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Estimating the Costs of Revenue Deficiency Programs  

 

 

Abstract 

This paper develops an approach to empirically demonstrate how the within-season 

distribution of U.S. domestic commodity support for corn differs between current-style 

approaches of support and revenue-based support. From a purely economic standpoint, 

the results show the revenue-based payment scenarios to be preferable at the national 

level to the uncoordinated forms of support currently in use, even in a situation where the 

annual mean payments are set equal across the support scenarios.  For revenue-based 

support, the variability around the total expected annual payment is lower, and perhaps 

more importantly, the probability of high payments is lower. These results suggest 

advantages to this type of support, both in terms of lower budgetary uncertainty – for 

producers and the Federal government – and in meeting multilateral commitments for 

limiting spending on domestic commodity support.   
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Estimating the Costs of Revenue Deficiency Programs 

Introduction 

Current U.S. direct commodity support in the form of counter-cyclical payments (CCPs) 

and marketing loan benefits (MLBs) makes payments to producers in response to price 

shortfalls. Commodity support programs that only target price variability can over- or 

under-compensate farmers in some situations. For example, large yields nationally can 

reduce market prices, generating CCPs.  However, the higher yields offset to some extent 

the effect of lower prices on revenue.  CPPs do not take this effect into account, which 

means that they can over-compensate producers when yields are high. Conversely, price 

tends to rise with large yield decreases, thereby reducing the counter-cyclical payment, 

which can under-compensates producer for a revenue decline.  Furthermore, yield 

decreases in some regions may be small enough to have little effect on prices, leading to 

under-compensation by CCPs and MLBs in those regions. While CCPs and MLBs target 

low prices, ad hoc disaster assistance generally targets low yields.    Hence, U.S. direct 

commodity support for program crops such as corn does address both price and yield, it 

does not do so in a coordinated fashion. 

On the other hand, a direct commodity support program based on revenue 

deficiencies could make use of the natural hedge inherent in revenue, or price times 

quantity. Since price and yield tend to be negatively correlated, revenue exhibits less 

variability than it would otherwise. As such, a revenue deficiency program could provide 

producers protection against an unexpected decline in revenues, whether due to low 

yields, low prices, or some combination thereof, while reducing the probability of over-
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compensation.  A revenue deficiency program could in principle be an efficient substitute 

for the existing suite of formally uncoordinated direct commodity support programs and 

ad hoc disaster assistance. 

This paper develops a stochastic model for estimating potential revenue 

deficiency payments to U.S. corn producers in a discrete-dynamic context.  The analysis 

uses county-level historic production data for all U.S. counties for which the National 

Agricultural Statistics Service (NASS) reports corn production, thereby ensuring almost 

complete coverage of the estimated distribution of corn payments. The market price-yield 

relationship is treated as stochastic, and the yield relationship itself as spatially stochastic. 

We minimize the potential for misspecification bias by using nonparametric and semi-

nonparametric approaches in the model. With this model, the empirical distribution of 

payments for a crop year is estimated under two alternative revenue deficiency program 

scenarios. Comparisons are made to the distribution of payments under generic versions 

of current production-coupled support programs.  Based on the estimated payment 

distributions, implications for U.S. commodity policy of alternative forms of domestic 

commodity supports programs are drawn.   

 

Commodity support program scenarios 

The core idea of a revenue deficiency program is to pay producers some portion of the 

difference between expected, or a target revenue, and realized revenue, when the latter is 

lower than the former.  In essence, revenue deficiency programs are forms of revenue 

insurance (as in the case of Federal crop revenue insurance) for which the farmer does 

not pay an insurance premium. Hence, they may provide direct income-augmenting 
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support in addition to risk-reduction benefits. While the concept of a revenue deficiency 

program is not a new idea (e.g., Miranda and Glauber, 1991; U.S. Congress, 1999), it has 

only recently begun to receive significant attention from a variety of sources, the most 

prominent in the academic literature being those of Babcock and Hart (2005) and Zulauf 

(2006).  While noting that the stated positions of interest groups regarding farm policy 

changes over time, National Corn Growers Association (2007) supported a variation on 

the Babcock and Hart proposal and American Farmland Trust (2007) supported the 

Zulauf approach. To gain some insights into the policy implication of revenue support 

programs, this paper develops an approach for comparing the distribution of payments 

from hypothetical revenue-based programs to those from a program similar to the current 

set of programs.  

 As actual program payments are sensitive to a mind-numbing array of program 

provisions, seemingly small changes in which can cause large changes in payment levels.  

Hence, to make the support programs comparable, our program scenarios are designed to 

differ only in the fundamental program provisions.  Our goal is to investigate how 

payments change with explicit coordination of prices and yields, and not for example, 

how calculating payments using daily prices rather than monthly prices affects the 

results.  We next lay out our current program scenario as well as two revenue-based 

program scenarios, with one based (in part) on revenue shortfalls with respect to a target 

revenue, and one based on revenue shortfalls with respect to an expected, or market, 

revenue. 
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Current domestic program scenario 

Our scenario for a generic version of the current domestic support has three components: 

counter-cyclical payments, marketing loan benefits, and disaster payments. The counter-

cyclical payments (CCP) are based on a payment rate determined by shortfalls in and 

“effective” price with respect to a statutory target price, multiplied times a fixed base 

acreage and yield. The CCP for a producer i of crop j in year t is calculated as: 

(1) CCPijt = 0.85 · max{ 0, (TPj − (Max (NPjt, LRijt)) − Dj) } · (  · ),  B
ijA B

ijY

where TP, LR, and  D are the statutory target prices, loan rates, and direct payment rates,  

respectively, specified in farm legislation, NP is a national market price (season average 

price for actual CCPs), is base acreage, and is base yield.  This acreage and yield 

are based on a historic period(s) and are fixed. FSA (2006a) provides specifics of how the 

real CCP program determines the base acreage and yield. 

BA BY

 The marketing loan benefits rate is based on shortfalls in market price with 

respect to a statutory loan rate. For farmer i of crop j in time t, the marketing loan benefit,  

or equivalently, the loan deficiency payment,  is calculated as:  

(2) MLBijt = max{ 0, (LRjt − ALjt) }·  ·  , H
ijtA H

ijtY

where LR is is the national loan rate LR adjusted by various county-specific and quality 

factors. The alternative loan repayment rate is the market price at the time of harvest. The 

payments are applied to current production on each farm, i.e. harvested area, AH, times 

yield, YH.  Equation (2) is simplified over actual MLBs, in which the LR is adjusted 

locally for various county-specific and quality factors and where the ALR is essentially a 

USDA-determined market price that varies daily or weekly (depending on the crop) 

according to market conditions, and is adjusted to reflect quality of the product.  We do 
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not distinguish between the MLB taken by the farmer as a loan deficiency payments or as 

repayment on a loan (i.e., the “marketing loan gain”) as the marketing loan benefit is the 

same in either case. 

 The linkage here between the CCP and the MLB is perhaps higher here than in the 

actual versions of these programs given that the actual MLB is a function of daily prices 

while the actual CCP is a function of the season average price, meaning that MLB may 

even be paid out in some cases even when the season average price is greater than the 

target price. However, proposals have been made (e.g., USDA, 2007) to lower the 

possibilities for payment recipients to game the timing of taking MLBs by making these a 

function of monthly average prices.  In such a case, assuming that the monthly average 

price is calculated over the calendar month, the expectation would most likely be that 

producers will take their MLB payments in November, the month when prices tend to be 

at their lowest due to the bulk of the harvest coming in at that time.     

 Disaster assistance payments are usually based on shortfall in yield with respect to 

expected yield, where the lost production is valued at an “established”, or expected price.  

We assume that our disaster assistance operates in this manner, but on a permanent rather 

than an ad hoc basis: 

(3) DAijt = max{ 0, (0.65 · E( ) − ) } · E(Pijt) ·  , P
ijtY P

ijtY P
ijtA

where  is actual realized yield per planted acre, E( ) is the expected yield per 

planted acre,  is the planted acreage, and E(Pijt) is the expected price. As is frequently 

the case in actual practice (e.g., the 2001 and 2002 ad hoc disaster programs (FSA, 

2003b), we assume that payments are made when the producer’s yield is reduced by more 

P
ijtY P

ijtY

P
ijtA
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than 35 percent from expected yield.  Note that unlike the MLB, DA can be nonzero even 

if harvested yield is 0, hence the moniker “disaster payment”. 

 
 
 

Target revenue program scenario  

We model the three components to this county area revenue program closely to that of  

 Babcock and Hart and NCGA, but with some minor differences (e.g., we use future 

prices rather than cash prices). The “basic” component is a payment per planted acre to 

cover county revenue per acre shortfalls with respect to expected county revenue per acre 

in the county corresponding to farm i, or  

(4) Basicijt = max{ 0, [ g · E( ) −  ] } ·  , P
ijtR P

ijtR P
ijtA

where  =  · is the county average revenue per planted acre at harvest in farmer 

i’s county,   is the price at harvest, E( ) is the expected average revenue per planted 

acre at planting time,  is the farmer’s planted acreage, and g is the coverage rate ( 0 < 

g < 1).  Note that could be the season average cash price (ibid.) or the futures price at 

harvest.    

P
ijtR 1

jtP P
ijtY

1
jtP P

ijtR

P
ijtA

1
jtP

 The “extended coverage” payment per harvested acre is based on the shortfall in 

revenue with respect to a target revenue based on a statutory price, and provides 

supplemental coverage over the basic payment, or: 

(5) ECijt = min{max( 0, α · ETP · E[ ] −   ·  ), (α − g) · ETP) · E[ ] } ·  H
ijtY 1

jtP H
ijtY H

ijtY P
ijtA

where  is the average actual harvested yield for farmer i’s county, E[ ] the 

expected value,  α  (g < α <1) is the extended coverage box coverage level, ETP is the 

H
ijtY H

ijtY
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statutory target price,  is price at harvest, and  is the farmer’s planted acreage.  

Note that  is used here rather than ,  as per NCGA (2006). 

1
jtP P

ijtA

H
ijtY P

ijtY

 The “production-limited” payment is similar to the extended coverage payment 

but applied to a fixed base acreage for the farmer, and provides supplemental coverage 

over the extended coverage payment: 

(6) PLijt = min{ max( 0, β · ETP · E[ ] −   ·  ), (β −α) · ETP · E[ ] } ·  H
ijtY 1

jtP H
ijtY H

ijtY B
ijA

where  β  (α < β  < 1) is the production-limited box coverage level and  is the farmer’s 

fixed planted acreage base.

B
ijA

1   

 

Market revenue program scenario 

The market revenue program proposal has two components: a national revenue payment 

(e.g., Zulauf; AFT) and a supplemental county area revenue payment. The national 

revenue payment is calculated as percentage decrease in national expected total revenue 

with respect to national average realized total revenue, times the farmer’s expected 

revenue per planted acre times the farmer’s planted acres: 

(7) NRPijt = max{ 0,  (E( ) −  ) / E( )} · E( ) ·  P
jtTR P

jtTR P
jtTR P

ijtR P
ijtA

where  is total national revenue for the commodity.    P
jtTR

 With the NRP only being triggered by national level shortfalls in revenue, Zulauf 

assumes that a Federal crop insurance program payment is used to ensure that the farmer 

                                                 
1 The terms “basic”, “production limited”, and “extended coverage” substitute for the terms Babcock and 
Hart (2005) use, which are “green”, “blue”, and “amber”, respectively.    These colors  (“boxes”) are 
references to categorizations by the World Trade Organization’s Agreement on Agriculture (AoA) of 
domestic subsidies according to their impacts on production.  Given the political controversy in multilateral 
negotiations over which support programs should be associated with each of these WTO “boxes”, for the 
sake of avoiding the potential for confusion, we avoid using the WTO terminology in our scenarios. 
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is covered up to a guaranteed level.  However, again for the sake of comparability across 

scenarios, we instead use a supplemental county area revenue payment to ensure that the 

farmer is covered up to a guaranteed level:  

(8)  SUPijt =   max{ 0,  (γ · E( ) − ) ·   − NRPijt  }  P
ijtR P

ijtR P
ijtA

where  γ (0 < γ  < 1) is the desired coverage level.   

  

Calibration and comparability of the payment scenarios 

The target revenue program operates at the county level. Hence, to put each of the 

program scenarios on an equal footing for the simulation, all three of our program 

scenarios are constructed to operate at the county level as well.  For the market revenue 

approach, total national expected revenue is summed up from the county level estimates 

of expected yield to ensure that differences between the market revenue approach and the 

target revenue approach are due to differences in the basic program structures, and not 

due to aggregation bias in calculating expected national average yield with a national-

level Olympic average calculation rather than an Olympic average calculation for each 

county.  

 For the expected and harvest time prices, we utilize futures prices, as discussed in 

more detail below.  We use the same year, 2004, in the CCP and the target revenue model 

for determining base acreage and yield.  For the purposes of calculating benefits in time t, 

we use the Olympic average of the prior five year’s worth of National Agricultural 

Statistics Service (NASS) yield data, which is consistent with the approach used in 

various insurance products administered by the Risk Management Agency (RMA) and 

various disaster payments administered by the Farm Services Administration.  This 
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Olympic approach may not be as refined as the approach to estimating yield in our 

econometric model and to simulate realized yield in our bootstrap analysis, but is a likely 

approach to be applied in an actual policy setting for determining expected yield.    

 Programs can be compared against each other in a myriad of ways. For the sake of 

brevity, we calibrate the models by setting the program parameters so that the mean of 

total annual payments evaluated at historic price-yield points is equal across the program 

scenarios.  Further, it seems reasonable from a policy standpoint to assume that payment 

recipients would be reluctant to support a revised direct support program unless it 

provided on average the same support levels as the program it replaces. Given this 

calibration of the mean payments across the scenarios, higher moments of the distribution 

of payments can be compared, as can the program provisions necessary to achieve 

equality of mean total payments across programs.      

 

Methodology for estimating payments 

We estimate the distribution of payments for each county given the yield history for that 

county and the historic relationship between national price and national average yield.  

Payments to county j in crop year t are assumed to be a function of planted acres in j at 

the beginning of t, the parameters of the commodity programs, and the stochastic price 

and yield relationships.  

 

Modeling the within-season price-yield relationship  

Production is local, while market price is national (excluding arbitrage costs in moving 

the commodity between markets). Hence, price is a function of, among other things, total 
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national production, which is the sum of production across all producing regions, or 

equivalently when scaled by total acres, national average yield Yt, which is the weighted 

sum of  Yjt , j = 1,…, J counties, t = 1,…,T years. 

 Our focus is on estimating the distribution of payments for a given reference crop 

year, in our case 2005, given the difference in realized yield and price over the levels 

expected at the beginning of the crop year. Hence, for the purposes of estimating the 

relationship between price and yield, we re-express the historic price and yield data as 

proportional changes between expected and realized price and expected and realized 

yield within each period, respectively. We can then apply this history of proportional 

changes in yield and price to 2005 data to develop the distribution of payments.    

Specifically, the realized national average yield, Yt , is transformed to tYΔ  =  

( )( )
( )t

tt
YE

YEY − . The expected value of Yt, or E(Yt),  is calculated from an estimated 

trend equation (as described in detail below). Similarly, the realized price at harvest, Pt , 

is transformed to  =  tPΔ ( )( )
( )t

tt
PE

PEP − , where E(Pt) is derived from futures prices as 

discussed in the Data section below.  

 The historic yield data needs to be detrended before it can be used for our 

analysis. Namely, the upward trend in corn yields since the mid-1940s has been quite 

remarkable, and even mean corn yields from the 1970s are significantly lower than that 

which would be expected today.  To generate a distribution for  based on historic 

yield shocks, the historic yields must be rescaled to reflect the proportional change in the 

state of technology between that in 2005 and that in time t, i.e., Yit is rescaled to 2005 

terms as 

2005Y

 10



(9) ( )( )12005 +Δ= iti
d

it YYEY ,∀ i counties, t periods, t ≠  2005. 
 

A specific detrending approach used in the literature is to assume that expected yield 

evolves according to a time trend, or E(Yt) = f(t), e.g., Paulson and Babcock (2007), who 

fit a linear model to the time trend. 

 To separate the stochastic component of yield from the upward trend in yields 

over time due to technological and managerial innovations, we detrend the yield data 

using county-specific nonparametric LOESS (Cleveland, 1979; Cleveland and Devlin, 

1988) predictions of county yield trends instead of the simple parametric approaches used 

in the literature.   As the LOESS procedure is available as a canned procedure in several 

common statistical and econometric packages, it is not described in detail here. In short, 

LOESS specifically denotes a method that is (somewhat) more descriptively known as 

locally weighted polynomial regression. At each point in the data set a low-degree 

polynomial is fit to a subset of the data. The polynomial is fit using weighted least 

squares, giving more weight to points near the point whose response is being estimated 

and less weight to points further away. A smoothing parameter denotes the degree of the 

local polynomial, and controls the flexibility of the model.  

 Our goal in fitting the trend regression was to model yield as a function of 

technological change and other factors that are correlated with time. Any deviations from 

the trend are assumed to be due to stochastic shocks. A model that is linear with respect 

to the time trend for a county i, e.g., E(Yit) = αi + βi t + εit, may in certain cases be too 

restrictive in its assumption with regards to technical change.  The parametric 

specification of the trend function seen in the literature tends to work well for the core 

grain producing States and for modeling the trend in national average yield as the trend in 
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this cases has been quite linear since 1946, but not necessarily in various peripheral 

production regions.  For example, a simple linear or log-linear specification of the trend 

equation leads to negative predicted slope of the estimated trend equation in some 

counties with crop failures in more recent time periods can more offset the yield trend in 

the parametric model (also, the log-linear model cannot be used where the crop failure is 

total, i.e., 0 yields).  The nonparametric specification of the trend equation permits us to 

estimate a trend equation for each corn producing county in the U.S. – close to 2,800 – 

without having to select different specifications for each county. At the same time, a 

highly flexible model will chase the standard errors, or stochastic shocks, and not help in 

identifying the trend. As such, even if the equality of a restricted model to a fully flexible 

model is not accepted from a statistical standpoint, this result does not imply that the fully 

flexible model should be used for detrending the data – doing so will be at odds with the 

goal of separating the yield shocks from trend effects.  The Loess yield trend provides 

some flexibility to f(t) over the linear model while minimizing the chasing of the 

stochastic yield shocks. 

 Given the estimated trend yields as the predictions of E(Yt), we can construct 

 and estimate the relationship between it and  d
tYΔ tPΔ . In particular, we assume that  

 can only be partially explained by , and that the uncertainty in this relationship 

can be incorporated into the empirical distribution.  We do so by specifying  as  

tPΔ d
tYΔ

tPΔ

(10)  = tPΔ ( )t
d

t zYg ,Δ  + εt,   
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where εt is i.i.d. with mean 0 and variance  given2
εσ { }td

t zY ,Δ , and where zt is a vector of 

other variables that may explain within season price deviation.2   We expect that 

d
t

t
Yd

Pd
Δ

Δ < 0, that is, the greater the realization of national average yield over expected 

national average yield, the more likely harvest time price will be lower than expected 

price.   

 Based on the econometric estimate of the function for tPΔ , we can then generate a 

distribution of estimates of  , or tPΔ [ ]( )t
d

tgt zYgP ,ˆ ΔΔ , for each , and consequently 

we create our empirical distribution of { , , }, where  is the vector of 

county level yield deviations.  As will be explained in the next section, to reduce the 

potential for bias due to the misspecification of equation (9), we utilize a semi-

nonparametric (SNP), or flexible, econometric approach as a specification check on a 

parametric estimate of g(.).  

d
tYΔ

tP̂Δ d
tYΔ d

tΔY d
tΔY

   

Semi-nonparametric estimation of the price-yield relationship 

While the parametric model will be a more efficient specification than the SNP model, a 

potential drawback of a parametric model for the estimation of equation (9) is that it could 

potentially be subject to biases associated with incorrect specifications of functional form of 

g(.). As a specification check on a parametric model, we use the Fourier flexible functional 

form (e.g., Fenton and Gallant, 1996) to model equation (9). The Fourier functional form is 

one of the few functional forms known to have Sobolev flexibility, which means that the 

                                                 
2 For the purposes of the regression itself, either or can be used as the difference between the 
two is simply that the former is expressed with respect to a particular base year. 

d
tYΔ tYΔ
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difference between a function g(x,θ) and the true function f(x) can be made arbitrarily small 

for any value of x as the sample size becomes large (Gallant, 1987). Letting xt represent the 

vector of explanatory variables in equation (9) with 3 or more unique values each, our SNP 

specification of g(x,θ) is:  

(11) ,     ( ) ( )[ ] ( )[(∑∑
= =

′−′+′==
M

m

L

l
tmjilmjtmjlmjtttt slwslvgY

1 1
sincos, xrxrβxθx ])

where the   vector xt contains all arguments of the utility difference model, k  is the 

number  of coefficients in θ, which consists of the β, vlm, and wlm coefficients to be 

estimated,
 M and L are positive integers, and  rm  is a 

1×p

1×p  vector of positive and negative 

integers that forms indices in the conditioning variables and that determines which 

combinations of variables in xt from each of the transformed variables.3  The integer m is 

the sum of the absolute value of the elements in the multi-indexes in vector rm  and L is 

the order of the transformation, and is basically the number of inner-loop transformations 

of xt. For example, if xt contains 3 variables and M = L= 1, then the rm vectors are (1,0,0), 

(0,1,0), and (0,0,1), resulting in k = 9 (not counting the constant). The  function s(xi) 

prevents periodicity in the model by rescaling xt so that it falls in the range [0, 

2π−0.000001] (Gallant, 1987).  This rescaling of each element in xt is achieved by 

subtracting from each element in xi its minimum value (from across the sample), then 

dividing this difference by the maximum value (from across the sample), and then 

multiplying the resulting value by [2π−0.000001].  For example, if bid is the only 

explanatory variable, then rm is a (1x1) unit vector and max(M) equals 1.    If a variable 

1×p

                                                 
3 In addition to appending xβ to the Fourier series in Equation (11), Gallant suggests appending quadratic 
terms when modeling nonperiodic functions.  Our experiments suggest that inclusion of the quadratic terms 
as well in the regressions had little impact on the slope estimates. Hence, we leave them out for the sake of 
efficiency. 
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has only three unique values, then only the v or w transformation may be performed.  A 

dummy variable is not transformed. In practice, the level of transformation embodied in 

M = L= 1 generally adds sufficient flexibility to the model, and the parametric model is 

nested in the SNP model.    

 A formal criterion for choosing M and L is not well established.  Chalfant and 

Gallant (1985) suggest a rule of thumb that the dimension of θ = N2/3.  Asymptotic theory 

calls for θ = N1/4 (Andrews, 1991), but Fenton and Gallant (1996) note that θ  = N1/2 is 

likely to be more representative of actual practice.  Hong and Pagan (1988) found that 

the Fourier approximation had low bias in the estimators even for sample sizes as low as 

n = 30. 

 Taken individually, Fourier coefficients do not have an economic interpretation. 

To give those regression coefficients an economic interpretation, they must be re-

expressed in terms of the base variables. One way to do this is to evaluate ∂g(x,θ) / ∂x, 

noting that  

(12) [ ] [ ]( )∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

′+′+=∂
∂ A J

j
jj sjwsjvjx

g
1 1

)(sin)(cos2),(
α

ααααα
θ rxrxrbx .   

 

Generating the empirical distribution of payments 

While national average yields are necessary for modeling the price-yield relationship, 

county-level yield values are necessary to estimate the commodity payments.  The Yjt’s,  

or in vector notation, ,  are not only stochastic, they are spatially stochastic. That is, 

yield shocks tend to have systemic component to them. Similar weather variations can 

cover large geographic regions.  For instance, a drought can similarly affect yields across 

tY
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counties in a wide region.  Furthermore, if a climatic event affects many counties across a 

major production region, as it can in the Heartland Region (the USDA’s typology for the 

Corn Belt [Heimlich, 2000]), an area which accounts for the bulk of U.S. corn 

production, it can affect national price. However, a weather shock across another region 

that accounts for a small portion of U.S. corn production will have little effect on price to 

the extent that the correlation of weather in this region with that in the Heartland is low. 

 Given the spatial component to yield shocks, to achieve a realistic estimate of 

commodity payments under yield uncertainty, we must simulate county-level yield 

shocks under the assumption that the between-county standard error of yields, ijσ ,  are 

not equal to 0, i, j counties, i  ≠  j.   Namely, we assume that Yj , or realized yield for 

county j, is drawn from a distribution 

∀

( )Σ;,,,,F 321 Jμμμμ K , whereΣ  is the (J x J) 

spatial correlation matrix between the county yields. We assume that the ijσ ’s are 

identically and independently distributed across time. 

 Paulson and Babcock (2007), in their study of a county area revenue insurance 

program for Iowa, Illinois, and Indiana counties, generate a distribution of insurance 

costs by drawing price and yield deviates from an empirical distribution, where the 

historical year-to-year relationships between the deviations in price, national average 

yield, and county yields are maintained. Specifically, as applied to our context and 

notation, this approach requires the generation of an empirical distribution for { , 

, }.  To generate this distribution, Paulson and Babcock (2007) use a rank-

based re-sorting process outlined by Iman and Conover (1982).  However, this method is 

impractical in our case with multiple explanatory variables in the specification of 

equation (9).  

tPΔ

d
tYΔ d

tΔY
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 We instead use a more general bootstrap method that can allow for flexible right-

hand-side regression modeling and allow for modeling interactions between variables. In 

particular, we use a bootstrap approach in a joint resampling methodology that involves 

drawing i.i.d. observations with replacement from the original data set (Efron, 1979; 

Yatchew, 1998).  The bootstrap data-generating mechanism is to create replications by 

treating the existing data set of size T as a population from which samples of size T are 

extracted. Variation in estimates results from the fact that upon selection, each data point 

is replaced within the population.  We use this standard bootstrap to generate a 

distribution of  given .    tPΔ d
tYΔ

 Given the spatial distribution of yield, using a standard bootstrap and drawing 

each Yjt randomly and with replacement from the yield histories over j = 1,…,J counties 

and t = 1,…,T  will generate incorrect estimates of payments as doing so assumes the 

between-county standard error of yields, ijσ , equals 0. The resampling method must be 

carried out in such a way that spatial dependence is preserved, thus it is not possible to 

use the conventional bootstrap methods based on simple random sampling with 

replacement.  We generate this spatial yield distributions in a nonparametric fashion by 

appealing to a spatial version of the block-bootstrap (e.g., Lahiri, 1999) applied to the 

county yield histories over t = 1,…,T.  In this approach, instead of simply making random 

draws of Yjt from the yield histories to construct an empirical distribution of yields, we 

make random draws of the entire (J x 1) vector , thereby maintaining the spatial 

relationship between the yields.   Hence, the standard bootstrap creates the linkage 

between  and  and the block bootstrap creates the linkage between , , 

and county level yield shocks . 

tY

tPΔ d
tYΔ tPΔ d

tYΔ

d
tΔY
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 Our bootstrap approach to generating the yield distribution and price-yield 

relationship may not be as smooth as one would obtain with parametric methods or with 

methods that bridge nonparametric and parameter approaches, such as the rank resorting 

method, given that no yield draws are made from between observed yield points.  

However, our bootstrap approach imposes no assumption about the shape of the yield 

distribution between observed yield points. On the other hand, our estimates of the  

distribution of price deviates for any given yield deviate can be made arbitrarily smooth 

and a function of multiple variables. 

 

Data 

Data on county yields, planted acres, and harvested acres for all U.S. counties producing 

corn is supplied by the National Agricultural Statistics Service (NASS) of the U.S. 

Department of Agriculture.  As payments can be collected for corn for silage as well as 

corn for grain, and because silage can be a significant portion of corn production in some 

regions outside the Heartland, we merge data on corn for grain and for silage.  We 

convert tons of silage to bushels using a conversion rate of 7.94 bushels per ton, as per 

FSA (2006b).   

 County-level production data is not reported by NASS in cases where either the 

county has no acreage planted to the commodity or the sample size of farmers is deemed 

too low to report the county data. While the Heartland region is missing few Yit data 

points for counties that have reported corn production over the period of our analysis, 

NASS data does contain unreported Yit data points for some counties in peripheral 

production areas that have a history of corn production.  For estimating the county-level 
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detrended yields, missing yield data points are substituted by crop district estimates.4  As 

these substitutions can lead to aggregation biases, we want to minimize them. A trade-off 

exists between increasing the number of years from which the empirical yield distribution 

is created and this potential aggregation bias.  Counties with continuous year-to-year 

NASS planting histories over 1975 through 2005 accounted for over 98 percent of total 

U.S. corn production in 2005.    However, NASS county level coverage for earlier 

periods is less comprehensive. For instance, counties with continuous NASS planting 

histories over 1969 through 2005 accounted for only 53 percent of total U.S. corn 

production in 2005.     As our estimates of the yield shocks  over 1948 to 2005 show 

that the period 1975 to 2005 accounted for the some of largest estimated yield shocks 

since 1948 and that the average deviation in 

d
tYΔ

tYΔ  for 1975 to 2005 is within 2 percent of 

the average deviation over 1948 to 2005, 1975 to 2005 appears to be a representative 

sample of yield shocks, and we settle on it for our analysis.  Given this time span, 2,784 

counties are included in our analysis.  

 For the expected value of price Pt, or E(Pt),  we utilize a non-naive expectation, 

namely the average of the daily February prices of the December Chicago Board of Trade 

corn future (CBOT abbreviation CZ) in period t, t = 1975,…,2005.  The harvest time 

price Pt is the average of the daily November prices of the December CBOT corn future 

in period t. These choices of the expected and realized corn price is consistent with those 

                                                 
4 Note that data substitutions are used only where necessary for the purpose of estimating the trend equation 
for each county; the program scenarios examined here are for coupled support, and no payments are 
calculated in t for counties for which NASS has not reported planted corn acreage in t. 
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the Risk Management Agency of the USDA uses to price certain crop revenue insurance 

products for corn.5

 

Analytical results 

Table 1 provides the econometric results for the parametric and the SNP models over 

1975 to 2005. The dummy variable FarmAct takes the value of “1” for years 1996 and 

above (and 0 otherwise), reflecting the Federal government being out of the commodity 

storage business under recent Farm Acts.  We would expect the market to be more 

efficient in predicting harvest time price without the government build-up of stocks, 

suggesting a negative sign for FarmAct. Regression results show its coefficient to be 

negative and significant at the 10 percent level in both regressions.  Of course, being a 

dummy variable, FarmAct is treated as fully parametric in the regressions.  

 In addition to the t-statistics for the actual data, the table presents confidence 

intervals for the regression results that were produced with the bootstrap approach using 

1,000 simulated data sets.  The confidence intervals presented in Table 1 are constructed 

from the regression results on each simulated data set and are of the bias corrected 

accelerated (BCa) type (Efron, 1987), which gives the bootstrap results an interpretation 

analogous to t-statistics by making the estimated confidence interval symmetric around 

the mean. 

  The coefficient on  is significant at the 1 percent level in both regressions. 

The higher order transformation terms in the SNP regression are not significant, and the 

tYΔ

                                                 
5 We depart a bit from RMA practice by calculating average price over a whole month instead of a portion 
of the month. 
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value for tt YdPd ΔΔ  is nearly the same for both regressions.6  In fact, a likelihood ratio 

test cannot reject the hypothesis of the equivalence of the parametric and SNP results.    

 While the expectation is that the within season yield change would be the most 

significant explanation of within season change in corn prices – and the R2 values show 

that over 50 percent of the variation in the within season change in corn prices is 

explained by the within season change in corn yields –  other potential nonendogenous 

explanatory variables were examined as well. These included tYΔ  for corn produced in 

the rest of the world, which was not significant in explaining tPΔ  for U.S. corn.    The 

 for soybeans was not included in the regression as the correlation coefficient 

between  for soybeans and  for corn is quite high, as one would expect, at 0.74.  

A proxy for the  for corn in the regression is the 

tYΔ

tYΔ tYΔ

tYΔ tYΔ  for all U.S. feed grains. 

However, substituting this latter value for the former produced almost identical 

regression results, suggesting that corn yield is the driving force in producing within 

season changes in corn prices.7   Also examined was the change in the corn trade-

weighted U.S. exchange rate (Economic Research Service, 2007) between the beginning 

of the crop year and the end of the crop year, and the change in GDP between the first 

quarter and the fourth quarter of the calendar year.  Neither variable was significant in the 

regression.  Another factor that could explain within season change in corn prices is the 

stocks-to-use ratio, but variables such as this were not included in the analysis as our goal 

was to model corn price change in a reduced form purely as a function of exogenous 

                                                 
6 These results also hold for the analysis of the data over 1969 to 2005, which is available upon request.  
7 The correlation coefficient between  for U.S. feed grains and tYΔ tYΔ  for U.S. corn is 0.96. 
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shocks, and in particular, yield uncertainty. We treat all other variables as exogenous 

shocks via the error term in the regression. 

 Before running the bootstrap analysis of the distribution of payments given the 

regression results, we calibrate the payment scenarios by setting the program parameters 

so that the mean of total annual payments evaluated at historic price-yield points – the 

deterministic mean in this context – is equal across the program scenarios. We set the 

coverage rate γ in the market revenue program to 0.95 to match the upper coverage rate β 

proposed by Babcock and Hart (2005).  Similarly, the basic (g) and extended coverage 

(α) rates are set to 0.70 and 0.85, respectively (ibid.).  As the only parameter to set in the 

market revenue approach is γ, we choose the rest of the parameters in the other program 

scenarios to achieve the same level of annual mean payments that the market revenue 

scenario produces, or 2.47 billion dollars. Using a grid search, the required target price 

TP for target revenue to produce the same mean payment is $2.42 per bushel.  We choose 

the parameters of MLB and CCP so that the ratio of the CCP to total payments under the 

current scenario is similar to the ratio of the production-limited payments to total target 

revenue scenario payments. The required loan rate LR is $2.04 per bushel and with a CCP 

target price TP of $2.35, direct payment rate D of $0.09 is necessary for the calibration 

(note that for CCPs, decreasing D is one-for-one the same as increasing TP).  

 The simulated (1 x G) vector  = { , ,…, } corresponding to each 

 are generated from the G = 1,000 bootstrapped data sets, with FarmAct set equal to 

1 in the equation to adjust the predictions of 

tP̂Δ tP1̂Δ tP2
ˆΔ GtP̂Δ

d
tYΔ

tPΔ  to reflect the post-1996 Farm Act 

regime: 
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(13) ,  t = 1,…,T and 

g = 1,…,G 

gtg
d

gtwg
d

gtgv
d

gtgggt FarmActYswYsvYP δββ ˆ)(sinˆ)(cosˆˆˆˆ
21 +Δ+Δ+Δ+=Δ

The  based on the parametric regressions are similarly derived but exclude the 

Fourier transformed variables.  Figure 1a provides the mean of the estimated function 

 = f( ) evaluated over the range = {min( )…max( )} for the 1,000 

bootstrap data sets, and Figure 1b provides the 99 percent confidence bands for empirical 

distribution for both the parametric and the SNP approaches.    Both approaches capture 

most of the extreme yield shocks in the 99 percent confidence bands, and in conjunction 

with the two approaches not being statistically different, one would expect that the 

payment distribution derived from either approach would lead to similar results.    

gtP̂Δ

tP̂Δ d
tYΔ d

tYΔ d
tYΔ d

tYΔ

 

Discussion of results 

Table 2 summarizes the bootstrap results for distribution of payments, applying the price 

and yield deviations from the bootstrap to equations (1) through (8), using 2005 data as 

the baseline for planted acres, and the expected yield and price data against which the 

deviations are applied.8   The first row under each scenario shows the deterministic 

means derived from the calibration exercise (“mean – evaluated at actual data points” in 

the table), and the second the mean of the bootstrap results.  The overall coefficient of 

variation for the two revenue approaches (second column) are roughly equal. However, 

the coefficient of variation for the current program scenario is twice as high as for the two 

                                                 
8 For the analysis of the payments, memory limitations of the computer program used the analysis 
(Windows GAUSS)  prevented use of all 1,000 bootstrap outputs.  185 of the boostrapped output sequences  
from the regression analysis were randomly selected, yielding 5,735 total payment calculations (the 31 x 1 
vector of simulated price changes bootstrapped 185 times) for each of the 2,874 counties.  In principle, at 
the expense of slowing down the calculations, additional bootstraps could be added.  However, it seems 
unlikely that doing so would change the results in any essential manner.   
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revenue programs, with most of the contribution to this value coming from the fully 

production-coupled MLBs. These results suggest that the revenue-based programs would 

provide lower Federal budgetary uncertainty than current approach.  

 Below the coefficient of variation calculated for the bootstrap output are the 99 

percent empirical confidence intervals calculated from the same output.  A Jarque-Bera 

test (Greene, 2000) was calculated for each payment type to examine the departure of the 

distribution of payments from a normal. This statistic has an asymptotic chi-square 

distribution with two degrees of freedom and can be used to test the null hypothesis that 

the data are from a normal distribution, or more precisely, that the distribution is 

symmetric and mesokurtic. With lowest test value for the payment distributions in the 

table being 123, the null hypothesis of the normality of payments cannot be accepted 

under any reasonable level of significance.   Hence, while one could calculate the BCa 

confidence intervals for payments, the concept of symmetrical confidence intervals is 

inappropriate here given that a symmetrical confidence bound would include negative 

payments.  The lower bound of the 90 percent confidence band includes $0 or near zero 

payment levels in all cases, but also several billion dollars at the upper end. Actual 

production- coupled corn payments also varies greatly from year to year.9 The current 

program scenario has a 90 percent lower bound that is over $1 billion dollars lower than 

for either of the two revenue programs as well as an upper 90 percent bound that is over 

$2 billion higher than for the two revenue-based scenarios.  This result emphasizes the 

point that both farmers and the government would face less uncertainty in budgeting for 

expected payments under a revenue-based alternative.  

                                                 
9 For instance, over the period 1996 to 2006, actual LDPs for the crop year were $0 in four years, but as 
high as $4.3 billion in the 2005 crop year (payment variation is a bit less extreme when examined on a 
fiscal year basis). 

 24



 Of relevance from the U.S.’s standpoint with respect to multilateral agreements 

on domestic support are the higher moments of the payment distribution. While the 

higher moments of the corn programs payment distribution could be summarized by 

simply presenting the skewness and kurtosis measures for each scenario, such measures 

are not nearly as intuitive as the graphical representations of the payment distributions, as 

shown in Figures 2a to 2c. For each program scenario, the figures show both the 

distribution of total payments and the subset of payments most likely to face payment 

ceilings in future multilateral agreements on agricultural support.   For example, in Figure 

2a, we show payments net of disaster payments given that disaster payments can under 

certain conditions be exempt from support ceilings. Likewise, for Figure 2b, the basic 

portion of payments could in principle be exempt from support ceilings, and hence the 

figure shows payments net of basic payments as well as total payments.  Figure 2c shows 

the market revenue payment net of the supplemental payment as well as the total 

payment, although this breakdown is not intended to be suggestive of any portion of the 

market revenue payment being exempt from payment ceilings 

 Given the likelihood that future multilateral agreements on agriculture will 

continue to have support ceilings for member countries, a critical question then becomes 

what is the probability that the ceilings could be exceeded in any given year.   Given the 

premise of achieving the same mean annual payment level across the program scenarios, 

comparison of Figures 2a to 2c clearly shows the current style support scenario to have a 

distinctly fatter right hand tail than the two revenue-based programs. This fatter tail 

suggests that payments under revenue-based programs would have a lower probability of 

exceeding a support ceiling.  For example, excluding the portion of payments that may 
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possibly not be subject to limits, the two revenue based programs would exceed $6.5 

billion less than 1 percent of the time, while the current style program payment would 

exceed $6.5 billion 12 percent of the time.     

 Figures 2a to 2c can also confirm various priors. For example, the results in 

Figure 2a show that disaster payments are a lower portion of total payments as total 

payments level increase. This result suggests that disaster assistance is important in 

providing payments to regions with low correlation of yields with the Heartland, but 

higher payments levels are suggestive of high yield levels especially in the Heartland, and 

the associated lower prices. In Figure 2c, the supplemental payments work as intended 

and shifts the distribution of total payments to the right. 

 

Conclusions 

This paper develops an approach to empirically demonstrating how the within-season 

distribution of U.S. domestic commodity support for corn differs between current-style 

approaches to support and revenue-based support. From a purely economic standpoint, 

the results show the revenue-based payment scenarios to be preferable at the national 

level to the uncoordinated forms of support currently in use.  For revenue-based support, 

the variability around the total expected annual payment is lower, perhaps more 

importantly, the probability of high payments is lower. These results suggest advantages 

to this type of support, both in terms of lower budgetary uncertainty – for producers and 

the Federal government – and in meeting commitments for limiting spending on domestic 

commodity support.   
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 As the focus of this paper is on national level impacts, for the sake of brevity this 

paper summarizes the distribution of payments across counties into total values. Of 

course, inter-regional comparisons of the performance of the program scenarios are also 

of policy relevance, and extensions to this analysis could be based on the county-level 

results that are the basis for our summarized results.   

 The research results summarized here are dependent on minimal parametric 

assumptions.  On the down side, the results assume that farmers react the same way to all 

support program scenarios. Namely, our payment scenarios assume that the planted 

acreage in our reference year of 2005 is the same as that under the provisions of the 2002 

Farm Act. As the mean of actual Title I support payments for corn (excluding production-

decoupled support) over the 2002 through 2006 crop years is roughly the same as the 

average yearly payments in our analysis, this assumption is not likely to be overly strong.  

However, the level of producers’ aversion to risk may affect how they respond to 

differences in higher moments of the distribution of support payments.    An extension to 

the model in this paper could incorporate a structural model for field crops with explicit 

formulation of supply and demand functions incorporating price and yield risk.  While 

results from such a model would likely be sensitive to parametric assumptions, and would 

be quit burdensome to construct, it could be used to model how producers would react in 

the long run to different forms of support, both in terms of planting decisions within and 

between crops.   
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Table 1. Parametric and Semi-Nonparametric (SNP) Regression  
Results for the Function Explaining tPΔ  
 
Variable Parametric SNP 
   
Constant -0.043 -0.042 
 (-1.878){-0.088, -0.001} (-1.721){-0.086, 0.001} 
   

tYΔ  -1.368 -1.305 
 (-5.763){-1.771, -0.978} (-5.076){-1.797, -0.955} 
   
sin s( ) tYΔ  –  0.0095 
  (0.637){-1.717, -0.907} 
   
cos s( ) tYΔ – 0.0082 
  (0.551){-0.0198, 0.037} 
   
FarmAct -0.086 -0.079 
 (-2.113){-0.144, -0.029 } (-1.763){-0.152, -0.009} 
   
Ln-L 27.420 27.830 
R2 0.586 0.596 
   

tt YdPd ΔΔ  -1.368 -1.369 
 {-1.771, -0.978} {-1.797, -0.955} 

 
Notes: T-values are shown in parentheses.  
The BCa 90% confidence intervals apply the bias corrected accelerated approach (Efron) to  
1000 bootstrap runs, and are shown in brackets. 
For the parametric case, the parameter value for tt YdPd ΔΔ  is the same the coefficient on .  tYΔ
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Figure 1a. Within Season Price Differential Explained by Yield Shock  –  Corn
Fitted curve evaluated at the means of the bootstraps
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Figure 1b. Within Season Price Differential Explained by Yield Shock  –  Corn
Confidence bounds for the price shocks as derived from the boostrap analysis
Percent Price Difference (x100)

SNP 99% Lower Bound

Note:  Percent price difference is defined as being between  the February and November prices of the December 
CBOT futures contract for corn.

SNP 99% Upper Bound

Yield larger than 
expected

Yield smaller than expected

Parametric 99% Bounds 

 

 32



Table 2. Results of the Stochastic Analysis of the Distribution of Corn Program 
Payments Using 2005 as the Base Year for Evaluation 

Target Revenue Payments (Billion $) 

 Total Extended 
Coverage

Production 
Limited Basic 

Mean - evaluated at actual data points 2.47 0.99 1.28 0.19
Mean - bootstrap 3.03 1.16 1.64 0.22
Standard Error - bootstrap 0.97 0.60 0.40 0.24
Coefficient of Variation 0.321 0.521 0.242 1.062
90% Confidence Interval - lower 1.62 0.39 1.06 0.02
90% Confidence Interval - upper 4.80 2.28 2.37 0.73
     

Market Revenue w/ Supplemental Payments (Billion $) 
 Total National Supplemental  
Mean - evaluated at actual data points 2.47 1.70 0.77  
Mean -  bootstrap 3.17 2.33 0.85  
Standard Error - bootstrap 1.07 1.00 0.50  
Coefficient of Variation 0.338 0.430 0.591  
90% Confidence Interval - lower 1.55 0.76 0.37  
90% Confidence Interval - upper 5.09 4.06 1.97  
     

Pseudo-Current Program Payments (Billion $) 
 Total MLB CCP Disaster 
Mean - evaluated at actual data points 2.47 1.02 1.26 0.19
Mean - bootstrap 3.11 1.26 1.67 0.19
Standard Error - bootstrap 2.13 1.69 0.88 0.28
Coefficient of Variation 0.684 1.346 0.529 1.459
90% Confidence Interval - lower 0.38 0.00 0.00 0.02
90% Confidence Interval - upper 7.10 4.78 2.28 0.83
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Figure 2a. Distribution of Commodity Payments for Corn – Current Style Programs
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Figure 2c. Distribution of Commodity Payments for Corn – Market Revenue Program
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