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Best fit model selection for spatial differences (regression) in 

the profitability analysis of precision phosphate (P) application 

to winter cereals in Precision Agriculture (PA). 

 

Abstract 

Phosphates (P) are an important nutrient required by every living plant and animal cell, 

and deficiencies in soils could cause limited crop production, thereby reducing 

profitability. Phosphates are also a primary nutrient essential for root development and 

crop production, and are needed in the tissues of a plant where cells rapidly divide and 

enlarge. Precision agriculture (PA) could assist the farmer in applying the correct amount 

of P to the part of the field where it is required most. Variable rate technology (VRT) is a 

potential tool that can help with the development of strategies for phosphate fertilizer 

management.  

On-field trials were conducted on a commercial farm in the Western Cape Province; As 

many as five soil types occur on each field studied, and three crops – wheat, canola and 

barley - are grown in rotation. One half of each field was planted using VRT (PA), while 

constant application (SR) was used on the other half. The objective was to determine 

whether spatial econometric models are more accurate than traditional ordinary least 

squares (OLS) models in predicting the profitability impact of P on PA. 

There are significant differences to be observed between the results obtained with the 

OLS, Spatial Error (SER) and restricted maximum-likelihood (REML) models. All the 

measures of goodness of fit indicated an increase in fit from the OLS to the SER model, 

with the best fit being achieved with the REML model, implying that the use of this 

model resulted in more accurate estimates.  

Key terms:  Precision agriculture, variable-rate phosphate application, single rate 

phosphate application, profitability, spatial differences, restricted maximum-likelihood 

model (RELM), spatial regression, best fit model selection, South Africa. 



 3

1. Introduction 

Swinton and Lowenberg-DeBoer (1998) reported that agriculture is becoming an industry 

based on knowledge, and that the ability to learn efficiently is a key factor in ensuring 

profitability in this sector. According to Gandonou, Stombaugh, Dillon and Shearer 

(2001), agriculture is increasingly becoming a computerized, information-based industry. 

The best example of this trend is the evolution of precision agriculture (PA). PA is an 

emerging technology that prescribes inputs based on site-specific soil and crop 

characteristics (Snyder, Schroeder, Havlin & Kluitenberg, 1996). 

New intelligent technologies lead by the utilisation of information technologies, are 

changing traditional production processes. These intelligent technologies, in combination 

with the determination of “position and time”, are much more complex than just dividing 

fields into management zones (Auernhammer, 2002). Khanna, Epouche and Hornbaker 

(1999) are of the opinion that the developments in computer, satellite and agricultural 

equipment technology enable farmers to undertake site-specific crop management instead 

of relying on whole-field management. This development enables farmers also to make 

more precise decisions about the application of inputs in order to avoid deficiencies and 

excesses in input-use. Snyder et al. (1996) stated that factors influencing crop yield can 

now be spatially measured, monitored and managed in order to ensure that inputs are 

only applied where they are most needed.  

Phosphorus (P) promotes growth in plants and animals and thus the importance of P 

cannot be over-emphasized in agriculture. Deficient P can cause low yield and poor 

quality of crops and pastures. Phosphate rock provides the phosphorous elements of 

nitrogen, phosphate and potassium (N:P:K) in the most efficient mix to ensure good 

growth in plants (Florida Institute of Phosphate Research, 2004). 

According to a study undertaken by Robinson (2005) near Cleveland, Mississippi, it was 

found that in some areas in farm fields the plants were stunted and these areas also did 

not yield well. By adding a yield monitor to a combine, the problem areas were 

identified. Soil samples indicated very low levels of P and the decision was taken to try a 
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pre-plant application of Triple Super P. Satisfying the soil’s P needs by applying chicken 

manure can cost the producer $12,00 per pound of P applied. By applying the variable 

rate of P, the yield showed increases. This fact emphasizes the importance of addressing 

the specific sites where the problems are experienced.  

Roberts, English and Larson (2002) reported that more precise placement of inputs with 

PA may increase farm profits. However, it is important to note that the key to farmer 

adoption is the profitability of the technology. It is predicted that more farmers will adopt 

PA techniques as soon as more scientific research results on the profitability of PA 

become available (Nell, Maine & Basson, 2006).  

2. Literature 

One of the key constraints identified on the widespread adoption of PA technology is the 

gap between data analysis and site-specific recommendations (Lambert, Lowenberg-

DeBoer & Bongiovanni, 2003). Anselin, Bongiovanni and Lowenberg-DeBoer (2004) 

also confirmed that the difficulties experienced in the analysis of spatial crop data are 

some of the key constraints. Spatially dense agronomic data such as the data obtained 

from yield monitors are often auto-correlated. This dependence among neighbouring 

observations violates the assumptions of classical statistical analysis (Lambert et al., 

2003). Anselin et al. (2004) also stated that any observation obtained from yield monitors 

can clearly be correlated with the neighboring observations. Spatial regression analysis is 

one way of exploiting more fully the information contained in spatially dense data 

(Lambert et al., 2003). Spatial statistics assume that data are spatially correlated, for 

instance data obtained from yield monitors and site-specific data. If correlation is not 

accounted for in the analysis of these kinds of data, the results will be biased and 

misleading (Griffin, Brown & Lowenberg-DeBoer, 2005). Spatial analysis can include 

analysis with GIS and printing yield maps. It may be defined as “explicitly modeling the 

spatial auto-correlation in a spatial process model capable of making statistical inference” 

(Griffin & Lowenberg-DeBoer, 2008).  
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2.1 Spatial auto-correlation 

Spatial auto-correlation is described by Bongiovanni and Lowenberg-DeBoer (2001, 

cited in Maine, 2006) as a situation in which the dependent variable or error term at each 

location is correlated with observations on the dependent variable or values for the error 

term at other locations. It can be formally expressed as follows: 

Cov [yi, yj] = ε [yiyj] = ε [Yi]. ε[Yj] = 0 

For i ≠ j  

Where i, j, refer to individual observations (locations) and yi (yj) is the value of the 

random variable of interest at that location. 

When values such as yield data are obtained, spatial auto-correlation is caused by 

coincidence of similarities between location and these values. The reason for this is the 

fact that there is always a high chance that high or low values for a random variable will 

be surrounded by neighbouring observations with similar values.  

2.2 Spatial heterogeneity (Heteroscedasticity) 

In the study by Maine (2006), spatial heterogeneity is described as a variation in the 

average relationships between X and Y over space. One can expect every point in space 

to have different relationships (LeSage, 1998). The results of this study reveal that the 

relationship between P as an X variable and yield (Y) varies from one point to the next or 

from one management zone to the next. When sample data are associated with a location, 

spatial dependence exists between the observations. The fact that underlying relationships 

may vary systematically over space, creates problems for regression and other 

econometric methods if these methods do not accommodate spatial variation in the 

relationships being modeled (LeSage, 1998). Lambert et al. (2003) stated that when 

general heterogeneity is ignored, VRT profit margins may appear less reliable.  
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3.  Methodology 

Data was collected by using the variable-rate (VR) application of phosphate (P), in 

comparison with the single-rate (SR) application The study was conducted in 

collaboration with Mr Gildenhuys (on-farm trials) in the Heidelberg district in the 

Western Cape, South Africa. Four fields, totaling 106 hectares (ha), were identified as 

research fields for the study. The main crops included in the study were wheat, canola 

and barley (3rd year). In each field as many as five soil types were found. Each field was 

divided into two halves. One half was planted by making use of VRT, and the other half 

was planted by conforming to the traditional farm management system or the standard 

rate (SR). The same crop was planted on both halves. Wheat, canola and barley were 

used in a crop rotation system. The results obtained are presented and compared using the 

traditional statistical analysis methods; the method of Ordinary Least Squares (OLS) and 

the spatial analysis method, the Spatial Error (SER) model (Table 1); the geo-statistical 

approach to spatial regression; and the Restricted Maximum Likelihood (REML) geo-

statistics approach. The assumptions of classical statistical analyses are often violated 

when analysing spatial data (yield monitor data in this case) because of the correlation 

among neighbouring observations. By applying classical statistics to on-farm 

experiments, the assumption is made that observations are independent, but in the case of 

PA data this assumption of independence is untenable, as any yield monitor observation 

is clearly correlated to its neighbouring observations (Lambert, Lowenberg-DeBoer and 

Bongiovanni, 2003). Spatial auto-correlation is taken into account when spatial 

regression analysis is done and this method of analysis can overcome the limitations of 

classical statistical analysis.  

This methodology was used to investigate the effect of the two treatments (VR and SR) 

on yield. The effect of the two treatments, VR and SR, are captured in a treatment (TRT) 

dummy variable, which assigns a value of 1 to VR and 0 to SR. Dummy variables to 

determine the effect for different soil types, as well as the treatment by soil type 

interactions are also included in a regression model. The aim is to determine whether 

yields vary spatially and this spatial variability is captured for different soil types.  
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The effect of spatial autocorrelation must be taken into account because of the nature of 

the data collected. The data are spatially correlated and it is essential to use the 

methodology that takes this into account. This is the reason why the spatial econometric 

analysis is so important in this study. PA is analysed as a package by using the Baseline 

Model (Treatment Model) and it is done by assessing the statistical significance of the 

estimated coefficients.  

4. Objective 

The objective with this paper is to determine whether spatial econometric models are 

more accurate than traditional ordinary least squares (OLS) models in predicting the 

profitability impact of PA on the yields and hence, profitability in the variable rate 

application of P.  

5. Model specification 

PA poses several challenges to both models and modelers as it does not just require 

simulation of the mean, but also a simulation of spatial variation. The model chosen 

should match the research objectives. For PA to succeed, one would expect the primary 

goal to be the ability of the model to simulate spatial variation.  The accuracy of the 

model will determine how good the conclusions will be. In the case of the application of 

PA, regression has been used as primary test in most model tests. When using the 

regression approach, the model will produce useful results if the simulated output 

represents 70% to 80 % or more of the variation in the observed result (Sadler, Jones & 

Sudduth, 2007). One of the biggest challenges remain to link yields to soil conditions and 

to clearly establish the profitability of VRT fertiliser application. This complexity of 

yield response makes model specification difficult (Anselin et al., 2004). 

5.1 Spatial and non-spatial models (OLS and ML) 

Ordinary least squares (OLS) are a classical regression technique. When yield monitor 

data are analysed, it is important to take into account the spatial correlation of regression 
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residuals. When auto-correlation is ignored, the OLS estimates yielded will be inefficient 

and will bias the standard errors and t-test statistics (Anselin et al., 2004).  Griffin et al. 

(2005) reported that OLS are unreliable in the presence of spatial variability, or in the 

cases of spatial auto-correlation and spatial heteroskedasticity. In spatial regression 

methods, maximum likelihood (ML) estimations are normally used.  

5.2 Diagnostic tests for the Baseline Model 

Maine (2006) reported that diagnostic tests on the OLS residuals determine the presence 

of spatial effects and also verify the optimal model. When the OLS model is run in 

conjunction with the weight matrix, the specification tests on spatial autocorrelation and 

heteroscedasticity (structural change) are acquired and this also suggests which model 

should be used (spatial error or spatial lag).  

It was essential to determine if some of the assumptions of the classical linear regression 

models hold true before estimating the regression coefficient of data collected in this 

study. Some of these assumptions are that random variables are normally distributed and 

homoscedastic and that there is no autocorrelation and multicollinearity between 

variables. The Jarque-Bera (JB) test is used to determine normality in the error terms and 

thereby the hypothesis that the residuals are normally distributed is tested. The data 

collected for this study are cross-sectional in nature. Heterosceasticity is most common in 

these kinds of data. The Breusch-Pagan (BP) test is a diagnostic test done on a regression 

in order to determine the presence of heteroscedasticity in the error terms. The Koenker-

Bassett (KB) test in the OLS model also confirms the presence of heteroscedasticity. In 

Table 1, a summary of these various diagnostic tests for normality, multicollinearity and 

heteroscedasticity are provided. 
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  TABLE 1: DIAGNOSTIC TESTS FOR NORMALITY AND HETEROSCEDASTICITY 

Field L2 K3A K5   K7A 

Test 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 

Jarque-Bera  

(JB) 

11.4294* 154.2359* - 58.9946* 98.9809* 863.6531* 323.0742* 251.8848* 67.6576* 32.0605* 632.5137* 198.0619* 

Breusch-Pagan 

(BP) 

27.8987* 

18.3958** 

18.9153*** 

59.6836* 

43.6239** 

42.4853*** 

 

- 

- 

- 

81.1555* 

58.9028** 

63.3864*** 

40.6417* 

47.2516** 

46.4072*** 

 

55.1726* 

54.5730** 

56.5348*** 

9.9591* 

14.6160** 

15.0960*** 

12.7250* 

12.1737** 

11.7034*** 

59.3813* 

44.3289** 

47.7036***

28.7996* 

15.1413** 

18.1577*** 

18.5870* 

15.4736** 

15.1433*** 

16.1171* 

17.4702** 

17.5394*** 

Koenker-Basset  

(KB) 

25.8788* 36.2622* - 56.5406* 25.2606* 20.6424* 5.3474* 7.3508* 106.0672* 40.8516* 7.9454* 9.5304* 

*OLS model 

**Spatial lag model 

***Spatial error model 
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Table 1 shows that in the test for normality of errors in the Baseline Model using OLS, 

the highest JB value for 2004 was obtained for K5, namely 323.0742. For 2005 the 

highest value for K7A was 632.5137, and for 2006 it was 863.6531 for K3A. The JB 

values for each of the four fields for each of the three years are significant at a 1 % 

probability level. This indicates non-normality of the error terms. The larger the BP test, 

the greater the evidence against homoscedasticity. The highest BP value in the OLS 

model for 2004 is 81.1555 (K3A), for 2005 it was 59.6836 (L2), and for 2006 it was 

59.3813 (K5), while the SER model produced values of 63.3864 (K3A) for 2004, 

47.2516 (K3A) for 2005 and 56.5345 (K3A) for 2006. It is interesting to note that for the 

SER model, field K3A produced the highest BP values for the three years. The spatial 

error model was better for 2004 and 2006 due to the higher BP values, which provided 

even greater evidence against homoscedasticity. The highest KB value for 2004 was 

recorded for field K3A, namely 56.5406, for 2005 it was 36.2622 (L2), and for 2006 it 

was 106.0672 (K5). Dealing with heteroscedasticity in spatial data presents a problem, as 

no standard procedure has yet been developed in this regard. All the multicollinearity 

condition numbers are lower than 20, the recommended maximum condition number.  

Spatial autocorrelation was also expected in this type of data and the SER model was 

estimated to detect it. The spatial model was more appropriate for analysis so that the 

spatial effects could be taken into account. However, the OLS regression test had to be 

conducted in order to determine which spatial regression model (lag or error) would be 

most appropriate. Five diagnostic tests for spatial dependence are reported with the OLS 

regression output in GeoDaTM and these include the Moran’s I for the spatial error model 

and the Lagrange Multiplier (LM) and its Robust for the lag and error models. In Table 2 

there is a summary of the results for the five diagnostic tests for each field over the three 

years. 
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TABLE 2: DIAGNOSTIC TESTS FOR SPATIAL DEPENDENCE 

 Value 

Field L2 K3A K5 K7A 

Test 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 

Moran’s I (error) 40.0667 43.8419 - 109.8809 41.0361 48.6230 62.7992 109.1724 141.2386 159.3169 23.2960 36.6404 

Lagrange Multiplier (lag) 1127.6340 468.9049 - 2212.4411 572.4764 692.3588 2334.9557 4571.0204 10065.1965 4812.1417 460.1790 1202.8410 

Robust LM (lag) 51.8383 73.9896 - 7.7388 5.9274 63.5653 0.2769 66.4559 73.2738 0.1753 5.0973 5.5007 

Lagrange Multiplier (error) 1140.6991 735.2659 - 5654.5541 751.9123 861.4104 2784.9947 5322.4829 16035.7339 9229.4628 459.6740 1200.8915 

Robust LM (error) 64.9033 340.3506 - 3449.8517 185.3633 232.6169 450.3159 817.9184 6043.8112 4417.4964 4.5924 3.5512 
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The model with the highest Lagrange Multiplier (LM) value and its robust term is the 

most appropriate (Table 2). The spatial error model appears to be the most appropriate 

for 2004, 2005 and 2006 for fields L2, K3A and K5. In the 2005 and 2006 production 

years, the spatial lag model is more appropriate for K7A.  

5.3 REML geo-statistic approach 

When spatial correlation is present, field heterogeneity may be underestimated. The 

inferences about crop response to VRT may be misleading. Spatial regression 

techniques are necessary, because the data obtained from agronomic experiments are 

almost always spatially correlated. The restricted maximum-likelihood (REML) 

technique is one of the most common spatial regression techniques used (Bullock & 

Lowenberg-DeBoer, 2007). The REML-geostatistical approach was introduced by 

Cressie in 1993. This approach is often used to analyse yield monitor data and the semi-

variogram is the backbone of this approach (Lambert, Lowenberg-DeBoer & 

Bongiovanni, 2004). 

In yield monitor data and other spatial data, there is often correlation among 

neighbouring observations and this violates the assumptions of classical statistical 

analysis. From the viewpoint of classical agronomic research, this correlation makes the 

analysis of this type of data rather difficult and invalid. The reason is that the ignorance 

of spatial structure results in variance estimates that tend to be inflated. This means that 

significant levels of test statistics therefore tend to decrease which results in unreliable 

statistical inference. The under-estimation of heterogeneity and inefficient or biased 

inferences can result in imprecise inferences about the profitability analysis of trials 

comparing VR to SR application rates of P (Maine, 2006).  

5.4 Model selection for spatial differences (regression) 

In ordinary regression analysis, the R-squared (also called coefficient of determination) 

is usually used as a measure of goodness of fit, with the model with the highest R-

squared considered having the best fit and this implies that the predicted values match 

the observed values for the dependent variable. R-squared increases in value with 
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additional explanatory variables and over-fitting can occur. In Table 3, a summary of 

the goodness of fit is presented.   
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TABLE 3: MODEL SELECTION FOR SPATIAL DIFFERENCES 

Measures of goodness  
of fit 

L2 K3A K5 K7A 

 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 

R-Squared (R2) 

   OLS 

   SER 

   REML  

 

0.057283 

0.211588 

- 

 

0.177986 

0.258012 

- 

 

- 

- 

- 

 

0.095716 

0.273900 

- 

 

0.028195 

0.112948 

- 

 

0.047559 

0.117888 

- 

 

0.015778 

0.133911 

- 

 

0.013155 

0.128900 

- 

 

0.141170 

0.536611 

- 

 

0.066430 

0.270042 

- 

 

0.028444 

0.145660 

- 

 

0.062372 

0.277872 

- 

Log-likelihood 

   OLS 

   SER 

   REML (Gaussian) 

   REML (Spherical) 

   REML (Exponential) 

 

-15155 

-14991.2889 

-14874.8407 

-14866.7070 

-14866.9617 

 

-16651.5 

-16550.6535 

-16431.5639 

-16363.4936 

-16399.4656 

 

- 

- 

 

- 

 

-12636.1 

-12462.1956 

-12380.7060 

-12257.2708 

-12313.7897 

 

-12404 

-12337.7485 

-12273.1013 

-12189.6602 

-12258.0858 

 

-13496.3 

-13439.0586 

-13414.1757 

-13274.9946 

-13322.9494 

 

-17845.1 

-17697.8202 

-17606.5224 

-17469.1061 

-17692.4494 

 

-20398 

-20248.5140 

-20060.5891 

-19964.2052 

-20020.1671 

 

-17466.3 

-16877.9483 

-17364.6069 

-16916.5767 

-20187.1540 

 

-13412.2 

-13190.7314 

-12962.1164 

-12873.6591 

-12918.3634 

 

-15753.8 

-15653.6982 

-15637.1057 

-15586.3164 

-15601.0935 

 

-14942.7 

-14728.1183 

-14813.4804 

-14654.7892 

-14747.7004 

Akaike Information  

Criterion (AIC) 

   OLS 

   SER 

   REML (Gaussian) 

   REML (Spherical) 

   REML (Exponential) 

 

 

30334.1 

30006.6 

29749.7 

29733.4 

29733.9 

 

 

33327 

33125.3 

32863.1 

32727.0 

32798.9 

 

 

- 

- 

 

- 

 

 

25284.3 

24936.4 

24761.4 

24514.5 

24627.6 

 

 

24820.1 

24687.5 

24546.2 

24379.3 

24516.2 

 

 

27004.5 

26890.1 

26828.4 

26550.0 

26645.9 

 

 

35702.2 

35407.6 

35213.0 

34938.2 

35384.9 

 

 

40808 

40509 

40121.2 

39928.4 

40040.3 

 

 

34944.6 

33767.9 

34729.2 

33833.2 

40374.3 

 

 

26840.3 

26397.5 

25924.2 

25747.3 

25836.7 

 

 

31523.6 

31323.4 

31274.2 

31172.6 

31202.2 

 

 

29901.3 

29472.2 

29627.0 

29309.6 

29495.4 

Schwartz Criterion (SC) 

   OLS 

   SER 

   REML 

 

30402.1 

30074.6173 

- 

 

33395.2 

33193.51334 

- 

 

- 

- 

- 

 

25316.7 

24968.8641 

- 

 

24852.3 

24719.7184 

- 

 

27036.9 

26922.4583 

- 

 

35737.1 

35442.5509 

- 

 

40842.9 

40543.9385 

- 

 

34978.2 

33801.4568 

- 

 

26884.5 

26441.6680 

- 

 

31568.2 

31368.0256 

- 

 

29946 

29516.9148 

- 
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In Table 3 the R-squared is higher in the SER model for each of the four fields during 

each of the three years. The goodness of fit of the model cannot be based on R-squared 

alone, as it does not indicate whether the estimated partial regression coefficients are 

statistically different from zero (LeSage, 1998). R-squared is also not appropriate as a 

measure of fit in comparing spatial regression models. The Log-likelihood models 

become more reliable and these values measure how good or poorly the model predicts 

the output in the observed data. The model with the highest log-likelihood has the best fit. 

Table 3 indicates that the REML (spherical) model has the highest log-likelihood (less 

negative) values. However, the log-likelihood increases with additional variables, as does 

the R-squared, over-fitting the model. This over-fitting can be corrected by employing the 

Akaike Information Criteria (AIC) (Maine, 2006). The AIC value assigned to a model is 

only meant to rank competing models and tell which is the best among the given 

alternatives, (the lower the AIC value, the better the model) (Acquah, 2009). The 

absolute values of the AIC for different models have no meaning. The REML (spherical) 

model has the lower AIC values for each of the four fields during each of the three years.  

6. Conclusion 

There are significant differences to be observed between the results obtained with the 

OLS, SER and REML models (Table 3) and this may have an impact on decision-

making. This fact, once again emphasises the importance of taking spatial effects into 

account. Methodologies not taking these effects into account and thus ignoring spatial 

dependencies of yield monitor data can cause inaccurate results and conclusions. All the 

measures of goodness of fit indicated an increase in fit from the OLS to the SER model, 

with the best fit being achieved with the REML model, implying that the use of this 

model resulted in more accurate estimates. The results for model selection for spatial 

differences (regression) indicate the following: 

 The R-squared was higher in the SER model for each of the four fields during the 

three years under review.   

 The model with the highest log-likelihood (the REML model) was the best fit. 
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 The REML model also produced lower Akaike Information Criteria (AIC) values 

in each of the four fields during the three years under review. 

The following conclusion was generated in hypothesis testing: spatial econometric 

models resulted in more accurate estimates than those achieved with the OLS models. 
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