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Bayesian Econometrics and How to Get Rid of

Those Wrong Signs

William E. Griffiths*

In many instances, Bayesian Econometrics offers a
more natural interpretation of the results of a
statistical investigation than does the sampling theory
approach. Furthermore, the Bayesian approach
provides a formal framework for incorporating prior
information which is frequently available from
economic theory. Despite these advantages of the
Bayesian approach, applied econometric work has
generally been dominated by the sampling theory
approach. A simple regression example with one
coefficient is used to describe the Bayesian approach
using three different priors: a natural conjugate
informative prior, a noninformative prior, and a prior
with inequality restrictions on the sign and possibly
magnitude of the coefficient. The differences
between the sampling theory and Bayesian
approaches are highlighted. Some practical problems
with the first two priors are suggested as possible
reasons for the non adoption of the Bayesian
approach; it is argued that the inequality restricted
prior provides a practical and meaningful altemnative
which is likely to increase the appeal of the Bayesian
approach. The implications are outlined of extending
the simple one coefficient model to one where the
error variance is unknown and then one where there is
an unspecified number of coefficients. An example is
provided of how to compute Bayesian inequality
restricted estimates using the econometric computer
program SHAZAM.

1. Introduction

Although the number of applications of Bayesian
econometrics is increasing (see, for example,
Zellner 1983, 1984, 1985), it would be fair to say
that there are few such applications in many of the
applied economic journals, such as this Review
and the Australian Journal of Agricultural
Economics. Bayesian decision theory is popular
(Anderson, Dillon and Hardaker 1977), but more
mundane problems such as estimating regression
coefficients, and testing hypotheses about such
coefficients, are almost universally handled using
sampling theory procedures. This situation is
unfortunate because Bayesian methodology is
convenient for many types of problems. There are
three probable reasons for the restricted use of
Bayesian econometrics. The teaching of
Bayesian econometrics has not been widespread
(although it is growing), the specification of prior
information can be difficult or unsettling, and
Bayesian options have not been provided on most
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of the popular econometric software packages.

The purpose of this paper is to increase
awareness of Bayesian methodology, some of its
advantages, and some of its problems. Some
simple examples will be used to illustrate the
Bayesian approach and to contrast it with the
more conventional sampling theory approach. It
ishoped that these examples will show thatthe use
of prior information is not always difficult, nor
unsettling, and that software development is well
advanced. No material in this paper is new, nor is
there any attempt to give a comprehensive review
of Bayesian econometrics. Such reviews can be
found elsewhere (Zellner 1983, 1984, 1985;
Judge et al. 1985, Ch. 4).

2. A Simple Example

To introduce the Bayesian approach to inference,
it is convenient to begin with a simple artificial
example, namely, a regression model with only
one explanatory variable and no constant term.
This model can be written as:

(1) v, = x B te ¢t =1,2,...,T,

t

where the usual variable interpretations hold, and
where the e, are assumed to be independent
normally distributed random variables with zero
mean and constant variance o2 Because it will
prove useful to give the model some economic
content, it will be assumed that equation (1)
represents a long-run consumption function
where y, and x, denote consumption andincome in
period t, respectively, and B is the long-run

_marginal propensity to consume. Furthermore, it

is convenient to begin with the assumption that c*
is known and equal to 1, an assumption that will
later be relaxed. Given these assumptions the
statistical problem of concern is to learn about the
parameter B, given the following hypothetical
sample information:

2

(2) T =6 Iy{ = 181.89

2
= - 186.2.
th 196 ‘z‘.xtyt 1

* Department of Econometrics, University of New England.
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2.1 Sampling theory approach

The conventional sampling theory approach to
this problem is to first find the least squares
estimate (which is also the maximum likelihood
estimate because e, is normally distributed):
Yy ige.2
2 196

th

and the variance of Q:

(3) 8 = - 0.95,

{4) g

Then, from the result:
. r 2
() Branps, \‘[
LBy
itis possible to construct a confidence interval for

B. For example, a 95 per cent confidence interval
would be given by:

(6) g - 1.960; < 8 < B+ 1.9607

Substituting sample values yields:
0.95-1.96/14 < B <0.95 + 1.96/14

or

(7} 0.8: < B~ 1.09

Results (3), (4) and (7) constitute the typical
sampling theory approach to reporting
information about 8. Although rather irrelevant
for this particular example, it is also customary to
present the "significance" of a coefficient in terms
of a"t" or "Z" value. In this case, such a value is:

(8) Z = B/o- = 0.95 x 14 = 13.3

R
Alternatively, significance is sometimes reported
in terms of "P-values”. That is:

(9) Prob{{z{ » 13.3) = 0.2 x 10 °°

For later comparison with the Bayesian
approach to reporting results, it is useful to ask
why the above sampling theory results are used
and what interpretations can be placed on results.
First, if just a point estimate is required, the least
squares estimator is used because it is minimum
variance unbiased. That is, in a large number of
future hypothetical samples, the B's obtained from
each of these samples would average out to B and,

relative to the estimates provided by any other
unbiased estimator, the Q's would vary less
around P (in the sense of a lower variance). The
important point to note is that the least squares
estimator is chosen on the basis of the probability
distribution of the estimates it will provide in
future hypothetical samples (equation (5)).
Probability is defined in terms of the relative
frequency of future estimates. The estimate 0.95
given in equation (3) is one drawing from the
probability distribution.

A confidence interval is intended to be an
indication of the precision of a point estimate,
witha wide confidence interval indicating that the
sample has conveyed little information about j,
and a narrow confidence interval indicating the
sample information is precise. It is tempting to
interpretthe 95 per cent confidence interval (0.81,
1.09) as an interval which contains [ with 95 per
cent confidence, or 0.95 probability. Such an
interpretation is erroneous, however, because, in
the sampling theory approach, probability
statements cannot be made about the nonrandom
parameter 3. As Berger (1985, p. 119) points out,
in elementary statistics courses it is common to
spend a great deal of effort pointing out that a 95
per cent confidence interval is not to be
interpreted as an interval that has probability 0.95
of containing B. The correct interpretation is that,
if a large number of future hypothetical samples
were taken, and in each case a 95 per cent
confidence interval was calculated, then in 95 per
cent of these cases the calculated interval would
contain B. Before a sample is taken, there is a 0.95
probability of obtaining an interval that contains
B; once the sample has been taken there is not a
0.95 probability that § lies in the interval. This
distinction is lost on many students and, indeed,
on many nonstatisticians who must use and
interpret results provided to them by statisticians.
Both these groups invariably find the incorrect
interpretation, that there is a 0.95 probability that
the interval contains 3, more sensible and more
natural. Given that the incorrect interpretation
seems a sensible and natural one, from a
pragmatic standpoint it is reasonable 10 ask
whether there is an alternative methodology
which permits such an interpretation. This
question will be taken up in the discussion of the
Bayesian approach. See Berger (1985, p. 119-
120) for an argument along similar lines.

Another difficulty with the sampling theory
confidence interval (0.81, 1.09) is that it suggests
that B, the long-run marginal propensity to
consume, could "reasonably" be as high as 1.09,
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when there is no doubt in most economists' minds
that it could be no greater than 1. The sampling
theory approach makes little provision for
including such prior information, or for somehow
"adjusting” the confidence interval. A possible
sampling theory solution is to obtain, via
quadratic programming, the least squares
estimator subject to inequality restrictions (Judge
and Takayama 1966). However, the distribution
theory for this estimator has not been developed to
the extent that satisfactory confidence intervals
can be generally obtained (Geweke 1986a). The
problem of confidence intervals including
regions of infeasible parameter values is a
common one; every time an estimated coefficient
which should be positive (say) is "insignificant”
the corresponding confidence interval will
include some negative values.

The P-value in (9) is the final piece of sampling
theory information to be considered. Typically,
using a 5 per cent significance level, a P-value
greater than 0.05 indicates an estimated
coefficient is not significant, a P-value less than
0.05 indicates significance. Implicit in the
procedure is a test of the null hypothesis H,:B=0
against the alternative H :B+#0. There is a
tendency to incorrectly use P-values as
probability statements about the null hypothesis.
For example, the P-value of 0.2 x 10”* given in
equation (9) would often be given the
interpretation that there is a zero probability that
=0.Ifthe P-value was (say) 0.5, then some might
give this the interpretation Prob(B=0) = 0.5;
others, suspecting that such statements are not
correct, might say there is a "reasonably high
probability” that B is zero. In the sampling theory
approach none of these interpretations is correct,
because each involves probability statements
about the coefficient B. Probability statements
can only be made about random outcomes of
future "experiments”, not about what are likely
and unlikely values for B. The correct
interpretation of equation (9) is that, if a large
number of future samples were taken (a very large
number!), and if f=0, then the proportion of
samples where I/c,] > 13.3 would be 0.2 x 10,
The natural tendency to use P-values as precise or
imprecise probability statements about null
hypotheses again raises the question of whether
an alternative body of inference which permits
probability statements about parameters would be
preferable. In this particular example, Prob (3=0)
would be of little interest, as would be the
significance or otherwise of . However,
probability statements such as Prob (§ < 0.9)
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could be quite useful since information about
likely values of the marginal propensity to
consume has implications for multiplier effects of
government policy. The sampling theory and
Bayesian approaches to hypotheses such as B <
0.9 are contrasted later in the paper.

2.2 Bayesian approach

The starting point for the Bayesian approach to
analysing and presenting information about B is
the construction of a prior probability density
function, g(B). In a Bayesian framework,
probability is defined in terms of a degree of
belief, the probability of an event being given by
an individual's belief in how likely the event is to
occur. This belief may depend on quantitative
and/or qualitative information, but it does not
necessarily depend on the relative frequency of
the event in a large number of future hypothetical
experiments. A consequence of this subjective
definition of probability and one of the main
features of Bayesian analysis, is that uncertainty
about the value of an unkown parameter can be
expressed in terms of a probability distribution. It
is assumed that, before a sample is taken, an
investigator's ideas about what are likely and
unlikely values for a parameter can be formalised
by assigning to that parameter a prior probability
density function. Thus, in the consumption
function example, the prior density g(B)
represents an investigator's prior knowledge
about possible values for the long-run marginal
propensity to consume. Such prior knowledge
would typically come from economic theory, past
studies, or both.

The need to specify a prior distribution is one
reason many investigators baulk at the thought of
applying Bayesian techniques. It is useful,
therefore, to illustrate some difficulties, and
solutions, associated with using various prior
specifications. Before dealing with each of three
priors in turn, Bayesian analysis with the general
specification g(B) will be examined.

After formulating the prior g(B) and collecting
some sample observations, the next step in a
Bayesian analysis is to use Bayes' Theorem to
combine the prior information with the sample
information to form what is known as the
posterior information. The prior information is
represented by the prior density function g(B).
The sample information is repesented by the joint
density function f(ylB) where y = (y,, ¥,, -...y1)' i$
the vector of sample observations; this density is
conditioned on B, because, in the Bayesian
subjective probability sense, § is a random
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variable. The function f(yIB) when viewed asa
function of B, given the'sample observations,
is known as the likelihood function. The
posterior information is represented by the
posterior density function g(Bly). This
function is conditioned on the $ample y
because it summarises all the information
about f, after y has been observed. It can be
viewed as a prior distribution, updated to
include the information provided by the
sample. Because it contains all the information
about [3, and it is the source of all inferences
about B, the attainment and reporting of the
posterior density function can be viewed as the
endpoint of any statistical investigation.
However, it is also customary to report some
summary statistics from the posterior density
function, such as its mean and standard
deviation, and the probability of particular
intervals containing . The reporting of such
quantities is similar to the sampling theory
approach of reporting joint estimates and
confidence intervals, although the meaning is
quite different,

Bayes' Theorem is given by the following
relationship between conditional and marginal
probability density functions

£(y|B)g(B)

HoY el s —

The marginal density function f(y) can be
viewed as the average of the c¢Gnditional
functions f(ylB) over all possible values of B,
with the pridr density function g(B) used as a
weighting function. Since f(y) depends only
ony, once the sample has beefiobserved f(y)
is simply asingle number. Consequently,
itis common to write Bayes' Theorem as:

(11) a(ly) = £(y{g)g(B)
or
(12) vosterior information

« sample information » prior information

The additional factor which is required to
make the product f(yIB)g(B) exactly equal to
the posterior density g(Bly) is usually found by
computing the constant necessary to make the
area under the curve g(Bly) equal to 1.

To summarise, the Bayesian approach to
inference consists of (a) formulating a prior
density function g(B); (b) using relation (11) to
multiply the prior density g(B) by the likeli-
hood function f(yIB) to form the posterior

density function g(Bly); and (c) computing,
from g(Bly), any summary quantities of
particular interest.

For the eonsumption function in equation
(1), the joint density function (or likelihood
function) f(ylB) is given by:
az fyle) = o0 e iy, - xm)7,
After some algebra and after discarding terms
which do not contain B and can be viewed as
part of the proportionality constant, equation
(13) can be written as:

)2

2 -
(14) fly|8) = exp {~#Ix (B - B)"}

where ﬁ is the least squares estimator. Thus,
from relations (11) and (14), the posterior
density function for the marginal propensity to
consume is:

- )
(19) g(Bly) v a(8) exp {~iixi(p - £)7)

In the next three subsections, three different
posterior density functions, each one
corresponding to a different specification for
the prior density function g(B), will be
considered.

2.2.1 Bayesian analysis with an
informative prior

Suppose that an investigator's prior
information about f is such that he believes
there is a 0.9 probability that B lies between
0.75 and 0.95, there is a 50-50 chance that [3 is
above (or below) 0.85, and his prior views can
be adequately expressed in terms of a normal
distribution. That is, Prob(0.75 < B < 0.95)
=0.9, Prob(B < 0.85) = Prob( > 0.85) = 0.5,
and B is normally distributed. Because this
prior conveys some definite prior information
about B, it is known as an informative prior.
Using properties of the normal distribution,
and standard normal probabilities, it can be
shown that the normal prior distribution g(j3)
which has these properties has mean and
standard deviation given respectively by:

(16) B = 0.85 and EB = 0.06079

Its density function is:

(17) g(B) = (211)'5(0.06079)’l

exp{-(§ - 0.85)2/(2 x 0.06079%)}

Let h=1/6% be the reciprocal of the prior
variance; h, is known as the precision of the
prior density. Also, let h, = 1/0 = Ex? be the
reciprocal of the sampling variance of the least

39



Griffiths: Bayesian Econometrics

squares estimator; h, is known as the pre-
cision of the sample information. Then, after
substituting equation (17) into relation (15),
and carrying out some algebra, it can be shown
that:

(18) s(sly) = e 5 exn(-(s - B)7/257)
where
hB+hpB
= s o]
(19) B = ——
hS + ho
and
=2 11
(20) cs = hs*ho = h,

The posterior density function in equation (18)
is a normal distribution with mean 3 and stan-
dard deviation G, . The posterior mean B is a
weighted average of the prior mean 8 and the
least squares (sample) estimator B with the
weights attached to each being given by the
precision of each source of information. The
posterior variance G is given by the reciprocal
of the precision of the posterior information,
this precisionbeing defined asthe sum of the
prior and sample precisions (h =hg+h).
Making the calculations for the consumption
example yields:

(21) g = 0.892 and EB = 0.04629

This posterior density function, along with the
prior from which it was derived, is graphed in
Figure 1. Relative to the prior, the posterior
density function is centred more to the right,
and has lower variance. These characteristics
reflect the fact that the sample information
suggests a relatively high marginal propensity

Figure 1: Informative Prior and Normal
Posterior.

"

0.6 0.7 0.8 c.9 1.0 1.1
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to consume, and that the addition of sample
information has made knowledge about P
more precise.

‘The posterior density in Figure 1 represents
the current state of knowledge about B, and, as
such, it could be regarded as the final stepina
Bayesian investigation into the marginal pro-
pensity to consume. However, itis often useful
toprovide some summary quantities derived
from the posterior distribution. If a point es-
timate for P is required, then the Bayesian ap-
proach to providing such an estimate is to set
up a loss function and to find that value of B
which minimises expected loss, where the
expectation is taken with respect to the poste-
rior density g(Bly). If the loss function is quad-
ratic (an implicifassumption of sampling the-
ory searches for minimum variance unbiased
estimators), then the optimal point estimate is
the posterior mean. In this case, § =0.892.

The Bayesian alternative to the sampling
theory confidence interval is the highest poste-
riordensity (HPD) interval. A 90 per cent (say)
HPD interval for f§ is the shortest interval
which, according to the posterior g(Bly), hasa
0.9 probability of containing B. It is given by:

(22) B - 1.645 SB < B <P -+ 1.645 SB
or
(23) 0.816 < 8 < 0.968

In contrast to the confidence interval ap-
proach, the correct interpretation of relations
(23) is that there is a 0.9 probability that P lies
in the interval (0.816, 0.968). A comparison
between this interval, and the corresponding
interval from the prior density g(B), (0.75,
0.95), is one indication of the effect of the
sample on the prior information.

Various hypotheses may also be of interest.
Suppose that it is important to know whether or
not P is less than 0.9. The sampling theory
solution to this question is to test an appro-
priate null hypothesis against the corre-
sponding alternative. For example, to test:

(24) HO: g ¢ 0.9 against Hl: g > 0.9

at the 5 per cent level of significance, we
compute:

(25) Zz = (- 0.9)/05 = 0.7

Then, since 0.7 is less than the critical value of
1.645, we accept H, or at least we say there is
insufficient evidence to reject H,. The
Bayesian approach to hypothesis testing does
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not necessarily lead to the rejection or
acceptance of either hypothesis. It is more
correctly referred to as an approach for
comparing hypotheses, although, if suitable
loss functions are set up, that hypothesis which
minimizes expected loss can be chosen. The
Bayesian approach compares two hypotheses
by calculating the posterior odds ratio in
favour of one hypothesis relative to another.
The posterior odds ratio is the ratio of the
posterior probability that one hypothesis is
true to the posterior probability that the
alternative is true. Using standard normal
probabilities and the results in equations (18)-
(21), the posterior probabilities for each of the
hypotheses in relations (24) can be computed
as:

(26) Prob(H;) = Prob(8 ¢ 0.2) = 0.569
(27) ProH(Hl) = Prob(f » 0.2) = 0.431

The posterior odds ratio in favour of H,
relative to H, is:

(28) K = PEOB(B £ 0.9) | o

Prob(f > 0.9)

That is, H, is 1.32 times more likely to be true
than is H,. In a Bayesian approach, reporting of
the posterior odds ratio can be viewed as the
bottom line in the comparison of two
hypotheses. Knowing the probability of one
hypothesis relative to another conveys much
more information than does knowledge of the
sampling theory result that a hypothesis has
simply been accepted or rejected. The
sampling theory result is heavily dependent on
which hypothesis is chosen as the null, the
sample size, and the level of significance.
The normal prior density function is a
mathematically convenient one because it
combines nicely with the likelihood function
to yield a posterior density function which is
also a normal distribution. In general, priors
which lead to posteriors belonging to the same
family of density functions are known as
natural conjugate priors. Because of their
mathematical convenience, natural conjugate
priors have been popular in much of the
Bayesian literature (Raiffa and Schlaifer
1961). However, the apparent need for an
investigator to specify an informative prior in
general, or a natural conjugate prior in
particular, is one of the major reasons why
researchers shy away from Bayesian analysis.
In the consumption function example, many
investigators would feel unhappy specifying
their prior information about the marginal

propensity to consume in terms of the
symmetric, infinite-range normal distribution.
It is likely that many more others would feel
uncomfortable specifying any kind of
informative prior, despite the fact that the
marginal propensity to consume is a parameter
about which economic theory has a great deal
to say. The main areas of concem are likely to
be the "accuracy" of the prior information, and
the sensitivity of the posterior density function
to the prior specification. There is a lack of
generality in reporting in the sense that the
posterior density function and quantities
derived from it, such as the posterior mean and
standard deviation in equation (21), and the
posterior odds ratio in equation (28), are
heavily dependent on the prior specification;
different investigators may possess different
prior information. The two prior density
functions outlined in the next two subsections
overcome these problems.

2.2.2 Bayesian analysis with a
noninformative prior

The purpose of Bayesian analysis with a non-
informative prior is to provide a posterior
density function in which the sample
information is dominant. If the prior density
function has little or no bearing on the shape of
the posterior density function, then questions
such as the dependence of the results on the
subjective opinions of a single researcher do
not arise. Zellner (1971) and Box and Tiao
(1973) make extensive use of non-informative
priors.

A completely noninformative prior for B
would allow for values of  anywhere from —o
to +e0 and, roughly speaking, would treat all
values as equally likely. A prior density
function with these properties is the uniform
density:

(29) a(B8) = 1 I

This density function is an improper one. That
is, the total area under the density is infinite
rather than unity. Under these circumstances,
calculation of prior probabilities for regions of
the parameter space for B is meaningless.
However, as we shall see, the posterior density
function derived from this prior is a proper one
and, furthermore, possesses the desired
characteristic of being dominated by the
sample information.

Substituting equation (29) into relation (15)
and inserting the appropriate proportionality

41



Griffiths: Bayesian Econometrics

constant yields the posterior density function:

(30) asly) = ™ ) expl-duxg(s - B))

This density function is a normal one, with mean
B, the least squares estimator, and variance
(1/Zx?%). That is:

(31 (8ly) v NG, 1/5x0)

The similarity between this result, and the
sampling theory result:

(32) F v B/ %)

indicates that the posterior density function does,
indeed, contain only sample information.
Although relations (31) and (32) look similar,
their interpretations differ, and the advantages of
the interpretation in relation (31) should not be
overlooked. With the sampling theory result in
relation (32), probability statements are made
about possible values of B before a sample is
taken. Once the sample has been observed, itisno
longer possible to make probability statements. In
particular, it is not possible to make probability
statements about the values of B which are likely
to have generated the sample. In contrast, the
Bayesian result in relation (31) makes it possible
to make probability statements about possible
values of B after a sample has been taken; what is
important is the information contained in the data
collected so far, not what information might be
contained in future hypothetical samples.
Figure 2 contains the posterior density
described by relation (31), superimposed on
Figure 1, the informative prior and corresponding
posterior, Drawing the three densities on one
diagram clearly illustrates the difference between

Figure 2: Informative Prior, Corresponding
Normal Posterior, and Posterior from
Noninformative Prior.

9
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the posterior density derived from an informative
prior and that derived from a noninformative
prior. It also shows how both the sample
information (illustrated by the posterior density
from a noninformative prior), and the prior
information, contribute to the posterior density
from the informative prior.

As before, the posterior density can be used to
provide summary quantities of interest. With
quadratic loss, the Bayesian point estimate
is Q = 0.95, the same point estimate provided by
the sampling theory least squares estimator. This
correspondence between the sampling theory and
Bayesian results holds as long as the assumption
that the equation errors are independent,
identically distributed normal random variables
is maintained. When heteroscedasticity or
autocorrelation exists, the mean of the Bayesian
posterior density is not equal to a feasible
generalised least squares or maximum likelihood
estimator.

The 95 per cent HPD interval fromrelation (31)
is (0.81, 1.09), an interval identical to the
sampling theory 95 per cent confidence interval.
However, the interpretation of the HPD interval is
a pragmatically more reasonable one. It implies
there is a0.95 probability that B lies in the interval
(0.81, 1.09). If the probability content of other
intervals is of interest, then such probabilities can
be calculated using standard normal probability
tables. For example, Prob(B <0.9) = 0.242 and
Prob(0 < B < 1)=0.758. The first of these
probabilities can be used, as we did with the
posterior derived from the informative prior, to
compute the posterior odds in favour of
H,: B <0.9relativetoH: § > 0.9. Inthis case the
posterior odds ratio in favour of H, is:

0.242
0.758

(33) K = = 0.319

Alternatively, we can say that the posterior odds
ratio in favour of H;: B > 0.9 is (0.319) = 3.13.
Itisinteresting to compare this sample dominated
Bayesian result with the sampling theory result
for testing H, against H,. We note that the
sampling theory approach led to acceptance of H,
despite the fact that it is over 3 times more likely
for H, to be true. Thus, implicit in the sampling
theory approach, there is a high cost associated
with accepting an incorrect H,.

The probability that B lies in the interval (0, 1)
is likely to be of particular interest to a researcher.
Most investigators would insist that § cannot lie
outside the interval (0, 1). That s, they would hold
the prior view Prob(0 < < 1) = 1. Because the
completely noninformative prior allows for f§
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be in the range (—eo, +o0), it makes no allowance
for the stronger prior view, and it is possible for
the posterior probability that 3 lies in the interval
0, 1) to be less than 1. The statement
Prob(0 < B < 1) = 0.758 is based only on sample
information; it gives the probability that B lies in
the feasible range when no prior information has
been provided. Alternatively, it can be viewed as
a sample-based probability of the prior
information being “correct”, when the prior
information is that B lies somewhere in the
interval (0, 1). This discussion suggests that it
would be good to have a prior density function
which includes the information that B lies
between O and 1, but which is not so informative
that it leaves many investigators uneasy about its
specification. Before considering such a prior,
however, it is convenient to use the example in
this subsection to introduce the concepts of
numerical integration and Monte Carlo numerical
integration.

Numerical and Monte Carlo numerical
integration

Consider the statement Prob(0 < < 1) which
has just been discussed. This probability is given
by the area under the posterior density function
g(Bly) between the points 0 and 1, or by the
following integral:

1
(34) Prob(0 < B<1) = J( g(Biy)ag
0

Fortunately, when 3 is normally distributed, there
isno need to evaluate this integral to compute the
required probability. Others have already
evaluated corresponding integrals associated
with the standard normal distribution; the
resulting probabilities have been tabulated, and
are found in all statistics textbooks. However, it is
not possible to evaluate integrals like the one in
tquation (34) analytically. Tabulated proba-
bilities associated with the standard normal
distribution have been obtained using numerical
integration. Numerical integration is simply a
numerical computational technique for finding
the area under a curve between any two points. It
isnot a technique which is usually required when
the sampling theory approach is adopted because
commonly used normal probabilities, t-values,
y*values, F-values, etc have all been tabulated.
However, itis common for the Bayesian approach
o require numerical integration, particularly as
models become more complicated or when
informative priors which are not natural

conjugate priors are employed. The need for
numerical integration is another reason
practitioners have tended to shy away from
Bayesian analysis. It is worth emphasizing,
however, that numerical integration is not a
difficult computational problem; certainly, it is
much less difficult than solving a linear
programming problem or finding a nonlinear
least squares estimate.

A difficulty does arise if numerical integration
is required for an integral of dimension greater
than 3. For such integrals, computational time can
be prohibitive. In these circumstances it is
preferable to use Monte Carlo numerical
integration. This technique can be illustrated
using the integral in equation (34) although, in
practice, because the integral is one-dimensional,
Monte Carlo numerical integration would not be
required. To apply Monte Carlo numerical
integration to equation (34), a random sample is
artificially drawn from the density g(Bly). That s,
a sample of observations is drawn (using a
random number generator) from a normal
distribution with mean $=0.95 and standard
deviation (Xx2)2 = 0.07143. The proportion of
these observauons which lie between O and 1 isan
estimate of Prob(0 < 3 < 1). Furthermore, the
accuracy of this estimate can be controlled by an
appropriate choice of the size of the artificial
sample. Monte Carlo numerical integration is
useful for more than just the estimation of
probabilities. Any functions of parameters, such
as means, variances, and marginal posterior
density functions, can be estimated.

2.2.3 Bayesian analysis for a prior with
inequality restrictions

One of the advantages of the Bayesian approach
isits ability to formally include prior information.
The first prior that was considered was criticised
on the grounds that many researchers would fecl
uneasy about the need to specify their prior views
in terms of a normal distribution, and that they
would worry about the sensitivity of the posterior
density function to changes in the prior. On the
other hand, the second prior can be criticised on
the grounds that everybody knows the marginal
propensity to consume lies between 0 and 1, and
this prior information has not been included. The
prior considered in this section is designed to
overcome both these criticisms. It is given by:

1
(35) g(B) =
0,

if 0 < B <1

otherwise
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This prior suggests that only values of B between
0 and 1 are feasible, and that all values within this
range are equally likely. Few would argue that a
value for B of (say) 0.2 isaslikely as a value of 0.8.
However, as soon as judgements such as these are
quantified, this prior becomes subject to the same
criticisms which were levelled at the first prior.

Substituting equations (35) into relation (15)
yields the posterior density function:

3
H

_1 Y 2
(0.758) “(2m) 2(th)
5 R
exp (- %Ex;(B - 8)2}
36y a(Bly) - ’
if 0 < B <1
g, otherwise

This posterior density function is almostidentical
to the normal posterior density function given in
equation (30). The difference is that the density in
equations (36) cannot take values outside the
interval (0, 1); it is a truncated normal distribu-
tion, truncated at the points 0 and 1. The constant
(0.758) is included in equations (36) to make the
area under the density between O and 1 equal to 1;
that is, Prob(0 < B < 1) = 1. Recall that, with the
posterior density in equation (30), it was found
that Prob(0 < B < 1) = 0.758. In equations (36)
this value "cancels" with (0.758)! leaving a
probability of 1.

The truncated normal posterior density
functionis graphed in Figure 3, alongside the non-
truncated version of the previous subsection. The
truncated normal follows the same shape as the
normal, but is higher, so as to include the
additional area (probability) which is lost when
the distribution cuts off at B = 1. The calculation
of summary statistics for this distribution requires
somewhat more effort. Probability statements can
be obtained by suitable adjustment of tabulated
standard normal probabilities, or by numerical
integration. In this case Prob(<0.9)=0.319, a
value slightly greater than that of 0.242 from the
non-truncated version. The 95 per cent HPD
interval is (0.82, 1.00), relative to (0.81, 1.09)
before truncation. There is no corresponding way
of adjusting a sampling theory 95 per cent
confidence interval to incorporate the prior
information that B lies in the interval (0, 1).

When the normal distribution has been
truncated, the mode and the mean are no longer
identical; for computation of the mean, more
weight is placed on values of B less than 1 and
values of B greater than 1 do not contribute at all.
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Thus, if the Bayesian point estimate unde:
quadratic loss is required, special attention has to
be devoted to such computation. Likewise, if the
standard deviation is of interest, then it too needs
to be computed. Formulae for the mean and
variance of a truncated normal distribution art
given in Johnson and Kotz (1970, pp. 81-83) or,
alternatively, both could be obtained by
numerical integration. Monte Carlo numerical
integration could also be used, although its use
would not be seriously entertained in this simpl
case where numerical integration yields exac
results and is not computationally expensive. To
see how numerical integration is relevan;
note that the posterior mean 3 and posterior
variance G} are defined, respectively, by:

- (t
(37) B = | Bag(Bly)ds
g =
and
_ 1 =7
(38) 52 - [ EZQ(BIY)dB - 6‘)

8 g

In equation (37) the numerical integration proces
finds the area under Bg (Bly) and, for the first tem
in equation (38), it finds the area under B?g (Bly)
For the truncated normal distribution in Figure
these computations yield B=0.921 ani
&, = 0.05192. To see how Monte Carlo numerici
integration could be carried out, recall the usud
sampling procedure used to estimate the mean}
of some distribution f(z), the mean being defing
by:

(39) u = j zf(z)dz

Figure 3: Normal and Truncated Normal
Posteriors from Noninformative and
Inequality Restricted Priors, Respectively.
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In this case a random sample z,, 2, ...,z from

the distribution f(z) is observed and the sample
meant =Z =n"' _ 7 is used as an estimator for
W A similar procedure is followed for Monte
Carlo numerical integration evaluation of B and
6% except that a random number generator is used
to artificially generate a sample. Since random

number generators are not generally available for
truncated normal random variables, the sample

would be generated using the complete normal

distribution g(Bly) given in equation (30). Those

values falling outside the interval (0, 1) would be

discarded, and the Monte Carlo based estimate of
Bis given by the sample average of those values

falling inside (0, 1). For 8; in equation (38) the

sample average of B*s is calculated for those B's

falling in (0, 1), and B is subtracted from the

result.

Itisinstructive to consider a further example of
atruncated normal distribution, one which arises
when the least squares estimate for the marginal
propensity to consume is greater than 1. In general
itiscommon for least squares estimates to fall into
what are regarded as infeasible regions, another
example being estimates with the wrong signs.
Suppose, therefore, the least squares estimate for
fis given by:

. Zx'y .
140} . Tt 205.8

2 1 - %

£x;

The posterior density function derived from this
sample information, and a completely
noninformative prior density, is:

2

(a1) (BlY) ~ N[1.0F, {0.07143)%}

This posterior density has exactly the same
variance (and hence exactly the same shape) as
the earlier one given in equation (30), but it is now
centred at 1.05 instead of 0.95. If the inequality
restricted prior which insists that B must lie
between 0 and 1 is employed, then the resulting
posterior density is a truncated version of relation
(41). Both posterior densities are shown in Figure
4. Note that the scale used in this Figure is
completely different from that used for the other
figures.

Some summary quantities describing the
information about B provided by the truncated
posterior density function are:

(42) 8 = 0.958, ER

B

0.03492,

Prob(B + G.9) = 0.074

95% HPD interval is (0.89, 1.00)

Figure 4: Normal and Truncated Normal
Posteriors when Least Squares Estimate
Greater Than 1.

20

Clearly, the Bayesian results which yield a point
estimate of 0.958, and a 95 per cent HPD interval
of (0.89, 1.00), are much more reasonable than the
sampling theory results which yield a point
estimate of 1.05 and a 95 per cent confidence
interval of (0.91, 1.19). In fact, it is doubtful
whether an investigator would bother reporting
the sampling theory results. A possible criticism
of the Bayesian approach is that the prior
information may not be “correct". Some
investigators may lack strength in their
convictions about the prior information. If such is
the case, then the Bayesian approach can be used
to assess the probability that the prior information
is correct. Based on the posterior density function
from the noninformative prior, equation (41), this
probability is Prob(0 < B < 1) = 0.242.

The above approach is a powerful one, it gives
a solution to the age-old problem of obtaining
least squares regression coefficients with the
wrong signs. However, so far the discussion has
been restricted to the case of one coefficient and
a known disturbance variance o2 In the next
section the methodology is extended to allow for
an unknown o% the general case of several
unknown coefficients is considered in the
subsequent section.

3. Relaxing the Known Variance
Assumption
3.1 Sampling theory approach

Consider again the consumption function
example, but assume that the variance o2 is
unknown. In the sampling theory approach the
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point estimate for B is the same as before, namely,
the least squares estimate B =0.95. For the
construction of aconfidence interval or the testing
of hypotheses, an estimate of 6% is required, and is
given by:

~2 1

2 -
(43) 0% = iy (Ivl - BIxyy)

= é (181.89 - 0.95 * 186.2)

= 1.00

The example has been rigged so that this estimate
is identical to the assumed value of o2 =1 of the
previous section. As will become clear, rigging
the example in this way ensures that the different
results in this section can be attributed touse of the
t-distribution rather than a different assessment of
o2 An estimate of the variance of f is also the
same as before:

(44) Sé = = =

¢
A‘Xr

[N
=
0
o

and confidence intervals and hypothesis tests are
based on the fact that (8 - B)/ &, follows a t-
distribution with 5 degrees of freedom. A 95 per
cent confidence interval is given by:

(45) B - 2.571 éé < B <R+ 2.571 5@
or
(46) 0.766 < B < 1.134

This interval is slightly wider than the one given
in inequalities (7), reflecting the additional
uncertainty created by an unknown 62 As before,
the interval contains a region of infeasible
parameter values.

3.2 Bayesian approach

When there are two unknown parameters, § and
G, the Bayesian approach begins by specifying a
joint prior density function g(B, ¢) on both these
parameters. The likelihood function is written as
f(y | B, 6), and a joint posterior density function is
obtained using Bayes' Theorem:

(47) g(g,0ly) = £{y{g,0)a(B,0)

Because o is seldom of interest, the joint posterior
density function is not a convenient way of
summarising the combined prior and sample
information. It is preferable to use the marginal
posterior density function for B which is obtained
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by integrating & out of the joint density function.
That is:

o

(48) g(ely) = )( g(B,0]y)do

9]
Whether this integral is evaluated analytically or
numerically depends on the prior specification
and how nicely it combines with the likelihood
function. In all the cases considered here
analytical integration is possible.

The first step towards specifying a joint prior
density function g(, o) is to specify a marginal
prior density for ¢, which is denoted by g(o).
Then, if B and o are regarded as a priori
independent—the investigator's views about  do
notdepend on prior knowledge about —the joint
prior density is given by:

(49) g(B,a) = g(B)g(o)

On the other hand, if knowledge of ¢ influences
the investigator's views about B, a conditional
prior density on P is required, and the joint prior
density is given by:

(50) g(g,0) = g(Blo)g(o)

As was the case for B, a prior density for o can
be informative or noninformative. The
conventional noninformative one, obtained by
treating the distribution of log ¢ as uniform over
(oo, +00), is given by:

(51) a(cy = o ~ 0 <o <

Like the noninformative prior density for § given
in equation (29), this prior density is improper.
Informative priors for ¢ will not be considered
since it is difficult to imagine too many situations
where prior information about  exists.

The next three subsections will deal with the
marginal posterior density functions for 8 which
arise from the three different types of pria
information about the marginal propensity &
consume, each used in conjunction with equation
(51). Before turning to these cases it is useful &
give a convenient expression for the likelihood
function, namely:

(52) fiyle.o) = 2n) V207"

eXP{—[ZX§(B S8 e (T - et /20

This expression is obtained by expressing the
usual joint normal distribution in terms of the
sampling theory estimators B\ and &2 Using
Bayes' Theorem, the joint posterior densily
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function is given by:
(53) 3(8,0ly) = a(g,0)0 "
exp{-[Ix (6 - ) + (1 - 116%)/20°)

Different versions of this posterior density or,
more particularly, different versions of the
marginal posterior density g (8 | y), obtained
by integrating ¢ out of relation (53), are
considered in the next three subsections.

3.2.1 Bayesian analysis with an
informative prior

When ¢ was known, the informative prior for
B which combined nicely with the likelihood
function because it was a natural conjugate
prior was 3 ~ N (B, Gg). When o is unknown,
the natural conjugate prior is such that the
conditional prior density for B, given 6, must
be a normal distribution. That is, the
investigator's prior views about B depend on
knowledge aboutc. Thisdependence is made
explicit by writing & =¢?/1 where Tisa
prior parameter which controls the prior
variance of B for a given o Thus, the
conditional prior density for B is given by:

(54) (Blo) ~ N(E,0% 1)

Returning to the consumption function
example, when ¢ was known to be equal to 1,
the prior density was 8 ~ N [0.85, (0.06079)2].
Assuming that when & is unknown these prior
views still hold conditional on ¢ = 1, the value
of 7 can be found from:

(55) = (0.0R079)° or

A
o
~
[}
o2}

Thus, equation (54) becomes
(B 1) ~ N (0.85, 6%270.6). The implications
of the prior dependence of B on & can be seen
more clearly by considering another value of
6. For example, if the investigator knew that
=2, then he would be of the opinion
Prob(0.65 < B < 1.05) = 0.9, compared to
Prob(0.75 < B <0.95) = 0.9 ifhe knew o = 1.
These required implications of a natural
conjugate prior are likely to be very unsettling
to many potential Bayesian investigators. The
doubts associated with attempts to formulate
prior information within these guidelines are
likely to be even greater than they were when
¢* was known.

Proceeding with the analysis anyway, the
joint prior density function is given by:

(56) g(B,0) = g(B|o)g(o)

u—; expi— ;?(B‘ é)z}

The next steps towards obtaining the marginal
posterior density function g (B | y) are to use
Bayes' Theorem of equation (47) to multiply
equation (56) by equation (52), and then to
integrate ¢ out of the result, as indicated in
equation (48). Omitting the proportionality
constant, this process yields:

r =2 -T/2
(57)  g(ply) « [R5 5)2}
T + Ix
- t
where
B Bk
(58) g = —— = 0.892
T + th
and
(59) -yl - (e BT ¢ BRY/rn

= 1.227

The density function in equation (57) is that
of a t-distribution. Unlike the normal
distribution, the t-distribution is not a
distribution whose density function is dealt
with in most courses in economic statistics.
Such courses usually concern themselves with
percentage points from the t-distribution
without worrying about the actual t density
function. Thus, equations such as equation
(57) may be unfamiliar to many. The first point
tonote is that the t-distribution is a distribution
described by three parameters, namely, the
degrees of freedom, the mean (providing the
degrees of freedom is greater than one), and
the precision. If v denotes the degrees of
freedom parameter, and h the precision, then,
providing v>2, the variance of a t-
distribution is given by wv/h(v-2). The
parameters of the t-distribution in relation (57)
are degrees of freedom (T-1), mean B, and
precision (t+Xx *)/5% The t-distribution which
arises as the distribution of (B—B)/dg\ in the
sampling theory approach is a t-distribution
with degrees of freedom (T-1), mean 0, and
precision 1. It is a standardised t-distribution,
just like a normal distribution with zero mean
and unit variance is known as a standard
normal distribution. In the sampling theory
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approach, where B and Spare random variables, it
is necessary to consider the standardised version
of the t-distribution; in the Bayesian approach,
where quantities such as ﬁ and 66 (orBand &) are
a posteriori fixed, it is convenient for them to be
treated as parameters in a more general
formulation of the t-distribution.

The posterior mean in equation (58) is again a
weighted average, of the prior mean B and the
sample estimate Q with weights given by the
respective precisions. The formulation is slightly
different from that in equation (19) because, in the
present case, the precisions are given by (t/o?)
and (3x*/c?%) and o? cancels out. The value of
B = 0.892 is identical to that obtained earlier and
is the Bayesian point estimate under quadratic
loss. The parameter value ¥ = 1.227 given in
equation (59) can be regarded as an estimate of 62,
although it is not exactly equal to the mean of the
posterior density g(c?!y), the value which
would be the Bayesian point estimate under
quadratic loss. The posterior mean for o? is
(T-1)¢ /(T-3) = 2.045. Both values are greater
than the sampling theory estimate %=1,

reflecting the additional uncertainty created by -

the divergence of prior and sample information. If
the resultswere suchthat = = S,then the value
§° =1 would have been obtained.

When o2 is unknown, both the Bayesian and
sampling theory approaches use the t-distribution
to make inferences about P. However, the
sampling theory approach makes inferences in
terms of possible values for [ and 66‘ in future
hypothetical samples. The Bayesian approach
uses the posterior density function to make
inferences, and makes probability statements
about B based on this posterior density function.
The tabulated t-values found in all statistics books
canbe used to construct (say) 90 per cent or 95 per
cent HPD intervals for 3. The intervals are created
by recognizing that the standardised quantity:

(60) t - —B-B

E/(-r + 2x2)%
t

has a t-distribution with degrees of freedom
(T-1), mean 0, and precision 1. Most statistics
books do not contain sufficient information on
distribution functions, or other probabilities
associated with the t-distribution, to permit the
computation of the probability of B lying within
various intervals. Thus, to obtain such
probabilities, scarcer more extensive tables have
to be found, or numerical integration needs to be
employed. Monte Carlo numerical integration
could also be used by drawing a random sample
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Figure 5: Normal and t Posteriors from
Informative Priors.
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from a t-distribution, but such a technique is not
required for single-parameter problems.

The posterior density function in equation (57)
is illustrated in Figure 5 alongside its normal
density counterpart which was relevant when c?
was known. Also, various summary quantities
describing the posterior density are given in Table
1. When compared with the results for 6> known,
the figure and the table values both reflect the fact
that the t-distribution has fatter tails, a
characteristic which in turn reflects the additional
uncertainty created by an unknown G2,

3.2.2 Bayesian analysis with a non-
informative prior

The conventional noninformative joint posterior
density function for (B, o) is given by:

(61) 9(8,0) = g(B)glo) = L x o ' = ot
Itisassumed that f and ¢ are a prioriindependent,
and that the noninformative marginal priors
discussed earlier are relevant. This prior is
noninformative in the sense that the posterior
density derived from it is dominated by sample
information. Its use avoids the difficult and
sometimes controversial task of specifying a
subjective informative prior.

Multiplying equation (61) by equation (52), as
prescribed by the golden rule of Bayes' Theorem
in equation (47), and integrating ¢ out of the
result, as indicated in equation (48), yields the
marginal posterior density function:

. ~ -T/2
(62) a(Bly) = [<T~1)c§ (g - B
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This posterior density function is a t-
distribution with degrees of freedom (T-1),
mean J3, and precision 6';. Thus, the Bayesian
results with a noninformative prior are very
similar to the sampling theory results. The
pointestimate 3 = 0.95 isidentical to the least-
squares estimate; a 95 per cent HPD interval
for B is (0.766, 1.134), an interval identical to
the sampling theory 95 per cent confidence
interval. However, the Bayesian approach
brings with it the advantage of being able to
make probability statements about . Some
such probability statements, and other
summary quantities, are given in Table 1. The
complete posterior density, and the
corresponding normal one for known o, are
shownin Figure 6. Of particular interest for the
next subsection is Prob(0 < B < 1) = 0.742.
Given their knowledge about the marginal
propensity to consume, most researchers
would claim Prob(0<B<1)=1. A prior
which yields a posterior density with this
property is considered next.

3.2.3 Bayesian analysis with a prior
with inequality restrictions

The analysis for a prior with inequality
restrictions and unknown o2 parallels that
followed when o2 was known. However,
instead of the analysis yielding a truncated
normal posterior distribution for B, a truncated
t-distribution is obtained. If ¢, denotes the
constant required to make the density in
relation (62) integrate to unity, then the
truncated t-distribution for this example is:

auon -l .22
(G.742) C}[(T_l)cﬁ

g
5 T2
2 /

The mean and standard deviation of this
density, as well as the probability content of
particular intervals, and any HPD intervals, all
need to be obtained using numerical
integration. Values obtained in this way are
reported in Table 1, and the truncated t

posterior is compared with the corresponding:

truncated normal posterior in Figure 7.
Truncation has the effect of moving the mean
1o the left, and reducing the standard deviation.
It also leads to HPD intervals which do not
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include values outside the interval (0, 1). The
difference between the results of the truncated
normal and the truncated t can be explained by
the fatter tails of the t-distribution.

The results from a second example of a
truncated t posterior, the one based on the
sample where B = 1.05, are given in Figure 8
and in the last row of Table 1. As was the case
when o2 was known, the Bayesian approach to
this problem has the advantage of yielding
bothapoint estimate and a HPD interval which
are feasible. If there is some doubt concerning
whether or not the prior information is correct,
then the probability of it being correct can be
calculated from the posterior density derived
from a completely noninformative prior.
In this case this probability is
Prob(0 < B < 1) = 0.258.

4. A General Regression Model

The previous two sections contain the
essential ingredients of both the sampling
theory and Bayesian approaches to estimating
a regression model. However, the discussion
was restricted to a model with just one
coefficient, and so it is necessary to consider
the implications of extending the analysis to a
model where interest centres on a general
(K x 1) coefficient vector B in the general
regression model:

{64) \:/:X8+e

In equation (64) it is assumed that the usual
notational definitions hold, that e ~N(0,07),
and that o? is unknown. This set of
assumptions is the same as before, except the
problem is now one of finding information
about the whole vector B.

4.1 Sampling theory approach

The first step in the sampling theory approach
is to compute a value for the least squares
estimator, B = (X'X)'X'y. This estimator has a
multivariate normal distribution, namely:

(65) B v NIB, o7 (X))

Single elements from ﬁ have univariate
normal distributions which are easily derived
from relation (65). Confidence intervals or
hypothesis tests about single elements from B
are based on corresponding univariate t-
distributions which arise when the unknown
o?isreplaced by its sampling theory estimator
82=(y'y - B' X 'y) / (T-K). The univariate I
distribufions are used in exactly the same way
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as the t-distribution was used in the previous
section. Hypothesis tests on linear functions of
the coefficients, such as the equality of two or
more coefficients or the sum of a set of
coefficients, are based on the F-distribution.
Likewise, although they do not seem 1o be
commonly used, confidence regions for two or
more parameters can be derived from the F-
distribution.

4.2 Bayesian approach

The same basic principles of the Bayesian ap-
proach are just as relevant for the general model
as they were for the single coefficient model.
However, the implementation of these principles
can be more difficult. It is straightforward to set
up a completely noninformative prior or a prior
with inequality restrictions. The former is given
by g(B, 6) =o', while the latter is given by
g (B, o) = 0! over the feasible parameter region,
and 0 outside this region. It is more difficult to
specify a natural conjugate informative prior for
B. The natural conjugate prior for 3 is a multivari-
ate normal distribution, conditional on o. Its
specification requires values for a prior mean
vector and a prior covariance matrix. It is rela-
tively easy to visualise how percentiles of the
normal distribution can be used to specify a mean
and variance for each of the elements in B, al-
though many investigators may object to describ-
ing their prior information in this way. This was
the approach taken with the marginal propensity
to consume. What is difficult, even for the trained
statistician, is to conceptualise prior information
in terms of the covariances of the elements in B.

Thus, when faced with the need to force their prior
information about the complete vector § into a
multivariate normal distribution, and to specify a
complete prior covariance matrix, it is not surpris-
ing that few researchers opt for Bayesian analysis
with a natural conjugate prior. There has been
considerable research into methods for specify-
ing informative priors; see, for example, Winkler
(1980) and several papers in Goel and Zellner
(1986). However, the desire to produce results
which are not prior specific but relevant for a wide
range of researchers is likely to be a hurdle which
prevents the wide acceptance of these methods.
Whichever prior is employed, the natural con-
jugate prior, the non-informative prior, or the
prior with inequality restrictions, the next steps
are to use Bayes' Theorem to find the joint
posterior density function g (B, o | y), and to find
the marginal posterior density function g Bly)
by integrating out 6 from g (8, & | y). For the first
two cases, a natural conjugate or a noninfor-
mative prior, the resulting marginal posterior
density for B is what is known as a multivariate t-
distribution. This distribution is described by a
degrees of freedom parameter, a mean vector, and
a precision matrix; its relationship to the
univariate t-distribution is like the relationship
between the univariate and multivariate normal
distributions. All marginal and conditional
distributions derived from the multivariate t-
distribution are also t-distributions. When a
noninformative prior is employed, the resulting
multivariate t posterior density function for B
has degrees of freedom (T—K), mean vectorfi and
precision matrix &2 X' X. The sampling theory

Figure 6: Normal and t Posteriors from
Noninformative Priors.
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Figure 7: Truncated Normal and Truncated t
Posteriors.
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estimate B is identical to the Bayesian quadratic
loss estimate, and confidence intervals for single
elements in B are identical (numerically) to HPD
intervals derived from corresponding univariate
t-distributions. For probability statements to be
made about one or more of the elements in B,
numerical integration is required. Such
integration will, of course, be more than
unidimensional if the probability statement is for
a region which involves more than one of the
coefficients in B. If the probability statement
involves 4 or more of the coefficients, then Monte
Carlo numerical integration would be required to
estimate the probability. In this case a large
number of "observations” on B would be
artificially drawn from the multivariate t
posterior density function; the proportion of those
values which fall in the required region is an
estimate of the probability.

The third prior, that which allows for inequal-
ity restrictions, leads to a posterior density func-
tion for B which is a truncated multivariate t-
distribution. The most common application of
this prior is likely to be a regression model where
a researcher has a priori knowledge about the
signs of one or more of the coefficients. When this
prior knowledge is included using a prior with
inequality restrictions, the resulting multivariate t
posterior attaches zero probability to regions of
the parameter space which contain "wrong signs”.
Thus, Bayesian point estimates, such as the pos-
terior mean, will always be of the correct sign.
The requirement for numerical integration, or
Monte Carlo numerical integration, is much
greater for the truncated multivariate t posterior,
than it is for the nontruncated version. All means,

Figure 8: Truncated Normal and Truncated t
Posteriors when Least Squares Estimate
Greater Than 1.
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0.6 0.7 [+R.] 0.9 1.0

52

standard deviations and probabilities need to be
evaluated numerically. Also, Monte Carlo nu-
merical integration is required if the dimension of
[} is 4 or more, even if interest centres only on a
quantity (such as the mean) associated with a
single coefficient. The truncation of the multi-
variate t also means that marginal posterior den-
sities for single coefficients can no longer be
obtained analytically, but need to be evaluated
numerically.

The problem of obtaining least squares esti-
mates with wrong signs is a common one in
applied econometrics. Researchers faced with
this problem typically embark on fishing expedi-
tions until they find an alternative equation with
the correct signs, or they reluctantly report the
results with the incorrect signs. If standard econ-
ometric software packages included sampling
from a multivariate t-distribution, and the associ-
ated computations for Monte Carlo numerical
integration, then it is easy to sece how Bayesian
estimates, derived from the truncated multivari-
ate t-distribution, could become very popular.
Some progress in this direction has been made.
Version 6 of the popular package SHAZAM
(White 1978) has automated the Monte Carlo
numerical integration procedure so that it is now
straightforward to obtain estimates of posterior
means and standard deviations from the truncated
multivariate t-distribution. Posterior probability
estimates can also be found for any specified
region of the parameter space. In the next section,
an illustrative example taken from Geweke
(1986a) is reworked using SHAZAM. In addition
to Geweke, authors who have examined inequal-
ity restrictions within a Bayesian framework are
O'Hagan (1973) and Davis (1978).

5. An Example

The example taken from Geweke (1986a) is an
attempt to explain apartment rentals paid by stu-
dents at the University of Michigan using sample
data provided by Pindyck and Rubinfeld (1981,
p. 44). The estimated equation relates rent paid
per person y, to rooms per person r,, and distance
from campus in blocks d;; a sex dummy s,, one for
male and zero for female, is included to examine
whether the influence of number of rooms and
distance on rent depends on sex. The equation
estimated is:
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(66) Y, =Byt Bysr o+ B,(1-s

25T T

L PL I

v Bglims)d v ey
The expected signs on the coefficients are
B,20,B,20,B,<0and B0.

Three sets of estimates of the equation are
presented in Table 2. The first set, the least
squares estimates, can be interpreted as the
usual sampling theory results, or they can be
viewed as the posterior means of the
multivariate t posterior density function which
arises when acompletely noninformative prior
is used. The numbers in parentheses are
standard errors or, from the Bayesian
viewpoint, the posterior standard deviations of
the coefficients. (Strictly speaking, the
numbers are not exactly the standard
deviations because of the constant factor v/
(v-2) used to derive the variance of a t-
distribution, They are, however, the numbers
which would be used for the calculation of
HPD intervals.) One of the least squares
estimates, 3,, has the wrong sign. One possible
solution to this problem is to use quadratic
programming to compute the constrained least
squares estimates. As pointed out by Geweke
(1986a), this solution is equivalent to running
regressions with all possible subsets of the
variables included in equation (66), and
choosing from those regressions which have
the correct signs, that one with the highest R2.
This is a strategy which is informally followed
by many researchers, although they may not
consider all possible subsets. The required
number of regressions is 2 where r is the
number of inequality restrictions. For equation
(66), 2 = 16. The quadratic programming set
of estimates is given in the second column of
Table 2. It suffers from two defects. First, the
standard errors, based on results from Liew
(1976), are not strictly correct because they are
simply those obtained using least squares
when the variable corresponding to B, is
omitted. They are conditional on a priori
knowledge of which variable(s) was to be
omitted. The required distribution theory has
not been sufficiently well developed to
provide unconditional standard errors. (For
some progress in this direction, see Judge and
Yancey 1986.) The second defect is that the
estimate of zero for B, is not a very interesting
one. Both defects can be overcome using the
Bayesian approach with a prior density with

inequality restrictions. The third set of
estimates in Table 2 are the posterior means,
estimated using SHAZAM 's option for Monte
Carlonumerical integration from the truncated
multivariate t posterior density. The numbers
in parentheses are corresponding posterior
standard deviations. All were estimated using
100 000 replications. Note that all the
estimates have the correct signs. Given that the
inequality restrictions are true, these estimates
are optimal Bayesian point estimates for
quadratic loss, and the standard deviations are
an accurate reflection of the precision of the
information on each of the coefficients. The
values are slightly different from those given
by Geweke (1986a), but the differences can be
explained by the random number generating
process and by the difference in the number of
replications.

The estimates given in the third column of
Table 2 are those relevant for an investigator,
say investigator A, who has a prior with the
specified inequality restrictions. Suppose
there is a second investigator, investigator B,
who has a completely noninformative prior
over the whole parameter space. The relevent
estimates for investigator B are those given in
the first column of Table 2. Also of interest
might be B's assessment of whether A's prior
information is correct; that is, the probability
of getting the "correct signs", given a
noninformative prior. This probability is
estimated as:

(67) Prob(ﬁ2 20, B, 20, B, £0, B_ £0)

= 0.05

This low probability would undoubtedly lead
B to question the validity of A's prior
information. It is interesting to note that there
isno sampling theory measure of how unlikely
prior information may be for the researcher
who runs all 2* = 16 possible regressions, and
picks that feasible one with the highest R2.

A possible reason for estimating the rent
relationship of equation (66) might be to
examine whether sex has any bearing on rent
paid. In other words, the differences B,~B, and
B,—B, might be of interest. Consider first the
sampling theory approach to testing:

(68) H.: 8

9 5 = [33 against le B2 # 53

This test is carried out by computing the value
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Table 2:

Rent Equation Estimates

Least Squares

QP Bayes

By 38.56 (32.22)
B, 103.5 (38.37)
By 122.0 (37.36)
B, 3.315 (1.961)
Be -1.154 (0.5714)

37.63 (33.27) 37.69 (35.34)

130.0 (36.29) 137.3 (39.28)
123.0 (38.57) 123.6 (40.52)
0.0 -0.9383 (0.8807)

-1.153 (0.5901) -1.192 (0.5869)

a This table is taken from Geweke

(1986a, p.132)

of the appropriate t (or F) statistic and comparing
it with a critical value for a given significance
level. In the example the t-value is —0.780 which
falls well short of the 5 per cent critical values *
2.052. Thus, the null hypothesis B, =, is
accepted. Following a similar procedure for
testing H: B, = B, against the alternative
H,: B, # B, leads to a t-value of 2.187 and
rejection of the null hypothesis.

With the Bayesian approach, the posterior
probability for each hypothesis is computed.
However, it is not informative to consider the
posterior probability that B, = B,. This probability
is zero because B, — B, = 0 is just a single point
from the continuous posterior density function for
B, — B,. One way to overcome this problem is to
use a prior which assigns a positive probability to
the point B, — B, = 0. This procedure of assigning
an arbitrary positive prior probability to a single
point is analogous to the sampling theory
procedure of choosing an arbitrary significance
level. An alternative approach, which does not
require the setting of what could be an arbitrary
positive prior probability, is to compare
Prob(B, < B,) with Prob(, > 8,), where these are
posterior probabilities resulting from either a
noninformative prior or a prior with inequality
restrictions. If the posterior odds ratio:

Prob(B2 < BB)

(69) K::E;ag;;ﬁgr

is close to unity, then there would be little
evidence to suggest that sex makes adifference. If
it is much greater than one, or much less than one,
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then there would be some evidence to suggest sex
has some bearing on rent paid. Geweke (1986a)
used Monte Carlo numerical integration to
compute the required posterior probabilities for
both the noninformative prior and the prior with
inequality restrictions. Similar computations
were carried out using SHAZAM,; the estimates
provided by SHAZAM, again from 100 000
replications, are given in Table 3.

When the noninformative prior is employed,
the posterior odds ratio in favour of (B,> B,) is
0.287 or, using the inverse [(0.287) = 3.48], itis
3.48 times more likely that B, > B, than it is for
B, > B,. Note that the sampling theory procedure
accepts the hypothesis that B, = B, despite this
fact. When B, and B, are considered the sampling
theory procedure rejects H : B, = B, and the odds
ratio in favour of B, > B, is 51.63. The posterior
probabilities and odds ratios are vastly different
when the prior with inequality restrictions is
employed. This result is not surprising given the
values of the posterior means under each of the
priors and given that the probability of the
inequality restrictions holding is only 0.050.

The SHAZAM instructions used to obtain the
entriesin Tables 2 and 3 are given inan Appendix.
6. Conclusions
The purpose of this paper has been to introduce
Bayesian econometric methodology in general,
and Bayesian estimation of the regression model
withinequality restrictions in particular. Building
heavily on the work of Geweke (1986a), an
attempt has been made to show that Bayesian
estimation of the inequality constrained
regression model is practically feasible. Two
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difficulties commonly associated with Bayesian
analysis, the need to formulate prior information
in terms of a prior density function, and the
computational problems of numerical
integration, need not be limiting factors. It has
been argued that the Bayesian way of reporting
results is both more pragmatic and more
informative.

The vehicle used to introduce the Bayesian
approach was the classical normal linear
regression model. More complicated models such
as models which involve heteroscedasticity or
autocorrelation, distributed lag models,
simultaneous equation models, etc. have not been
considered. The principles involved in the
analysis of such models are identical to those
introduced in this paper, although the degree of
difficulty can be greater. In particular, the choice
of distribution from which to sample when using
Monte Carlo numerical integration can be
difficult. However, recent theoretical results
derived by Geweke (1986b) suggest that, even for
more complicated models, automated Bayesian
computing is getting closer.
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>

P(82 83) 0.223 0.723
Posterior 0Odds in 0.287 5 610
favour of B. > B

2 3
P(B4 > 85) 0.981 0.679
Post i O i
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Appendix

SHAZAM Instructions for Example
Problem

file 6 aework.out

file 4 aework.dta

smpl 1 32

read(4) rent no room s d

genr y=rent/no

genr r=room/no

genr sr=s*r

genr osr=(l-s)*r

genr sd=s*d

genr osd=(1l-s)*d

genr one=1

ols y one sr osr sd osd/noconstant
bayes/nsamp=50000 psigma

rest sr.gt.0

rest osr.gt.0

rest sd.1lt.0 commands for Bayesian restricted estimates
rest o0sd.lt.0

end ~

bayes/nsamp=50000

rest sr.gt.osr yields Prob(g, > B;)

end

bayes/nsamp=50000 7

rest sd.gt.osd yields Prob(B4 > 85)

end i

bayes/nsamp=50000 T

rest sr.gt.0
rest osr.gt.0
rest sd.1t.0 yieldsProb(B2 > 83 and Bi's have correct sigm
rest osd.1lt.0
rest sr.gt.osr
end -
bayes/nsamp=50000 1
rest sr.gt.0

rest osr.gt.0O
rest sd.1lt.0 yields Prob( %; > 85 and Bi's have correct sig
rest o0sd.1t.0
rest sd.gt.osd
end

stop
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