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Forecasting Housing Prices under Different Submarket Assumptions 
 

Abstract 
 
This research evaluated forecasting accuracy of hedonic price models based on a number of 

different submarket assumptions. Using home sale data for the City of Knoxville and vicinities 

merged with geographic information, we found that forecasting housing prices with submarkets 

defined using expert knowledge and by school district and combining information conveyed in 

different modeling strategies are more accurate and efficient than models that are spatially 

aggregated, or with submarkets defined by statistical clustering techniques. This finding 

provided useful implications for housing price prediction in an urban setting and surrounding 

areas in that forecasting models based on expert knowledge of market structure or public school 

quality and simple model combining techniques may outperform the models using more 

sophisticated statistical techniques.   

JEL classification: C53; R21 
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Forecasting Housing Prices under Different Submarket Assumptions 
 

1. Introduction 

Fueled by low mortgage rates, housing market values had increased rapidly in the United States 

(US) since the late 1990s. The average housing price rose by more than 45% between 1996 and 

2003 after adjusting for inflation (Baker, 2005). Economists are engaged in an ongoing debate 

about whether the US housing market is over-inflated. Despite disagreement about housing 

market inflation, an agreement exists on the fact that the housing market has been an important 

force in the overall economy during the late 1990s and early this century. Rapid appreciation in 

house values had boosted homeowners’ confidence, thereby powering consumer spending and 

driving the overall economy.  

More recently, the US housing market appeared to be cooling. Total existing-home sales 

declined by 6% in April, 2006 compared with the same month in 2005 (NAR, 2006). Given the 

size of the housing market in the US economy, its future direction is of concern not only to home 

buyers and sellers but also to policy makers. Accurate housing price forecasts can provide 

valuable information to these parties for making decisions about housing market. Hedonic price 

models have been commonly used in modeling the relationship between housing price and the 

physical attributes and geographic characteristics of homes (Song, 1995). With a few notable 

exceptions (e.g., Goodman and Thibodeau, 1998, 2003;  Bourassa et al. (1999, 2003)), previous 

research on housing prices has largely focused on the parametric specification of the model, i.e., 

using ordinary least square or Box-Cox transformed regressions to examine the interaction 

between housing prices and regressors. Goodman and Thibodeau (1998), among others, have 

argued that market segmentation is an important feature that should be modeled in housing price 

research. Market segmentation is the process of defining the suitability of a submarket for a 

specific housing property. Grigby et al. (1987) defined a submarket as a set of dwellings that are 
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reasonably close substitutes for one another, but relatively poor substitutes for dwellings in other 

submarkets. 

The extant literature on hedonic price forecasting and submarket analysis (e.g., Michael 

and Smith,1990;  Goodman and Thibodeau,1998;  Dale-Johnson,1982;  and Bourassa et al., 

1999,,2003) has shown that submarket identification is an important factor for the successful 

modeling of housing prices. Submarket identification is important because property prices in 

different submarkets are determined by different functional relationships. The task of delineating 

a large geographic area into several relatively homogenous housing submarkets raises numerous 

theoretical and methodological questions (Palm, 1978). Many studies used predefined or 

otherwise convenient geographical boundaries to identify submarkets (see discussions in 

Bourassa et al. (1999). Other literature has adopted more systematic methods, e.g., principal 

component analysis and clustering, to delineate submarkets.  

Dale-Johnson (1982) and Bourassa et al. (1999, 2003) used factor analysis and clustering 

technique to assign individual observations to different submarkets. Goodman and Thibodeau 

(1998) proposed identifying housing submarket boundaries with estimated parameters from a 

hierarchical clustering analysis. Their model delineated submarkets where variation in public 

school quality explained variation in the hedonic coefficient for geographic sizes of school zones. 

Goodman and Thibodeau (2003) extended their earlier work by comparing the hedonic 

prediction accuracy for different methods of delineating housing submarkets, i.e., no spatial 

disaggregation, by zip code districts, by census tracts, and using the Goodman-Thibodeau 

technique to delineate submarkets. The concept behind the Goodman-Thibodeau technique is that 

all homes within a spatially concentrated area share amenities associated with the property’s 

location. Consequently, the housing characteristics that determine a property’s market value are 

nested in a hierarchical structure.  
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Comparisons among delineation methods revealed that spatial disaggregation yields 

significant gains in prediction accuracy. One difficulty with delineating submarkets using 

predefined geographical regions, such as zip codes, census tracts, and school zones, is that in 

many cases no obvious basis for internal homogeneity exists within these regions (Bourassa et 

al., 1999). Some researchers used individual dwelling data to avoid complications from the 

assumption of internal homogeneity within predefined regions. For example, Day (2003) used 

hierarchical clustering techniques to identify property submarkets defined by a combination of 

property types, locations, and socioeconomic characteristics of the inhabitants of each housing 

unit.  

Bourassa et al, (1999) concluded that the classification derived from the clustering 

procedure was significantly better than other submarket classification methods. Finally, they 

suggested using the same clustering procedure with a larger data set to investigate the difficult 

issue of determining the optimal number of submarkets. On the other hand, Bourassa et al. (2003) 

found that prediction accuracy of housing price using real estate appraisers’ defined submarket is 

better than statistically defined submarket. The authors used the k-means clustering to define the 

submarkets and did not examine those results using alternative statistical techniques. Thus, 

comparing models based on submarkets defined by real estate appraisers with those with a more 

comprehensive set of submarket structures that are derived from a variety of delineation criteria 

and forecasting algorithm are needed to confirm the robustness of their conclusions. For example, 

k-means clustering has been criticized for relying on an a priori number of submarkets while 

two-step clustering uses no clear a priori information about the number of segments (SPSS, 

2006). Furthermore, the forecasting accuracy based on expert defined submarket need to be 

compared with those based on submarket by school district zones because school quality has 

been found as one of the most important predictors of housing prices (Bogart and Cromwell, 
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1997; Goodman and Thibodeau, 1998, 2003, 2006; Hayes and Taylor, 1996; Brasington, 1999; 

Haurin and Brasington, 1996; Song, 1998).  

The objective of this research was to investigate the accuracy of alternative housing 

market segmentation criteria in hedonic housing price forecasting. Our hypotheses are that 

allowing for market segmentation in housing-price models increases their forecasting accuracy 

and that the criteria used to segment housing markets greatly affect their forecasting accuracy. A 

significant contribution of this work was the use of a more comprehensive set of housing 

submarket delineation criteria than previous works (Goodman and Thibodeau, 2003; Bourassa et 

al., 2003) for estimation and comparison of hedonic housing price models. Segmentation criteria 

used in the paper include no segmentation, three statistical clustering methods, predefined 

delineations of geographic areas, high school district zones and areas defined through expert 

knowledge. The forecasting accuracy was compared for models developed from these six 

segmentation criteria and for simple and weighted averages of the latter five models. To our 

knowledge, this list of segmentation criteria is more comprehensive than others found in the 

literature.   

 

2. Data Description and Sources 

Geographically digitalized data from three sources were used in this study: (a) property parcel 

records from the Knoxville - Knox County - Knoxville Utilities Board (KUB) Geographic 

Information System (KGIS, 2006) (b) data extracted from the 2000 US census (GeoLytics, 2006) 

and (c) geographical information from the 2004 Environmental Systems Research Institute 

(ESRI) Maps and Data (ESRI, 2006)..Knox County property parcel records contain detailed 

information about structural attributes of the properties. Census-block group data describe 

neighborhood characteristics. Distance characteristics were computed using the ESRI data.  
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 Knox County includes 12 high school districts, 83 census tracts, and 234 census block 

groups. Of the 23,002 transactions that took place in Knox County between January 1998 and 

December 2002, 22,979 have complete information for use in the analysis (KGIS, 2006). To 

mitigate the impact of outliers, the numbers of observations were reduced to 18,380 by excluding 

transactions with sale prices less than the tenth percentile or higher than the ninetieth percentile. 

 Descriptive statistics for the variables used in the analysis are presented in Table 1. A 

typical sample home had 1,796 square feet of finished area, had 3 bedrooms, and rested on a 

25,483 square-foot (0.59-acre) lot. About 71% of sample homes had a fireplace, 21% had all 

brick exterior walls, 4% had a pool, and 63% had a garage. In 2000, average travel time to work 

was 23 minutes, average per capita income was $24,300, and the average unemployment rate 

was 3%. The distance variables, i.e., distance to downtown, distance to railway, distance to golf 

course, distance to park, distance to water body, and distance to sidewalk were calculated using 

the ArcGIS 9.1 software (ESRI, 2006).  

To assess how accurately sample regression coefficients capture the corresponding 

population regression coefficients, estimated regression coefficients were used to evaluate 

forecasting accuracy with an independent set of validation data. This practice is known as “cross-

validation.” For cross validation (Fetcher et al., 2004; Goodman and Thibodeau, 2003)  the 

pooled sample of 18,425 transactions was divided into an estimation sub-sample and a validation 

sub-sample randomly using Stata 9.0 (Stata, 2006). The estimation sub-sample contained 16,583 

(approximately 90%) observations and the validation sub-sample included 1,842 (10%) 

observations.  

Table 1 compares the descriptive statistics of the pooled sample and the estimation and 

validation sub-samples. The average transaction price for the pooled sample was $114,598; 

whereas for the estimation and validation sub-samples they were $114,684 and $113,835 
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respectively. The difference between the sub-samples is trivial and statistically insignificant, 

implying that cross validation results are reliable. 

 

3. Submarket Identification   

No universally accepted method exists in the housing literature to identify the optimal number of 

submarkets (e.g., Bourassa et al.,1999; 2003; Johnson, 1982; Michaels and Smith, 1990; Schnare 

and Struyk, 1976;  Goodman and Thibodeau, 1998; 2003). We used six methods for delineating 

housing submarkets. These submarket models were: 1) no segmentation in the housing market; 2) 

the k-means clustering method; 3) a clustering method using a two-step procedure without 

housing prices; 4) a clustering method using a two-step procedure with housing prices; 5) using a 

priori information of high school districts; and 6) districts using a priori information from 

experts.  

3.1 No Market Segmentation (Baseline model) 

The no-segmentation model was estimated as a baseline model for comparisons with the 

forecasting accuracy of the models estimated with variables representing housing submarkets. 

3.2 K-Means Clustering 

The k-means clustering technique was used to identify submarkets based on census tract-level 

data (Bourassa et al., 1999; 2003; Day, 2003). This method requires a priori specification of the 

number of submarkets. We started by initially specifying 15 as the number of submarkets. This 

starting number was chosen based on a logical reduction in the number of submarkets defined by 

local experts (realtors) described below. The number of clusters in the model was gradually 

lowered until the number of sales transaction was at least 500 transactions within the smallest 

submarket cluster following Goodman and Thibodeau (2003);  Bourassa et al. (2003). This 

procedure yielded five clusters (see Figure 1). However, the k-means clustering approach has 
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been criticized for requiring an a priori assumption of the number of groups and its inability to 

handle categorical variables.  

3.3 Two-step Clustering with Price  

The first step of the two-step cluster method begins with pre-clustering observations for 

individual sales transactions by constructing a likelihood function and selecting the optimal 

number of clusters using either the Bayesian Information Criterion or the Akaike Information 

Criterion (AIC). A matrix containing Euclidean distances between all pairs of pre-clustered 

observations is then created. In the second step, these pre-clustered groups of original 

observations are treated as individual observations and re-grouped. Because a large number of 

original observations are grouped into a much smaller number of pre-clusters, traditional 

methods such as agglomerative hierarchical clustering are typically used to re-group the pre-

clusters.  

In contrast to the aforementioned k-means clustering method, the two-step clustering 

method determines the number of clusters without an a prior assumption about the initial number 

of groups. While the two-step clustering method can use continuous and categorical variables for 

clustering, it is preferred over k-means clustering when categorical variables are used (SPSS, 

2006). The optimal number of clusters was determined by using AIC and the procedure yielded 

four clusters (see Figure 2).  

3.4 Two-step Clustering without Price 

The sale price was used as a clustering variable in the above method and in previous studies. 

Nevertheless, a prior inclusion of sale price in clustering may introduce the problem of 

overfitting. To determine whether the inclusion of sale price has an effect on submarket 

delineation and subsequent out-of-sample forecasting accuracy, sale price was excluded from the 

two-step clustering method. This procedure yielded three clusters (see Figure 3).  
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3.5 High School Districts 

Existing literature indicated that school quality is a strong predictor of housing price (e.g., Bogart 

and Cromwell,1997;  Hayes and Taylor, 1996; Brasington, 1999; Haurin and Brasington, 1996;  

Song 1998). Many housing submarket studies relied on this a priori intuition about school 

quality by defining school districts as submarkets and found strong support of doing so (e.g., 

Goodman and Thibodeau, 1998; 2003; 2006). In our study, Knox County’s 12 high school 

districts were used to define the submarket structure (see Figure 4). 

3.6 Expert-Defined Submarkets 

The final market segmentation method used boundaries drawn by local realtors who have first-

hand expert knowledge and understanding of the local housing market. We drew the boundaries 

in GIS form based on interviews with local realtors and a sub-area map found on the web site of 

the Knoxville Area Association of Realtors® Internet Data Exchange Program1 (2006) . The map 

was created to help realtors and home buyers search for residential homes of specific types in 

particular areas of town. The sub-area map was developed by a group of professional realtors 

based on settlement patterns, housing and neighborhood characters, and housing choices of new 

buyers. The map has 23 sub-areas, including 9 smaller sub-areas in downtown Knoxville and 14 

larger sub-areas. We used the 14 larger sub-areas as submarkets and aggregated the downtown 

Knoxville sub-areas into one submarket for a total of 15 expert-defined submarkets (see Figure 

5). The aggregation of the 9 downtown sub-areas was justified given that these areas share many 

common submarket characters for the downtown neighborhood.  

 Frequency distributions for the no-market segmentation, k-means clustering, two-step 

clustering with price, two-step clustering without price, high school districts, and expert-defined 

submarkets are reported in Table 2.  
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4. Empirical Hedonic Model  

The general hedonic model used in this study was: 

 0ln 1,2,..., ; 1, 2,...,j j j j j j
i k ik ik

y x i N j= β + β + ε = =∑ J                                   (1) 

where ln j
iy  is the natural logarithm of the sale price of house i in submarket j; j

ikx  is kth variable 

of structure, neighborhood, distance, and time characteristics; J  is the total number of 

submarkets; N j is the number of observations in submarket j; and j
iε  is a residual capturing the 

random disturbance for submarket j.  

Nine key structural characteristics were available and included in this study: finished area, 

age, lot size, number of stories, number of bedrooms, and if the structure included a fireplace, 

garage, all brick walls, and/or pool. Condition and quality variables were also included. The 

latter two variables were defined on a scale of 1 to 6 for the following categories as rated by the 

Knox County tax assessors’ office: excellent, very good, good, average, fair, and poor. These 

structural, quality, and condition variables served as control variables and were typically found 

to be important in explaining housing price variation in the literature (e.g., Song, 1995;  Bin and 

Polasky, 2004;  Bourassa et al,. 2003).  

Some of the variables representing neighborhood characteristics were extracted from the 

2000 U.S. Census for census-block groups (GeoLytics, 2006),,including population density, per 

capita income, travel time to work, vacancy rate, unemployment rate, rural, and rural-urban 

interface areas. Population density was included to capture the effect of population pressure on 

land and natural resources (Katz and Rosen, 1987;  Song, 1998). Per capita income and the 

unemployment rate were included as measures of economic conditions within a neighborhood 

(Down, 2002;  Song, 1998; Phillips and Goodstein, 2000). Since residents in urban areas value 

access to employment (Small and Song, 1992; Song, 1995), average travel time to work was 
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included as a spatial measure of distance to the employment hub. Vacancy rate was a proxy for 

prevailing housing market conditions (Dowall and Landis, 1982). Differences often occur 

between rural and urban areas with regard to public services such as roads and law enforcement. 

These differences were captured using dummy variables for houses within rural areas and within 

the rural-urban interface, using houses within urban areas as the reference dummy variable. 

Another set of neighborhood variables included boundary dummy variables and high 

school dummy variables. The study area (City of Knoxville and Knox County, Tennessee) 

adopted an urban growth boundary (UGB) in 2001. Based on Public Chapter 1101 of the Growth 

Policy Act in 1998 (TACIR, 2006), the county, the city, and towns within the county identified 

three classifications of land: rural areas, area enclosed by UGBs, and planned growth areas 

(PGAs).2 Dummy variables for the UGB that excludes city area (Henceforth it is noted as UGB 

for simplicity) and PGA were included to capture the potential effects of growth boundary 

statutes.  

Distance variables included distances to downtown Knoxville, nearest water body, 

nearest greenway, nearest railroad, and nearest sidewalk. These distance variables were intended 

to capture the effects on housing prices of proximities to various amenities and disamenities. 

Size of the nearest park was included to measure the premium for being close to more park 

amenities, which was a significant factor in explaining property value (Lutzenhiser and Netusil, 

2001).  

Previous studies found that a logarithmic transformation of distance variables generally 

performs better than a simple linear functional form because the transformation captures the 

declining effects of these distance variables (Bin and Polasky, 2004;  Iwata, Murao, and Wang, 

2000; Mahan, Polasky, and Adams, 2000). Logarithmic transformations of some quadratically 
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specified distance variables were tried yielding no improvement in model fit. Thus, a simple 

logarithmic transformation for distance-related variables was used in this study.  

To account for potential annual and seasonal variation, year and month dummy variables 

were included with 1998 as the reference year and January as the reference month. Housing 

prices may vary seasonally—that is, prices are typically higher in spring and summer months 

irrespective of the overall trend. More buyers tend to be in the market during these months, 

increasing the demand for housing. 

 

5. Forecast-Combining Algorithms 

Several forecast-combining algorithms have been proposed in the literature. The common 

conclusion from the literature was that forecasting accuracy can be substantially improved by 

combining multiple individual forecasts (Clemen, 1989). For this reason, two forecast-combining 

algorithms were evaluated and compared with forecasts from the six individual housing 

submarket models.  

In some cases, a simple average of individual forecasts was found to produce superior 

forecasting accuracy than more complicated algorithms (e.g., Armstrong et al., 1983;  

Makridakis and Hibon, 2000). Hence, the simple average of forecasts generated by the five 

methods of delineating housing submarkets (excluding no market segmentation) was used as a 

simple forecast-combining algorithm. Predicted housing prices were generated from the 

individual models as the expectation of the log-normal distribution using the estimated mean and 

standard errors in the corresponding hedonic price function. 

For comparison with the simple average, an adapted version of a more complex 

forecasting algorithm, a variation of the “encompass combining algorithm” proposed by Granger 

and Ramanathan (1984) was used. Their algorithm assigns higher weights to more accurate 
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forecasting methods. In the first stage of their algorithm, the actual house price (y) was regressed 

on the set of price forecasts from the five submarket models ˆ( m )y s using ordinary least square, 

 ,                                  (2) $5
0 1

, 1,...,
m

i m iim
y y i

=
= α + α + ξ =∑ N

where  represents the five submarket models. In the second stage, parameter estimates 

( )

m

5,...,1,0,ˆ =mmα ) were used to construct the encompass combined forecast yec,  

 .                                  (3) .,...,1,ˆˆ
10 Niyy m

im

M

m
ec
i =+= ∑ =

αα

6. Measures of Forecasting Accuracy 

Forecasts were obtained from the aforementioned models using the estimation sample and the 

validation sample was used to compare and test the forecasting accuracy of those models. Recent 

literature has discussed the comparison of alternative forecasting models (e.g., Chen and Lian, 

2005;  Chen and Yang, 2004; Fletcher et al., 2004;  Fetcher et al., 2000;  Makridakis, 1993;  

Campbell, 2002). The forecasting literature has provided a long list of accuracy measures, e.g., 

absolute percentage error (APE), proportional prediction error (PPE), and root mean square error 

(RMSE), just to name a few. In the third of a series of forecasting competitions (M3 competition) 

between various forecasting procedures using data series provided by Makridakis and colleagues, 

Makridakis and Hibon (2000) observed that different accuracy measures produce different 

rankings of forecasting models. Chen and Yang (2004) and Kunst and Jumah (2004), among 

others, echoed their conclusion, pointing out an empirical difficulty associated with selecting a 

particular accuracy measure. Generally, APE (also referred as Mean APE in forecasting literature) 

is commonly used. Ahlburg (1992)  found that of 17 research papers, ten used APE. Nonetheless, 

APE is criticized for asymmetry and instability when the original value of y is close to zero 

(Koehler, 2001). However, in our study, housing prices were generally nontrivial, mitigating 

issues of instability.  
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In this study, we used mean error, APE, and PPE in evaluating forecasting accuracy 

following Goodman and Thibodeau (2003). APE was calculated as (Makridakis, 1993): 

 
$1

1
(mean) 100%

r
i i

i

N
y yr

N y
i

APE −

=

= ×∑ , r = 1, 2, …, 8,                                  (4) 

where iy  is the true price of the house and ˆ ry  represents the predicted price that was generated 

by the rth forecasting procedure. PPE is the error divided by the true price of the house and it is 

expressed as (Goodman and Thibodeau,2003).  

 
$( )1

1
(mean) 100%

r
i i

i

N
y yr

N y
i

PPE −

=

= ×∑ .                                  (5) 

The PPE differs from mean error by penalizing deviations from lower housing prices more than 

deviations from higher housing prices. Suppose two houses with prices of $50,000 and $500,000 

have a same prediction error of $5,000, their contributions to mean error are the same but the 

PPEs are different, 10 percent and 1 percent respectively.  

 

7. Empirical Results 

Table 3 shows the mean error, APE, and PPE calculated with the validation samples for the eight 

forecasting models. Means in Table 3 relate to forecasting accuracy while standard deviations 

indicate forecasting efficiency. Mean errors and mean PPE have little implication for forecasting 

accuracy because the negative values of errors and PPEs could cancel the positive values of 

errors and PPEs respectively. Negative values of mean errors and PPEs revealed that all models 

consistently underestimated housing prices. In contrast to the mean values, standard deviations of 

the error and the PPE have implications for efficiency of the models. The error standard 

deviation for the expert-defined submarket model is $23,456, or $2,141 (9%) less than the no-

market-segmentation model. While the expert-defined submarket model has the smallest error 
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standard deviation among submarket model, the high school districts, simple average and the 

encompass combining algorithm generated about the same error standard deviation. Based on the 

error standard deviation, there is not much difference among these four models in terms 

efficiency in forecasting. The PPE standard deviation for the expert-defined submarket model is 

3.4% lower than the PPE standard deviation for the no-market-segmentation model. Although, 

the evaluation of PPEs indicates that the expert-defined submarket model is the most efficient 

forecasting model, school district model and other two statistical algorithms produce the very 

similar result. 

Because the mean APE does not cancel positive and negative values, it can be used to 

evaluate efficiency as well as accuracy. The mean APE for the expert-defined submarket is 

14.38%, or 1.13% less than the no-market-segmentation model. Interestingly, the high school 

district model and two forecast-combining algorithms produced similar mean APEs compared 

with the expert-defined submarket model, while the encompass combining algorithm projected a 

slightly lower mean APE than the simple average. The standard deviations for the two-step 

clustering with price and high school district models were estimated to be about 4% lower than 

the no-market-segmentation model. Based on the mean APE, the expert-defined submarket 

model, high school district and the two forecast-combining algorithms are the most accurate 

forecasting models, while the two-step clustering with price and high-school-district models are 

the most efficient forecasting models. Hence, the above mentioned results indicate the 

consistently similar accuracy of high school district with that of expert defined model, the high 

school district model is found to be even more efficient than that defined with expert knowledge. 

The three forecasting accuracy measures have revealed that the expert-defined submarket 

model, high school district and the encompass combining algorithm performed relatively well. 

The mean APE result indicates that these three models are the most accurate forecasting models 
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and the standard deviations of mean errors, PPEs, and APEs suggest that these models have the 

most efficient forecasting ability. Overall, the five submarket models and the two forecast-

combining algorithms performed better than the no-market-segmentation model. The mean APE 

and standard errors of mean errors, PPEs, APEs consistently showed that the no-market-

segmentation model has relatively low accuracy and efficiency.     

Of the three measures of prediction error (error, PPE, and APE), the value of APE is the 

only one that addresses prediction accuracy, although the standard errors of the three measures 

have implications for forecasting efficiency. Thus, the value of APE is further scrutinized. Table 

4 presents the distribution of APE cumulative percentile for the eight forecasting models. The 

cumulative frequency percentile is presented for 1%, 5%, 10 %, 25%, … 99%. These cumulative 

frequency percentiles are presented to evaluate their prediction accuracy under the framework of 

the automated valuation model (AVM). The AVMs are computer algorithms that provide real 

estate market analysis and estimates of housing values (Moore, 2005). The criterion used in the 

real estate industry that adopts AVM requires that at least 50% of the predicted house prices 

should be within 10% of the observed sale prices (Goodman Thibodeau, 2003). All five 

submarket models and the two forecast-combining algorithms meet the AVM’s 10% threshold 

criterion while the no-market-segmentation model fails the threshold criterion. With a trivial 

difference, the median deviation of the predicted values based on the expert-defined submarket 

model, high school districts, simple average and the encompass combining algorithm from the 

true housing prices were notably different from and significantly smaller than other set of 

submarket models (in the range of 8.6 to 8.8 in the former set to 9.1 to 10.1 in the latter set). The 

numbers indicate that the predicted values of 50% of the transactions were within an interval 

enclosed by their true sale prices plus and minus 8.6% (or 8.8%). Again, this confirms the better 
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performance of the expert-defined submarket model, high school districts and the two combining 

algorithm than those of the rest.  

Overall, our result is consistent with the findings of Goodman and Thebodeau (2003) that 

models with spatially disaggregated submarkets perform better in terms of housing price 

forecasting and Bourassa et al. (2003) that the expert defined submarket structure has better 

prediction accuracy than those generated from simple statistical technique (eg, k-means 

clustering). Our result also shows that forecasting accuracy and efficiency of expert defined 

submarket does not significantly differ from that in submarkets based on high school district 

criteria and some other commonly used forecasting combining algorithms, although it shows 

advantage over models based submarkets identified through more complicated statistical 

procedures.   

 

8. Conclusion 

Notwithstanding the widespread application of the hedonic model in housing studies, with 

several notable exceptions, little research has been performed on the housing-price forecasting 

accuracy of these models. This paper compares the forecasting accuracy of the hedonic model 

applied with various submarket structures. These submarkets were either imposed or derived 

from intuition or from the data using different clustering techniques. Using multiple measures of 

forecasting accuracy, we compare a single-market hedonic model with five spatially 

disaggregated submarket models as well as two forecast-combining algorithms.  

 Although this study has not provided a clear choice for the “best” housing-price 

forecasting model, it has demonstrated that the forecasting accuracy of the hedonic price model 

improves when a priori expert knowledge, school district, and combining information conveyed 

in different modeling strategies are used to define housing submarkets. Particularly, the 
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forecasting accuracy of the expert-defined submarket structure, using a priori information from 

realtors who deal with the local real estate market on daily basis, and the high school district 

reflecting school quality perform significantly better than the models that use systematic 

clustering techniques to define submarkets. This result implies that the boundaries drawn with 

expert knowledge and school quality serve better for housing market segmentation than the 

boundaries drawn with clustering or predefined geographic units.  

Using a more comprehensive set of submarket structures that are derived from a variety of 

delineation criteria, we have obtained results that are consistent with Bourassa et al.’s (2003) 

finding where prediction accuracy of housing price using real estate appraiser’s defined 

submarket is better than statistically defined submarket. Furthermore, we confirm that school 

district and combining information conveyed in different modeling strategies are on par with the 

expert-defined submarket structure. This implies that under the circumstance where the expert 

defined submarkets are not easily available or are not in consensus, the housing price forecasting 

based on submarkets by high school district may serve as well as expert defined submarket. 
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Notes 
 

 
1.  The map is available at 
http://public.kaarmls.com/property/searchDetails.asp?AreaID=1&pt=1
 
2. The rural areas include land to be preserved for farming, recreation, and other non-urban uses. 
The land within the UGB is reasonably compact but adequate to accommodate the entire city’s 
expected growth for the next 20 years. PGAs are large enough to accommodate growth expected 
to occur in unincorporated areas over the next 20 years (MPC, 2001). 
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Table 1.  Variable Name, Definition, and Descriptive Statistics 
Variable Definition Pooled sample Estimation 

sample 
Validation 
sample 

Dependent Variable     
House price Housing sales price  114,598.30 

(41,306.09) 
114,683.80 
(41,345.23) 

113,834.83 
(40,957.83) 

Structural Variable     
Finished area Total finished structure square footage 1,793.16 

(716.54) 
1,794.89 

(7,211.25) 
1,780.74 

(6,742.44) 
Age Year house was built subtracted from 2005 27.78 

(20.18) 
27.79 

(20.21) 
27.70 

(19.89) 
Lot size Lot square footage 25,483.30 

(67,896.71) 
25,723.69 

(70,205.51) 
23,335.35 

(41,916.41) 
Stories Count of stories 1.30 

(0.46) 
1.30 

(0.46) 
1.29 

(0.45) 
Bedroom Count of Bedroom 3.03 

(0.57) 
3.03 

(0.57) 
3.05 

(0.57) 
Fireplace Dummy variable for fireplace (1 if fireplace 0 otherwise) 0.71 

(0.55) 
0.71 

(0.55) 
0.70 

(0.54) 
Garage Dummy variable for garage (1 if garage 0 otherwise) 0.63 

(0.48) 
0.64 

(0.47) 
0.61 

(0.48) 
Brick Dummy variable for all brick exterior walls (1 if all brick 

0 otherwise) 
0.21 

(0.41) 
0.21 

(0.41) 
0.21 

(0.40) 
Pool Dummy variable for pool (1 if pool 0 otherwise) 0.04 

(0.21) 
0.04 

(0.21) 
0.04 

(0.21) 
Condition Dummy variable for condition of structure (1 if excellent, 

very good, and good 0 otherwise) 
0.75 

(0.42) 
0.75 

(0.42) 
0.76 

(0.42) 
Quality Dummy variable for quality of construction (1 if 

excellent, very good, and good 0 otherwise) 
0.29 

(0.45) 
0.29 

(0.45) 
0.29 

(0.45) 
Neighborhood 
Variable 

    

Population density Population density for census-block group in 2000 2.36 
(1.73) 

2.36 
(1.76) 

2.34 
(1.52) 
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Per capita income Per capita income for census-block group in 2000 24,278.09 
(8,358.67) 

24,276.32 
(8,337.08) 

24,293.89 
(8,551.47) 

Travel time to work Average travel time to work for census-block group in 
2000 (minuets) 

22.67 
(3.35) 

22.68 
(3.36) 

22.58 
(3.29) 

Vacancy rate Vacancy rate for census-block group in 2000, which is 
unoccupied housing units in 2000.  

0.06 
(0.02) 

0.06 
(0.02) 

0.06 
(0.02) 

Unemployment rate Unemployment rate for census-block group in 2000 0.03 
(0.02) 

0.03 
(0.02) 

0.03 
(0.02) 

Rural area Dummy variable for rural area (1 if census-block group 
with only rural type houses 0 otherwise) 

0.06 
(0.25) 

0.06 
(0.25) 

0.06 
(0.24) 

Rural-urban 
interface 

Dummy variable for rural-urban interface (1 if census-
block group with mixed urban and rural type houses 0 
otherwise)   

0.22 
(0.42) 

0.22 
(0.41) 

0.23 
(0.42) 

Urban growth 
boundary 

Dummy variable for urban growth boundary (1 if urban 
growth boundary 0 otherwise) 

0.08 
(0.28) 

0.09 
(0.28) 

0.07 
(0.26) 

Planned growth 
area 

Dummy variable for planned growth area (1 if planned 
growth area 0 otherwise) 

0.46 
(0.49) 

0.46 
(0.49) 

0.47 
(0.49) 

Bearden  Dummy variable for Bearden High School District (1 if 
Bearden, 0 otherwise) 

0.16 
(0.36) 

0.16 
(0.36) 

0.16 
(0.36) 

Carter Dummy variable for Carter High School District (1 if 
Carter, 0 otherwise) 

0.03 
(0.18) 

0.03 
(0.18) 

0.03 
(0.18) 

Central Dummy variable for Central High School District (1 if 
Central, 0 otherwise) 

0.09 
(0.29) 

0.09 
(0.29) 

0.09 
(0.29) 

Doyle Dummy variable for Doyle High School District (1 if 
Doyle, 0 otherwise) 

0.06 
(0.25) 

0.06 
(0.25) 

0.07 
(0.25) 

Fulton Dummy variable for Fulton High School District (1 if 
Fulton, 0 otherwise) 

0.04 
(0.20) 

0.04 
(0.20) 

0.04 
(0.19) 

Gibbs Dummy variable for Gibbs High School District (1 if 
Gibbs, 0 otherwise) 

0.06 
(0.24) 

0.06 
(0.24) 

0.06 
(0.24) 

Halls Dummy variable for Halls High School District (1 if 
Halls, 0 otherwise) 

0.06 
(0.24) 

0.06 
(0.24) 

0.06 
(0.24) 

Karns Dummy variable for Karns High School District (1 if 
Karns, 0 otherwise) 

0.16 
(0.37) 

0.16 
(0.37) 

0.16 
(0.37) 
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Powell Dummy variable for Powell High School District (1 if 
Powell, 0 otherwise)  

0.07 
(0.26) 

0.07 
(0.26) 

0.06 
(0.24) 

Austin Dummy variable for Austin High School District (1 if 
West, 0 otherwise) 

0.00 
(0.08) 

0.00 
(0.08) 

0.00 
(0.08) 

Farragut Dummy variable for Town of Farragut & Farragut High 
School District (1 if Farragut, 0 otherwise) 

0.11 
(0.32) 

0.11 
(0.32) 

0.13 
(0.34) 

Distance Variable     
Downtown Distance to downtown Knoxville (feet) 44,991.79 

(19,009.86) 
45,020.19 

(19,002.96) 
44,737.99 

(19,074.67) 
Greenway Distance to nearest greenway (feet) 7,970.83 

(5,724.16) 
7,974.29 

(5,733.96) 
7,939.91 

(5,898.05) 
Water Distance to nearest stream, lake, and river (feet) 8,905.03 

(6,023.85) 
8,904.56 

(6,037.94) 
8,909.24 

(5,898.05) 
Sidewalk Distance to nearest sidewalk (feet) 3,470.90 

(4,938.17) 
3,467.48 

(4,945.06) 
3,501.43 

(4,877.43) 
Golf Distance to nearest golf course (feet) 11,056.63 

(5,080.07) 
11,048.84 
(5,089.06) 

11,126.25 
(4,999.83) 

Railroad Distance to nearest railroad (feet)  7,182.90 
(5,539.48) 

7,220.32 
(5,559.69) 

6,848.57 
(5,345.37) 

Park Size Area of nearest park (square feet) 16,55,444.00 
(60,95,089.00) 

16,57,784.00 
(62,14,606.00)

1634383.00 
(4890652.00)

Time Variable     
1999 Dummy Dummy variable for year of sale (1 if 1999 0 otherwise) 0.19 

(0.39) 
0.19 

(0.39) 
0.18 

(0.38) 
2000 Dummy variable for year of sale (1 if 2000 0 otherwise) 0.19 

(0.39) 
0.19 

(0.39) 
0.19 

(0.39) 
2001 Dummy variable for year of sale (1 if 2001 0 otherwise) 0.22 

(0.41) 
0.22 

(0.41) 
0.22 

(0.41) 
2002 Dummy variable for year of sale (1 if 2002 0 otherwise) 0.23 

(0.42) 
0.23 

(0.42) 
0.22 

(0.41) 
February  Dummy variable for month of sale (1 if February 0 

otherwise) 
0.07 

(0.25) 
0.07 

(0.25) 
0.06 

(0.24) 
March  Dummy variable for month of sale (1 if March 0 0.08 0.08 0.09 
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otherwise) (0.28) (0.28) (0.29) 
April  Dummy variable for month of sale (1 if April 0 

otherwise) 
0.08 

(0.28) 
0.08 

(0.28) 
0.09 

(0.29) 
May  Dummy variable for month of sale (1 if May 0 

otherwise) 
0.10 

(0.30) 
0.10 

(0.30) 
0.09 

(0.29) 
June  Dummy variable for month of sale (1 if June 0 

otherwise) 
0.09 

(0.29) 
0.10 

(0.30) 
0.09 

(0.29) 
July Dummy variable for month of sale (1 if July 0 otherwise) 0.09 

(0.29) 
0.09 

(0.29) 
0.08 

(0.28) 
August  Dummy variable for month of sale (1 if August 0 

otherwise) 
0.09 

(0.29) 
0.09 

(0.29) 
0.10 

(0.31) 
September  Dummy variable for month of sale (1 if September 0 

otherwise) 
0.07 

(0.26) 
0.07 

(0.26) 
0.07 

(0.26) 
October  Dummy variable for month of sale (1 if October 0 

otherwise) 
0.08 

(0.27) 
0.08 

(0.27) 
0.08 

(0.27) 
November  Dummy variable for month of sale (1 if November 0 

otherwise) 
0.07 

(0.27) 
0.07 

(0.27) 
0.08 

(0.27) 
December  Dummy variable for month of sale (1 if December 0 

otherwise) 
0.06 

(0.25) 
0.06 

(0.25) 
0.06 

(0.24) 
Note: Number in parenthesis is standard deviation.
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Table 2. Distribution of Houses by Submarkets 

Number of 
Submarket 

Methods of Delineating Submarkets 

 No market 
segmentation 

K-means 
clustering 

Two-step 
clustering with 

Price 

Two-step 
clustering 

without price 

High school 
districts 

Expert defined 
submarkets 

1 18425 1179 4912 5885 1853 1586 
2  622 3940 8374 1274 644 
3  10416 7097 4166 1395 508 
4  5843 2476  3078 537 
5  365   1135 219 
6     1192 1246 
7     804 1138 
8     2204 1073 
9     1737 653 
10     627 168 
11     3004 588 
12     122 1610 
13      3640 
14      4815 
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Table 3. Summary Statistics for Prediction Sample Residuals (N=1842) 

 

No market 
segmentation 

K-means 
clustering 

Two-step 
clustering 
with price 

Two-step 
clustering 

without price 

High 
school 

districts 

Expert 
defined 

submarkets 

Simple 
average  

Encompass 
combining 
algorithm 

Error         
Mean -$1229.97 -$1372.43 -$1581.85 -$1343.25 -$1479.59 -$1830.99 -$1521.62 -$1506.15 
Std. Dev. $25596.89 $24895.12 $23992.51 $24820.64 $23745.06 $23456.26 $23517.75 $23239.58 
APE (%)         
Mean 15.51 15.20 14.81 15.06 14.42 14.38 14.38 14.12 
Std. Dev. 24.48 23.76 20.04 23.91 20.06 21.20 22.16 21.41 
PPE (%)         
Mean -5.60 -5.44 -5.30 -5.40 -5.10 -5.30 -5.30 -4.90 
Std. Dev. 28.5 27.70 26.00 27.70 25.90 25.10 25.90 25.20 
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Table 4. APE (%) Distribution Summary Statistics 

 
No market 

segmentation 
K-means 
clustering 

Two-step 
clustering 
with price 

Two-step 
clustering 

without Price 
High school 

districts 

Expert 
defined 

submarkets 
Simple 
average 

Encompass 
combining 
algorithm 

1% 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
5% 0.90 1.00 0.70 0.70 0.80 0.80 0.70 0.70 

10% 1.90 1.80 1.50 1.70 1.70 1.60 1.50 1.40 
25% 4.50 4.70 4.40 4.30 4.10 4.10 3.90 3.80 
50% 10.10 9.50 9.10 9.30 8.80 8.60 8.80 8.70 
75% 18.50 17.20 17.50 17.80 16.80 17.60 16.80 16.80 
90% 29.60 29.40 28.50 28.60 29.30 28.50 28.20 28.30 
95% 40.30 41.90 43.50 41.90 41.70 42.10 40.30 41.60 
99% 147.00 115.30 123.00 111.10 100.00 103.00 109.30 106.80 

  
 
  
 
 

 30



 
 

Figure 1: Submarkets derived from k-means clustering on census tract data 
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Figure 2: Submarkets derived from individual house data using two-step clustering with price 
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Figure 3: Submarkets derived from individual house data using two-step clustering without price 
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Figure 4. High school districts 
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Figure 5: Expert-defined submarkets  
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