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Abstract 
 

NPV and LEV are established and common approaches to valuing single rotation and infinite 
rotation forests respectively, when the rotation age is fixed in advanced. More recently, Real 
Options approaches have been employed to value single and infinite rotation forests with a flexible 
harvest age.  

Under a stochastic timber price process, it has been shown that the valuation of a flexible rotation 
forest is equal or higher than that of a fixed rotation forest, because a flexible harvest regime delays 
the harvest if the timber price is not favourable, whereas a fixed harvest regime would proceed to 
harvest regardless of the price. 

Often, valuation of fixed and flexible rotation ages are compared using 2 different methods – NPV 
(or LEV) and Real Options. The latter tends to have higher data requirements, employ different 
assumptions and is much more complex to estimate. Because of these differences, it may be 
difficult to isolate the cause of the increased valuation. 

In this work, we apply a relatively simple Binomial Tree method from Guthrie (2009) to value both 
fixed rotation and flexible rotation forests. This method uses the same data, with the same 
assumptions for both valuations. By holding everything equal, the difference in valuation is solely 
attributable to the fixed versus flexible harvesting decisions. 

Original results for both single and infinite rotations are presented using New Zealand Radiata Pine 
data. Under a mean reverting timber price process, the Binomial Tree approach offers useful 
insights on the increased valuation due to flexible harvest decisions. 
 

Keywords: NPV, LEV, Real Options, Optimal Harvest Decision  
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1. Introduction 
 
1.1 Fixed Rotation 
 
The NPV formula for valuing single stand with infinite rotations is also known as the Faustmann 
Formula, named after the German civil servant who correctly formulated the optimal rotation 
problem, Martin Faustmann (Faustmann, 1849). Faustmann approached the problem by posing a 
seemingly simple question "How much is a piece of land worth if it is devoted to the growing of 
trees?". He was first to identify the problem as "choosing the harvest period to maximize the NPV 
value of a series of future harvests". He showed that the NPV of a forest can be expressed as a sum 
of discounted net cash flow over an infinite time horizon. [Esa-Jussi (2006)] 
 
The NPV approach is one where the value of the investment is determined at the present day by 
forecasting expected future cash flows and discounting them at a specific discount rate. This 
approach is one of the most commonly used methods to determine the optimal rotation and value of 
a forest. There are several advantages to using this approach: 
 
• relatively simple to work with numerically, making implementation relatively easy. 
• forward-looking, as it explicitly models the ability of the project to generate future cash flows. 
• accounts for the riskiness of the investment and the time value of money. 
 
Until recently, the NPV approach has been widely accepted as the key method in investment 
decision-making (including non-forestry investments). However, there are a few major weaknesses 
of this approach.  
 
All adjustments for risks are captured by the discount rate, which is assumed to be constant 
throughout the forest’s lifetime. The NPV approach also does not account for flexibility due to the 
assumption of a fixed investment path where decision is made in advanced, and remain unchanged, 
even when unexpected favourable or unfavourable events arise. It ignores the value that alternative 
(unexpected) opportunities and choices bring to the investment. 
 
 
1.2 Flexible Rotation 
 
Flexibility in decision-making is valuable when investors face risks and uncertainties about the 
future, especially when there is a degree of irreversibility attached to the decisions being made 
[Dixit and Pindyck (1995)].  
 
Consider the situation faced in forestry where foresters must decide when to harvest the forest. 
Under the Faustmann NPV approach, the harvesting decision (based on the optimal rotation age 
calculated from the NPV) will need to be made regardless of the timber price at the time of 
expected harvest (i.e. it is already pre-decided upfront when the trees were first planted). The 
decision to replant will also have to be made immediately, as per the optimal rotation plan. 
 
In addition, once harvested, the trees cannot be put back into the ground. The harvesting decision is 
irreversible, and should the timber price be low during the harvest, the "loss" in profits is also 
permanently irreversible. 
 
Given that foresters face uncertainties and irreversibilities, it may be optimal for them to remain 
flexible about the harvesting decisions. If timber prices are low at the "expected" time of harvest, 
foresters may want to delay harvest, wait-and-see before making a harvesting decision. Likewise, if 
timber prices are unusually high before the "expected" time of harvest, foresters may want to 



Tee, Scarpa, Marsh and Guthrie 

 

 3 

harvest early to take advantage of the high prices. Uncertainties and irreversibilities of an 
investment decision cannot be easily introduced into the NPV approach. In order to better manage 
the true potential of the returns, foresters should use a framework or tool that can accommodate a 
flexible investment decision. The Real Options approach offers such flexibility. 
 
 
1.3 The Real Options Approach  
 
Evaluation of an investment has traditionally been performed using cost-benefit analysis, a method 
that includes benefit-cost ratio, NPV of benefits and costs, internal rate of return, return on invested 
capital, and opportunity costs. Traditionally, cost-benefit analysis is oriented toward making a 
simple decision: should an investment project be undertaken today? This decision is basically a 
"now-or-never" decision. Missing from this traditional analysis is the possibility (or option) of 
delay. 
 
A more recent method in financial economics, called contingent claims analysis, deals with the 
optimal timing of the investment, and/or when to exercise an investment option. This method places 
a value on the option of investing in the future. In addition, it is based on the notion that many 
possible states will be encountered throughout the investment, and it enables decision makers to 
change strategy in response to these various states.  
 
The capacity to be flexible when uncertainties and irreversibilities exist increases the value of the 
investment. The greater the degree of flexibility, the more (potentially) valuable the investment can 
return. [Copeland and Antikarov (2001)] 
 
A financial option is a derivative security whose value is derived from the worth and characteristics 
of another financial security, or the so-called underlying asset. By definition, a call option gives the 
holder the right, but not the obligation to buy the underlying asset at a specified price (i.e. the 
exercise price) on or before a given date (i.e. the expiration date). [Reuer and Tong (2007)]. In 
contrast, a put option gives the holder the right to sell the underlying asset. 
 
Financial economists Black and Scholes (1973) and Merton (1973) pioneered a formula for 
valuation of a financial option, and their methodology has opened up subsequent research on the 
pricing of financial assets and paved the way for the development of Real Options theory. 
 
The notion of Real Options was developed by Myers' (1977) seminal idea that one can view firms' 
discretionary investment opportunities as a call option on real assets, in much the same way as 
financial call option provides decision rights on financial assets. By way of analogy, a Real Option 
can have its underlying asset as the gross project value of expected operating cash flows, its 
exercise price as the investment required to obtain this underlying asset, and the time to maturity as 
the period of time during which the decision maker can defer the investment before the investment 
opportunity expires.  
 
In short, Real Options are investments in real assets (as opposed to financial assets), which confer 
the investor the right, but not the obligation, to undertake certain actions in the future. [Schwartz 
amd Trigeorgis (2004)] 
 
There are 3 approaches to implementing Real Options valuations: 
 
• Partial Differential Equation (PDE): The PDE approach treats time as a continuous variable 

and expresses the present value of a cash flow stream as the solution to a PDE. The most 
famous such PDE appears in Black and Scholes (1973). This is the standard and most widely 
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used Real Options valuation method in academic research due to its mathematical elegance 
and insights. For example, in Pindyck (1993), the author studied the uncertain cost of 
investment in nuclear power plants, where he derived a decision rule for irreversible 
investments subject to technical and input uncertainties. 

 
• Binomial Trees: Developed by Cox, Ross and Rubinstein (1979), the binomial tree approach 

treats time as a discrete variable and expresses the present value of a cash flow stream as the 
solution to a system of simple linear algebraic equations. This method’s precision can be 
improved to a very high level by dividing the life span of an option into more stages. This 
discrete-time approach (to the timber price process) is mathematically simpler than the PDE 
method, yet it provides an efficient procedure for valuing options. Copeland and Antikarov 
(2001) applied binomial trees to value real projects and proved that this method is equivalent 
to the PDE solution. It is easy to use without losing the insights of the PDE model. 

 
• Simulation: A simulation typically computes thousands of possible paths describing the 

evolution of the underlying asset's value from the start period to the end period. It can handle 
problems of higher dimensions [Gamba (2003)]. With the advancement of computing power, 
large simulation programs are being used to construct value options that are very difficult to 
solve using PDEs or binomial trees. Though powerful, this method is not very insightful 
(compared to the closed form PDE solutions) because it only provides the answer (valuation) 
without insights into the relationships between variables and the key drivers for the valuation. 

 
 
1.4 The Real Options Approach Applied to Forestry 
 
Traditional, Faustmann harvesting ignores the annual timber price fluctuations and prescribes 
harvest on the basis of expected prices. Brazee and Mendelsohn (1988) recognized the volatility of 
timber prices from year to year, and incorporated a stochastic timber price into their work. Their 
work concluded that the flexible price harvest policy significantly increases the present value of 
expected returns over the rigid Faustmann model. Clarke and Reed (1989) and Reed and Clarke 
(1990) further distinguished the stochastic uncertainties of the timber price and the timber growth. 
 
Miller and Voltaire (1983) were two of the first authors to introduce Real Options into forestry. 
Morck, Schwartz and Stangeland (1989) used a PDE approach (contingent claims) to determine the 
optimal harvesting rate. Thomson (1992) employed a binomial tree to determine land rent 
endogenously assuming stumpage prices follow the Geometric Brownian Motion (GBM) process. 
 
Plantinga (1998) highlighted the role of option values in influencing the optimal timing of harvests. 
The author treated an option value as a premium over the expected value of a timber stand 
reflecting the opportunity cost of harvesting now and foregoing the option to delay harvest until 
information on future stand values is revealed. 
 
Gjolberg & Guttormsen (2002) applied the Real Options approach to the tree-cutting problem under 
the assumption of mean-reverting (rather than random-walk) stumpage prices. 
 
Insley (2002) investigated the role of the timber price process on the rotation length in a single-
rotation model. A dynamic programming approach and a general numerical solution technique were 
used to determine the value of the option to harvest a stand of trees and the optimal cutting time 
when timber prices follow a known stochastic process. In Insley and Rollins (2005), the authors 
extended the single-rotation work of Insley (2002) to multiple rotations, and analyzed forest stand 
value with stochastic timber prices and deterministic wood volume. 
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Duku-Kaakyire and Nanang (2004) compared a forestry investment using the Faustmann NPV 
model and the Real Options approach. They investigated four options: an option to delay 
deforestation, an option to expand the size of the wood processing plant, an option to abandon the 
processing plant if timber prices fall below a certain level, and an option that included all three of 
these individual options. This analysis was conducted using the binomial tree method. The results 
show that while the Faustmann analysis rejected investments as unprofitable, the real option 
analysis showed that all 4 options were highly valuable. It demonstrated the weakness of the 
Faustmann approach, namely, the lack of managerial flexibility to adjust for shocks, risks and 
uncertainty. 
 
Commonly, valuations of fixed and flexible rotation ages are compared using different and separate 
methods: an NPV/LEV model and a Real Options model. In Meade et al. (2008), results from a 
simulation method called Bootstrapping Real Options Analysis (BROA) was compared to results 
from a NPV (discounted cash flow) calculation. In Manley and Niquidet (2010), the authors 
compared 3 real option value methods with the Faustmann method. In such comparisons, the Real 
Options models tend to have higher data requirements, employ different assumptions and is much 
more complex to estimate compared to NPV/LEV. Because of these differences, it may be difficult 
to isolate the cause of the increased valuation. 
 
In Guthrie (2009), the author applied the binomial tree method to study the optimal harvest decision 
of forests in Oregon (USA) using a mean-reverting timber price process. The same binomial tree 
method was able to generate results for Real Options (flexible harvest decision) and NPV/LEV 
(fixed rotation), for both single and infinite rotations. 
 
 
1.5 Approach Taken in This Paper 
 
In this paper, we apply this Binomial Tree with Mean Reverting price process approach from 
Guthrie (2009) to Radiata Pine forests in New Zealand. Original results for optimal valuation for 
both flexible and fixed rotations, under a single and infinite rotation, are generated using the same 
model. This method uses the same data, with the same assumptions for both valuations. By holding 
everything equal, the difference in valuation is solely attributable to the fixed versus flexible 
harvesting decisions, rather than partially attributing the differences to the methodologies (arising 
from the use of two separate models, data and assumptions). 
 
By setting the volatility of the Mean Reverting price parameter in the Binomial Tree equal to zero, 
we produce further valuation results for a constant timber price. This is compared with the result 
obtained via a standard NPV/LEV calculation using an Excel spreadsheet. We show that both the 
Binomial Tree method and the NPV/LEV calculation produce the same result when the timber price 
is constant. 
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2. Overview of the Binomial Tree Method 
 
2.1 Basic Parameters of a Price Binomial Tree: U, D and θU 
 
A Binomial Tree starts with the present price, X0. Each “branch” of the tree represents a different 
possible future price, at a certain time in future. At each timestep, there are only 2 possible price 
movements from the price at a node: the price can either rise by a multiplicative factor U, or fall by 
a multiplicative factor D. (D = 1/U). So, at timestep n=1, the current price can either rise to X0*U, 
or fall to X0*D.  
 
A Binomial Tree is simplified using the X(i,n) labelling as shown in Figure 1 below, where i is the 
number of Down steps, and n is the timestep. For example, X(1,1) is the price at timestep 1 where 1 
Down step has occurred (after 1 time step), and X(0,2) is the price at timestep 2 where 0 Down 
steps have occurred (i.e. the price has been going Up at every node leading to this node). 

 
Figure 1: A Binomial Tree labeling convention. 

 
Due to the multiplicative properties of the binomial tree, the order of the sequence of Ups and 
Downs are irrelevant, so that an Up step followed by a Down step has the same effect as a Down 
step followed by an Up state: 
 

 
 
Probabilities are assigned to the Up moves and also the Down moves. θU is the probability of an Up 
move, and θD is the probability of a Down move defined as θD = 1 – θU such that θU and θD sum to 
unity. 
 

 
Figure 2: Probability of an Up move, θU, and probability of a Down move, θD. 
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2.2 Estimating U, D and θU of a Price Binomial Tree Using Historical Price Data 
 
Assume the price series is mean reverting, such that the logarithm of the price follows a first-order 
autoregressive process (referred to as AR(1) process) [Guthrie (2009)]. That is, if pj denotes the jth 
observation of the logarithm of the price, then: 
 

     Equations (1) 

 
That is, changes in p are normally distributed with mean α0+α1pj and variance φ2, and uj+1 is a noise 
term. α0, α1 and φ are related to the Ornstein-Uhlenbeck parameters by the following equations: 
 

     Equations (2) 

 
where a = rate of mean reversion, b = long-run level, σ = volatility of the Ornstein-Uhlenbeck 
process, and Δt = time step size. 
 
An Ordinary Least Squares (OLS) regression of the price data produces estimates of α0, α1 and φ 
respectively as: 
 

     Equations (3) 

 
where Δtd is the time step size of the price data. Solving for estimates of a, b and σ produces: 
 

     Equations (4) 

From equations (4), the sizes of up and down moves (U and D) are derived as: 
 

     Equations (5) 

 
where Δtm is the time step size of the binomial tree.  
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Each X(i,n) on the binomial tree is calculated by applying U and D to X(i,n) starting with X(0,0): 
 

     Equations (6) 

 
θu(i,n) is then estimated as:  
 

     Equations (7) 

 

θu(i,n) is used to calculate the valuation, described in the next section.  
 
 
2.3 Valuation Binomial Tree 
 
Binomial trees are also used to implement valuation. The probability of an Up move (θU) and 
probability of a Down move (θD) in the price binomial tree are applied to the valuation binomial 
tree. These probabilities determine prices, and prices determine the cash flows, which in turn, 
determines the valuation. 
 
The valuation binomial tree follows a similar labeling convention to the price binomial tree. Each 
node is labeled V(i,n), representing valuation at time step n, with i number of Down moves in the 
price. For example, the valuation binomial tree for N=2 is: 

 
Figure 3: Valuation binomial tree. 

 
In contrast to the price binomial tree which is calculated forward using X0, U and D, the valuation 
binomial tree is calculated backwards (in reverse) starting from the terminal (last) nodes V(i,N). We 
define V(i,N), the harvest valuation function at terminal node N, as: 
 

     Equation (8) 
 
where X(i,N) is the price at time step N, H is the harvesting cost, Δtm is the time step size of the 
binomial tree, Q(NΔtm) is the timber volume at time N, and B is the bareland value. 

θD 

θD 
θD θU 

θU θU 
V(0,0) 

V(1,1) 

V(0,1) 
V(0,2) 

V(1,2) 

V(2,2) 
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Discount rates are added to the valuation calculations to reflect the time value of money. For 
example:  
 

     Equation (9) 

where Rf = (1+discount rate). 
 
In addition to the discount rate, we can use the Capital Asset Pricing Model (CAPM) to further 
reflect a market risk premium into the valuation. A Market Risk Premium Adjustment (MRPAdj) is 
subtracted from the θU to produce the so-called Risk Neutral probability ΠU [Guthrie (2009)]: 
 

     Equations (10) 

 
The MRPAdj is obtained by regressing stock market data such as the Standard and Poors (S&P) 500 
Total Returns Index [Guthrie (2009)]. 
 
We note here that valuation using binomial tree could also be performed without the CAPM 
element (i.e. using θU and θD instead of ΠU and ΠD). In such a case, one would incorporate the 
appropriate level of risk premium by simply choosing a higher factor rate (Rf). 
 
 
2.4 Incorporating Flexible Harvesting Decisions in the Valuation (Real Options Valuation) 
 
When calculating the valuation (backwards), a decision on whether to harvest or not to harvest is re-
evaluated at each and every node. If the cash flow from harvest (i.e. cash flow at the node) is more 
than the expected future cash flows (i.e. cash flows from not harvesting), then, the optimal decision 
is to harvest, and the valuation at the node equals the cash flow from harvest. If the present value of 
the expected future cash flows (i.e. those from not harvesting) is more than the present value of the 
cash flows from harvesting, then, the optimal decision is to not harvest, and the valuation at the 
node equals the present value of the corresponding expected future cash flows. That is: 
 

   Eqn (11) 

 
where C is the maintenance cost of the forest. The first argument of the max function represents the 
cash flow from harvesting, whereas the second argument represents the cash flow from not 
harvesting.  
 
As mentioned previously, this process traverses backwards from n=N to n=0, ending with V(0,0). 
The Binomial Tree valuation is implemented backwards recursively over multiple iterations. Each 
iteration represents 1 harvest and replant rotation. During the calculation for the 1st iteration, the 
Bareland value, B, is assumed to be zero. At the end of the 1st iteration, a Bareland value is 
estimated by deducting the cost of (re-)planting the forest from V(0,0): 
 

     Equation (12) 
 

where G is the cost of (re-)planting the forest. This 1st iteration Bareland value is the valuation for a 
single rotation forest with flexible harvesting age (real options valuation for single rotation). 
 
To calculate the value for an infinite rotation forest, this 1st iteration Bareland value is then fed into 
the 2nd iteration (i.e. during the 2nd iteration of valuation calculations, B in the V(i,n) function of 
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Equation 11 is no longer zero). After this process is repeated for a certain amount of iterations (say, 
15 iterations), the Bareland value converges to a steady state value (i.e. it no longer changes with 
subsequent iterations). This converged Bareland value is the valuation for an infinite rotation forest 
with flexible harvesting age (real option valuation for infinite rotation). 
 
 
2.5 Applying the Valuation Method to a Fixed Harvest Age (Fixed Rotation NPV/LEV) 
 
To apply this valuation method to a fixed harvest age, the same process is used with one 
modification. The harvest decision is fixed (pre-decided regardless of the price) at the node where t 
= fixed harvest age (i.e. use node t as the terminal node instead of N where t < N). All nodes on the 
valuation binomial tree to the right side of t (i.e. all nodes between t+1 and N) are ignored 
(truncated) and the backward traverse starts from node t (instead of node N for the case of flexible 
rotation forest).  
 
During each node traverse, unlike the flexible harvest age case, there is no re-evaluation of a harvest 
decision (i.e. no harvest decision reconsidered at subsequent nodes) because there is already a fixed 
(pre-decided regardless of price) harvest decision at node t (= fixed harvest age). As such, the 
valuation for each node from n = (t-1) to n = 0 is:  
 

     Equation (13) 

 
This is the only modification required to compute the fixed harvest age results. The value of B after 
the 1st iteration is the single rotation NPV. After a certain number of iterations (say, 15 iterations), B 
converges to the infinite rotation LEV. 
 
 
 
3. Data Used and Assumptions Made 
 
For this work, the timber volume function (table) was sourced from the R300 Radiata Pine 
Calculator model from Kimberley et al (2005). Figure 4 shows the timber volume function. 
 

 
Figure 4: Timber volume function based on the R300 Radiata Pine calculator. 

 
Figure 5 shows the MAF log price data [Horgan (2010)] aggregated into a single proxy timber price 
series, adjusted with the Consumer Price Index from Statistics New Zealand (2010). 
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Figure 5: Aggregated proxy timber price, CPI adjusted. 

 
The forest management costs are assumed to be: 
  

• Planting costs, G     = $1,251/ha 
• Pruning costs     = $473/ha (age 6), $674/ha (age 7), $684/ha (age 8) 
• Thinning costs     = $370/ha (age 9) 
• Maintenance cost of forest per year, C  = $50/ha 
• Harvesting cost (clearfell logging), H  = $40/m3 
 
The Ordinary Least Squares (OLS) regression of the proxy timber price series produced: 
 

 

 
Substitution of these variables into Equations (4) produced: 
 

 

 
From these values, U and D are estimated as 1.0236 and 0.9770 respectively, which as used to 
calculate X(i,n) and θU of the price binomial tree. The long run timber price is  
 
The cash flow discount rate is assumed to be 4%, such that Rf = 1.04.  
 
Based on Graham and Harvey (2009), a Market Risk Premium of 4.3% is assumed, and MRPAdj is 
estimated to be -0.0038, which is used to calculate ΠU and ΠD of the valuation binomial tree. 
 
Results for rotation ages of up to 75 years were generated. 21 harvest-and-replant cycles are used to 
represent infinite rotation. For example, if the rotation age is 30 years, then, an approximation for 
infinite rotation is 21 x 30 = 630 years. If the rotation age is 75 years, then, an approximation for 
infinite rotation is 21 x 75 = 1575 years. 
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4. Results for Binomial Tree Method (Mean Reverting Timber Price) 
 
4.1 Binomial Tree Method with Fixed Harvest Age (Mean Reverting Price) 
 
Figure 6(a) shows the results for fixed harvest age cases of single and infinite rotations, with Figure 
6(b) zooming into the maxima points between ages 24 and 35. For a single rotation with fixed 
harvest age, the optimal rotation age is 31 years, with an NPV valuation of $6,385. For an infinite 
rotation with fixed harvest age, the optimal rotation age is 27 years (i.e. the Faustmann rotation 
age), with an LEV valuation of $9,419.  

 
Figure 6(a): Results for fixed harvest age cases 

of single and infinite rotations. 
Figure 6(b): Enlargement on the maxima points 

of Figure 6(a). 
 
 
4.2 Binomial Tree Method with Flexible Harvest Age (Mean Reverting Price) 
 
Figure 7 shows the results for flexible harvest age cases of single and infinite rotations. For a single 
rotation, the optimal valuation is the bareland value after 1 iteration (as described in Section 2.4), 
which is $8,188. For an infinite rotation, the bareland value converges to $11,590 after about 8 
harvest-and-replant cycles.  

 
Figure 7: Results for flexible harvest age cases for single and infinite rotations. 

 

Compared to the case with a fixed harvest age, allowing a flexible harvest age results in 28% and 
23% higher valuations for single and infinite rotations respectively. 
 
Figure 8(a) and 8(b) show the optimal harvest thresholds for single and infinite rotations 
respectively. The area on the graphs above the dotted line shows the timber prices that favour a 



Tee, Scarpa, Marsh and Guthrie 

 

 13 

harvest decision for a given forest age. As a example in Figure 8(a), the threshold for a 25 year old 
single rotation forest is $83.90 such that if the timber price at that time (age 25) is above this 
threshold, it would be optimal to harvest, whereas if the timber price at that time (age 25) is below 
this threshold, it would not be optimal to harvest (and the optimal decision would be to defer 
harvest). 

 
 
Figure 8(a): Optimal harvest threshold for single 

rotation. 
Figure 8(b): Optimal harvest threshold for 

infinite rotation.  
 
 
 
5. Results for Binomial Tree Method (Constant Timber Price) 
 
If the volatility of the mean reverting price process is set equal to zero, then, it results in a constant 
timber price. In this section, the volatility of the price process is set equal to zero, and results from 
the Binomial Tree valuation is presented for a constant timber price, assumed to be the current 
timber price value, X(0,0) = $83.90. 
 
 
5.1 Binomial Tree Method with Fixed Harvest Age (Constant Price) 
 
Figure 9(a) and 9b) show the NPV and LEV results obtained from the Binomial Tree valuation with 
fixed harvest age at a constant price. For single rotation, the optimal age is 31 with a valuation of 
$5,141. For infinite rotation, the optimal age is 27 with a valuation of $7,572. 

 
Figure 9(a): Results for fixed harvest age cases 

of single and infinite rotations at a constant price 
Figure 9(b): Enlargement on the maxima points 

of Figure 9(a). 



Tee, Scarpa, Marsh and Guthrie 

 

 14 

5.2 Binomial Tree Method with Flexible Harvest Age (Constant Price) 
 
Figure 10 shows the results obtained from the Binomial Tree valuation with flexible harvest age at a 
constant price. The single and infinite rotation bareland values are $5,141 and $7,572 respectively. 
These are identical figures to the maximum NPV and maximum LEV values of Figures 9(b). 

 
Figure 10: Results from Binomial Tree valuation with flexible harvest age at a constant price. 

 
These results show and confirm that when prices are constant, fixed harvest age valuation (NPV and 
LEV) produces the same result as flexible harvest age valuation (Real Options). This is because 
when the price is constant, there is no flexibility because prices do not rise/fall, and therefore, there 
is no additional value from delaying harvest. The optimal flexible harvesting decision produces the 
same results as the optimal fixed harvesting decision, which are the NPV and LEV values. 
 
 
 
6. Results from Standard NPV and LEV at a Constant Price 
 
In this section, we generate results for fixed harvest age at a constant price using the standard Excel 
spreadsheet NPV and LEV calculation. Results are summarized in Table 1. For single rotation, the 
optimal age (i.e. highest NPV) is 31 years with an NPV of $5,141, whereas for infinite rotation, the 
optimal age (i.e. highest LEV) is 27 years with an LEV of $7,572. 
 

 
Harvest Age 

 

 
NPV 

 

 
LEV 

 

  

25 years $4,670 $7,473  
26 years $4,825 $7,547  
27 years $4,946 $7,572  
28 years $5,037 $7,556  
29 years $5,098 $7,504  
30 years $5,132 $7,419  
31 years $5,141 $7,307  
32 years $5,127 $7,172  
33 years  $5,093 $7,016  
34 years $5,040 $6,844  
35 years $4,970 $6,657  

 

 

where n is the harvest age 

 

Table 1: Results for fixed harvest age at a constant price using the standard Excel spreadsheet NPV 
and LEV calculation. 
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What is worth noting here is that the valuations in the NPV and LEV columns of Table 1 are 
identical to each of the values generated from the Binomial Tree valuation in Figure 9(b). To 
illustrate this, we highlight 4 data points in Figure 9(b) – $4,670 at 25 years, $5,141 at 31 years, 
$7,572 at 27 years and $7,172 at 32 years – which are equal to the same points in Table 1. These 
numbers show that both methods are equivalent when prices are constant. 
 
 
 
 
7. Conclusions 
 
Results in section 4.2 show that when compared to fixed harvesting, flexible harvesting results in 
28% and 23% higher valuations for single and infinite rotations respectively because it takes 
advantage of price fluctuations by deferring harvest when prices are low and accelerating it when 
they are high, generating the higher valuation. For flexible harvest age, the binomial tree method 
also produces the price thresholds for optimal harvesting, which is a potentially useful tool for 
foresters in making an optimal harvest/no-harvest decision given a timber price at a certain age. 
 
From section 5.2, we conclude that when the price is constant, the fixed (NPV/LEV) and flexible 
(Real Option) harvesting decisions produce the same valuations. When prices do not rise or fall, 
there is no additional value from delaying harvest. The optimal flexible harvesting decision 
produces the same results as the optimal fixed harvesting decision, which are equal to the NPV and 
LEV values. 
 
From section 6, we concluded further that the Binomial Tree method is equivalent to the standard 
NPV/LEV method when the price is constant. Therefore, the differences in valuations that we 
obtain (in section 4.2) can be attributed to the more flexible harvest policies that we allow, rather 
than differences in factors such as price forecasts and discount rates. 
 
The Binomial Tree method is a promising method for modeling and studying the effects of fixed 
versus flexible harvesting, for both single and infinite rotations, under a mean reverting timber price 
process. It is a relatively simple way to implement Real Options analysis. NPV and LEV results can 
also be produced using this same model, data, and assumptions, allowing for differences in 
valuations to be attributed solely to the fixed versus flexible decision rather than differences in 
model sophistication, data requirement or assumptions employed. 
 
Going forward, as we advance our understanding and modeling of the timber price process in New 
Zealand, the Binomial Tree method can offer useful insights, allowing a forester to take into 
account contemporary pricing information to make a potentially better investment decision. 
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