frontier in nitrate-cost space and the line specifying the loadings target (dashed 

line). This individual lies on the unconstrained cost curve for nitrates identified above. As a 

result, phosphorus loadings fall short of the 30 percent reduction goal (bottom right panel). 

Similarly, focusing on phosphorus reductions alone (red point) results in nitrate loadings greater 
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than the 30 percent reduction goal. A point highlighted in purple, however, represents a 

watershed configuration which achieves both nutrient targets simultaneously. This point, for 

example, can be found on the constrained cost curves above.  

 Note that, while the three distinct individuals are located fairly ‘closely’ on the PPF, one 

cannot be sure that the actual allocation of conservation practices is similar. This can be seen by 

looking at the distribution of the watershed cropland among the 33 conservation practice options.  

Figure 10. Graphical representation of targeting nutrients separately and jointly. 

 

 

 We thus identify 3 distinct individuals in the empirical PPF. Table 3 below identifies the 

cost and pollution consequences for the 3 scenarios: 

 31



Table 3. Consequences of targeting nutrients for a 30 percent reduction.  

Ind # NO3 loadings Control cost, $/year P loadings % of Baseline NO3 

% of 
Baseline 
cost 

% of 
Baseline P 

2479 (blue) 289,740,000 2,225,360,000 23,688,400 70 369 
 

83 

4052 (red) 308,780,000 2,394,970,000 19,824,600 75 397 
 

70 

3829 (purple) 287,620,000 2,615,470,000 19,893,200 70 434 
 

70 
 

Each of these individuals prescribes a distinct placement of conservation practices. A 

priori, we expect to see greater use of options containing nitrogen fertilizer reduction for 

individual 2479. Also, since this individual reduces nitrates without an explicit target for 

phosphorus, we expect to see very few erosion control practices being selected (given that 

phosphorus is often bound to soil). That is, we expect to see very few options containing terraces, 

grassed waterways, and contouring having been selected in individual 2479. On the contrary, for 

the individual focusing on phosphorus (individual 4052), we expect to see few options 

containing nitrogen fertilizer reductions, and a greater area of the watershed devoted to practices 

typically considered helpful in controlling erosion (and thus soil-bound phosphorus): terraces, 

contouring, grassed waterways.  

 For individual 3829, we expect that alleles representing combinations of practices which 

could be beneficial for both nitrates and phosphorus to be selected to a greater extent than in both 

individual 2479 and 3829.  

 Land retirement is beneficial for both nitrate and phosphorus loadings, so no a priori 

ranking in its use between the three individuals is obvious. However, if ‘nutrient-specific’ 

options are not sufficient to reach a 30 percent reduction, then some use of land retirement is 

expected. This would also explain some complementarities observed (e.g., individual 2479 is 

predicted to reduce phosphorus loadings by 17 percent, while targeting nitrates alone).  
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Table 4.  Distribution of cropland between alleles for the 3 individuals.  

  

Ind # 2479: 
30% nitrates 
reduction   

Ind # 4052: 
30% P 
reduction   

Ind # 3829: 
30% NO3, P 
reduction   

Option description 
area, km2 

percent of 
total area area, km2 

percent of 
total area area, km2 

percent of 
total area

Conventional Till (CT) 39485 16% 25411 10% 12500 5%
Ridge Till (RT) 12129 5% 14491 6% 9148 4%
Mulch Till (MT) 24841 10% 26854 11% 24460 10%
No Till (NT) 11351 5% 13039 5% 17626 7%
CT+Contour 1074 0% 1517 1% 1721 1%
RT+Contour 0 0% 1609 1% 3599 1%
MT+Contour 1323 1% 5606 2% 5014 2%
NT+Contour 402 0% 4647 2% 5173 2%
CT+Grassed Waterway 1622 1% 6174 2% 2311 1%
RT+Grassed Waterway 208 0% 2035 1% 2738 1%
MT+Grassed Waterway 896 0% 6439 3% 9858 4%
NT+Grassed Waterway 1483 1% 7744 3% 6980 3%
CT+Terraced 75 0% 2779 1% 1432 1%
RT+ Terraced 0 0% 2607 1% 2273 1%
MT+Terraced 812 0% 7352 3% 10217 4%
NT+Terraced 87 0% 7170 3% 6063 2%
CT+RF 26573 11% 814 0% 2203 1%
RT+RF 18024 7% 4657 2% 8494 3%
MT+RF 38439 15% 4679 2% 6158 2%
NT+RF 13297 5% 4494 2% 5392 2%
CT+Contour+RF 0 0% 512 0% 1121 0%
RT+Contour+RF 52 0% 3915 2% 5192 2%
MT+Contour+RF 866 0% 5628 2% 5900 2%
NT+Contour+RF 174 0% 5965 2% 9054 4%
CT+Grassed Waterway+RF 533 0% 2335 1% 3265 1%
RT+Grassed Waterway+RF 203 0% 2394 1% 6076 2%
MT+Grassed Waterway+RF 1613 1% 6822 3% 8167 3%
NT+Grassed Waterway+RF 709 0% 5780 2% 5590 2%
CT+Terraced+RF 0 0% 1467 1% 1636 1%
RT+Terraced+RF 0 0% 3192 1% 4352 2%
MT+Terraced+RF 2000 1% 5500 2% 8384 3%
NT+Terraced+RF 87 0% 6112 2% 5316 2%
Land retirement 50968 20% 49587 20% 41911 17%
 

 

 33



 Empirical results mostly confirm our expectations: individual 2479 allocates significant 

share of cropland to nitrogen fertilizer reduction options, while essentially ignoring such options 

as contouring, terracing, and grassed waterways. In turn, terracing, contouring, and grassed 

waterways are utilized to a much greater extent by individual 4052, while at the same time 

selecting nitrogen fertilizer reductions to a much smaller extent than individual 2479. Also, 

individual 3829 allocates relatively more land to options consisting of combinations of practices 

expected to be beneficial for both nitrates and phosphorus (e.g., combinations of terraces with 

nitrogen fertilizer reductions). All three individuals place a significant portion of the land area to 

the land retirement option.  

 Given the fact that land retirement is the costliest and also the most widely selected allele 

option, it is instructive to look at the subbasin-level maps of prescribed land retirement generated 

by the three individuals5.  

 The following maps represent the distribution of land retirement as prescribed by the 

three targeting strategies, as well as a map of land retirement costs used in implementing the 

algorithm.  

 Several observations can be made about the maps of distribution of land retirement in the 

watershed. First, the algorithm clearly does not allocate land to be retired from production based 

on cost considerations alone, but rather on the impact that the spatial placement of land 

retirement will have on nutrient loadings at the outlet. In fact, all three individuals allocate fairly 

expensive areas in Illinois to be retired from production, while individuals that reach the 30 

percent phosphorus reduction target (4052 and 3829) also retire expensive land in Iowa.  

 Second, the maps once again highlight the fact that if a regulator eventually may wish to 

control both nutrients, it would not, in general, be desirable to proceed in a sequential fashion. 
                                                 
5 Similar maps can be produced for all 33 allele options, but that is unlikely to add to much to the discussion.  
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For example, if a regulator were to target land retirement so as to reduce phosphorus outlet 

loadings without simultaneously considering nitrates and subsequently decides on a need to 

reach the nitrogen target as well, the reallocation of land retirement would likely be quite costly.6

 

Figure 11. Subbasin distribution of land retirement.  

  

                                                 
6 Of course, given a particular investment in land retirement, making the watershed look like the map of Ind #3829 
would also be inefficient. The main message here is that thinking about one nutrient as opposed to a combination of 
nutrients has significant implications for targeting of conservation practices.  
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VI.4. Tradeoffs of alternative water quality targets 

 The analysis above was conducted under an objective of simultaneously reducing nitrate 

and phosphorus loadings at the outlet of the UMRB. Thus, the evolutionary algorithm only 

rewards those solutions which reduce nutrient loadings at the outlet subbasin, and does not 

reward any reductions occurring in other subbasins in the watershed. To illustrate, we again turn 

to individuals analyzed in the section above, and consider the spatial distribution of loadings of  

nitrates and phosphorus.  

 The first set of maps depicts the subbasin-level loadings of nitrates for inidividuals 2479 

and 3829, expressed in terms of baseline loadings. As one can clearly see, setting a nutrient 

reduction goal in terms of reductions at the outlet of the watershed has profound implications for 

local water quality. When the goal is nitrate loading reductions at the outlet, the maps indicate 

that the algorithm allocates reductions quite unequally, with some subbasins where reductions 
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are dramatic (over 80 percent), while many of the subbasins are not selected for nitrate 

reductions at all. This is of course what we would expect the algorithm to do, given the location 

of the watershed outlet.  

 
Figure 12. Subbasin Nitrate load distribution, 30% Nitrate target vs. 30% P and Nitrates 
target. 

 

 It is also interesting to point out that some subbasins selected for nitrate loading 

reductions follow the path of the Mississippi River (it is especially evident in Minnesota). Again, 

this is what we would expect the algorithm to do.  

 A similar pattern is observed when we look at the subbasin-level reductions in 

phosphorus loadings: while a phosphorus reduction of 30 percent is achieved, the distribution of 

loading reductions is such that almost a half of 131 subbasins do not experience a 30 percent 
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reduction for both individuals 4052 and 3829. This may not be satisfactory if phosphorus 

pollution is a local water quality concern.  

Figure 13. Subbasin P load distribution, 30% P target vs. 30% P and Nitrates target. 

 Next, we alter the objective function for the multiobjective evolutionary algorithm to 

identify a set of solutions which achieve a particular subbasin-level reductions in phosphorus 

loadings. Policy relevance of exploring such solutions is evidenced by a large number of TMDL 

plans calling for phosphorus reductions on a local, watershed, scale.  

 In this application, we impose a 30 percent reduction goal for every cropland 8-digit 

HUC subbasin in the UMRB. To this end, we consider the following three objectives for 

multiobjective optimization: nitrate loading at UMRB outlet, control costs, and the sum of excess 

phosphorus loadings from the subbasins. Formally, problem (2) becomes: 
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 The set of solutions where 2y is zero defines a set of tradeoffs between nitrate reductions 

and control costs. Empirically, we select individuals for which the value of 2y is 1 percent of 

baseline value or less, to represent the new set of tradeoffs. Figure 14 demonstrates the empirical 

tradeoff curve. Every point on this curve approximately achieves a subbasin-level phosphorus 

loading reduction of at least 30 percent.  

 Similar to the results obtained for the constrained cost curves, imposition of a local 

phosphorus reduction constraint automatically truncates the set of tradeoffs to a point where 

nitrate loadings at the outlet are reduced by approximately 35 percent.  

Figure 14. Nitrates-cost tradeoff under a goal of reducing subbasin P loadings by 30 
percent. 
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 This boundary point is found to be individual number 3331. Incidentally, it achieves 

exactly a 30 percent reduction in phosphorus loadings at the outlet (much like individual 3829), 

but the distribution of conservation practices (and nutrient loadings) is dramatically changed.  

 

Figure 15. Subbasin P load distribution, outlet P target vs. local P target.  

 
 

 
A side-by-side comparision of maps of subbasin-level phosphorus loadings tells the story, but a 

histogram of the number of subbasins achieving particular nutrient reductions is even more 

dramatic: 
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Figure 16. Number of subbasins with given subbasin-level phosphorus loadings, local P 
target vs. outlet P target.  
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Under the outlet P goal (individual 3829), many subbasins do not experience any 

decreases in phosphorus loadings, while under a local P goal (individual 3331), an overwhelming 

majority of subbasins achieves at least a 30 percent reduction. The subbasins where a 30 percent 

reduction is not achieved contribute only a small fraction of excess loadings relative to the 30 

percent goal.  

 Of course, extra phosphorus control comes at extra cost: the cost of controlling local P at 

or below the reduction goal is estimated to be almost 3.5 billion dollars per year (or 500 million 

dollars more than the cost of achieving a 35 percent nitrate reduction, but only achieving a 30 

percent phosphorus reduction goal at the outlet).  
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VII. Concluding Remarks 

In this study, we examined the policy implications of efficient control of NPS pollution 

using a spatially explicit model of a large and critically important agricultural region: the Upper 

Mississippi River Basin in the central U.S. We derived the conservation production possibility 

frontier that explicitly incorporates the tradeoffs between pollution control costs and water 

quality benefits, between different pollutants, or between different control targets. To empirically 

estimate these tradeoffs, we develop a modeling framework that (a) realistically incorporates the 

key attributes of NPS pollution and (b) is able to approximate the efficient solutions by optimally 

choosing the set of conservation practices for each spatial unit in the Basin. The regional scale of 

our modeling framework facilitates the investigation of relevant policy analyses related to the 

growing “dead zone” in the Gulf of Mexico and the tradeoff between regional and local pollution 

reduction targets. 

Several caveats should be mentioned. First, the enormity of the search spaces precludes 

us from characterizing the solutions we obtain as truly efficient. However, we believe that the 

approximations we find are quite relevant to policy analysis. Second, our results are inexorably 

tied to the set of conservation practices and cost estimates. Although we made an effort to 

evaluate a wide variety of conservation practices discussed in water quality literature, inclusion 

of other possibly relevant practices (e.g., wetlands) may alter the results. This, however, is not so 

much a challenge to our modeling approach as an opportunity for further productive research.  

Economists have long been able to point out that tradeoffs are ever-present in all of 

environmental policy, and in particular in nonpoint source pollution control. Tradeoffs are only 

meaningful when conservation policy options are efficient. Making such options explicit and 
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thereby identifying numerous tradeoffs inherent in nonpoint source pollution control is the main 

contribution of this paper.  
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Appendix 

Table 1A. Summary of cost estimates, by state. 

State name

Annualized 
cost of 

GW, per 
protected 

acre, $
Mean cash rental 

rate, $/acre
Cost of No-Till, 

$/acre 

Annualized 
cost per 
terrace-

protected 
acre, $

 
Illinois 7.4 110.1 22.2 22.0 

 
Iowa 5.3 123.2 9.6 51.6 

 
Minnesota 5.3 70.5 10.8 40.2 

 
Missouri 3.9 65.4 12.9 13.7 

 
Wisconsin 13.1 66.2 51.9 24.0 

 
Table 2A. Estimates of cost of 20 percent nitrogen fertilizer application reduction. 

 

yield 
zone State 

N 
application, 
lb/acre 20% reduced 

Corn-Corn 
Yield drag, 
bu 

Cost, 
C-C, 
$/year 

Corn-SB 
Yield drag, 
bu 

Cost,  
C-S, 
$/year 

1 Illinois (North) 157.1 125.7 6.0 13.3 2.3 5.1
2 Illinois (Central) 157.1 125.7 4.4 9.7 6.0 13.2
2 Missouri(North) 153.4 122.8 4.8 10.5 6.1 13.5
3 Illinois(South) 157.1 125.7 5.4 12.0 4.2 9.3
3 Missouri (Central) 153.4 122.8 5.6 12.4 4.4 9.7
4 Iowa 125.3 100.2 8.0 17.7 3.0 6.6
5 Minnesota 114.1 91.3 6.3 13.9 5.1 11.3
6 Wisconsin 87.8 70.2 6.2 13.7 4.6 10.1
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Figure 1A. Yield zones in the UMRB.  

 

 

SPEA2 Fitness assignment. 

An individual is assigned a strength value  which equals to the number of solutions it 

dominates: 

i ( )S i

(0.4) ( ) { | }t tS = ∈ ∪ ∧i j j P P i j , 

where tP is the original population at generation ,  is the temporary population created, t tP

⋅ denotes the cardinality of a set, and  corresponds to the Pareto dominance relation. On the 

basis of this definition of strength values, the raw fitness for individual i is calculated:  
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(0.5) 
,

( ) ( )R S
∈ ∪

= ∑
t tj P P j i

i j . 

Thus, the raw fitness of an individual is determined by the strength of the dominators 

(individuals that dominate ). Then, the raw fitness value of i ( ) 0R =i  corresponds to a 

nondominated individual, while a high raw fitness value corresponds to an individual that is 

dominated by many other individuals (which in turn dominate other individuals). In light of this 

interpretation, fitness minimization used in the formulation of the algorithm makes intuitive 

sense. Figure 2 demonstrates the fitness assignment process and highlights the fact that 

individuals that are located in the “crowded” areas of the objective space get a higher raw fitness 

value, and therefore are less likely to be selected into a future generation. For instance, point F 

dominates points B, C, and A, and therefore gets a strength value of 3. Since point F is 

nondominated, its raw fitness is zero. Point D, on the other hand, dominates only A, and thus 

gets the strength value of one, but is dominated by point G, which itself dominates 3 points. Thus, 

point D gets the raw fitness value of 3. Point A is the ‘worst’ point in the objective space, as it is 

associated with the highest cost and pollution levels. It itself does not dominate any other points, 

but is dominated by points F, G (with a strength value of 3), H (with a strength value of 2), D 

(with a strength value of 1), and E (with a strength value of 1). Therefore, the raw fitness value 

for point A is 3+3+2+1+1=10. Recalling that in this algorithm, individuals with the lower fitness 

scores are considered ‘more fit’, it is clear that individual A is far less likely to survive into the 

next generation than, for example, point F.  

 Such assignment of raw fitness scores also takes into account the relative ‘isolatedness’ 

of candidate solutions in the objective space. Conceptually, we would like the resulting Pareto-

optimal frontier to span a large portion of the objective space. Therefore, candidate solutions on 

the interior of the frontier are somewhat less preferred than those close to the edges. In the figure, 
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for example, while both points B and C are dominated, point C is dominated by both points F 

and G by virtue of its ‘interior’ location in the objective space; whereas point B is dominated 

only by point F and not by point G: its pollution level is lower than that of G. As a result, point B 

has a raw fitness score of 3 as opposed to the score of 6 for C, and its ‘genetic makeup’ is 

therefore less likely to be eliminated in the subsequent generations.  

 

Figure 2A. Raw fitness assignment in SPEA2. 

 

Pollution

Cost 

Direction of 
improvement 

S=0, R=3+3+2+1+1 

S=1, R=3

S=1, R=2

S=0, R=3

S=0, R=3+3

S=2, R=0

S=3, R=0

S=3, R=0 

A

B 

C

D

E

H

G

F 

 

 

 Finally, while the raw fitness score assignment outlined above incorporates some 

information on the location of the solutions in the solution space, additional density information 

is also incorporated into the calculation of a fitness score. Density estimation technique is used to 

further differentiate between individuals that are located in the “crowded” areas of the objective 
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space (less preferred) from those located in the relatively sparse areas of the objective space 

(more preferred). The density estimation technique used in SPEA2 is an adaptation of the k -th 

nearest neighbor method, where the density at any point is a decreasing function of the distance 

to the k -th nearest data point. For each individual , we calculate the distances (in objective 

space) to all the individuals in the population and the temporary population, and store them in a 

list. After sorting the list in an increasing order, the -th element yields the distance, denoted as 

i

k

kσ i .  k  is chosen to equal to the square root of the sum of the population size and the size of the 

temporary population ( 40 12 7+ ≈ ). The density is computed as:  

(0.6) 1( )
2kD i

σ
=

+i

, 

 
where 2 is added to the denominator to ensure that the value of the density is greater than zero 

and less than one.  

 Given the raw fitness score and the estimated density, the fitness of an individual i is 

calculated as:  

(0.7) ( ) ( ) ( )F R D= +i i i . 

This is the fitness score used for selecting individuals in the algorithm implemented. 
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