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AN OVERVIEW OF MODELLING IN
AGRICULTURAL MANAGEMENT

J. R. Anderson*

A synoptic review of the diverse models that have been developed for
economic analysis in agricultural management is undertaken and these
models are placed in broad perspective. A few practical and general
problems of modelling that have been highlighted by the development
of simulation procedures are also briefly reviewed.

1 INTRODUCTION

Economic analysis in agricultural management has almost always been
tackled through a modelling approach. Models used have been of
diverse type and mathematical sophistication but practitioners do not
appear to have taken a summary view of their endeavours.

For review purposes, a classification of models is presented in section
2 and the applicability of the classified models is discussed in section 3.
In section 4 a few general problems of modelling are mentioned
concerning validation, sensitivity analysis and experimentation.

2 A CLASSIFICATION OF MODELS

Three aspects of models are used in their classification here: (i) whether
or not a model is explicitly time-dependent; (ii) whether or not a model
incorporates probabilistic (stochastic) elements; and (iii) whether or
not a model serves to optimize a specified goal function. The
classification provides a convenient frame of reference rather than an
example of taxonomic perfection (see section 2.5). Within the four broad
categories surveyed in section 2.1 to 2.4, optimizing models are discuss-
ed before non-optimizing models.

2.1 STATIC DETERMINISTIC MODELS

Much of neoclassical economics has been concerned with static models
for which complete certainty is assumed (i.e. they are deterministic).
For this timeless, certain and unreal world, optimizing techniques are

* University of New England. Interaction with Brian Hardaker and Onko Kingma
assisted the preparation of this survey.

111



REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS

highly developed. They have been applied with some success in
agricultural management in spite of the fact that agricultural processes
only function over time and that biological (not to mention climatological
and price) variation is usually a feature of agricultural production.}

The simplest model arising from the theory of the firm is the response
or production function which has been discussed at length in the
context of agricultural production {39, 41]. Such functions, which
generally assume a fixed production period, have usually been estimated
by least-squares regression analysis and manipulated in marginal analyses
to indicate optimal resource use—perhaps subject to various constraints.
Little attention has been given to multiproduct response functions [30,
54] and the alternative static deterministic model most used in studying
multiproduct situations has been linear programming [40] in which a
linear goal (objective) function is optimized subject to linear constraints.
The “feedmix” problems in ration compounding are now solved routinely
using linear programming [20] and the linear programming model has
become a standard planning tool in farm management, suitable for
direct commercial application in farming by appropriate service bureaux
and consultants [60]. It should be noted that many linear programming
models in farm management here classified as static involve some
dynamic elements such as determining fodder conservation and livestock
activities through a year according to seasonal patterns of forage
production.

A variety of simple non-optimizing models related to parametric
budgeting has bezn used in agricultural management [9, 51] but these
only just qualify as “models”. Monte Carlo programming models are
not explicitly optimizing but strongly resemble linear programming
formulations. They have been employed for both feedmix [21] and
farm planning problems [27]. Monte Carlo programming, although
particularly useful when integer problems make linear programming
inappropriate, does not provide the valuable shadow-price information
that linear programming does and suffers a mechanical difficulty of the
analyst comprehending and sifting numerous solutions.

2.2 DYNAMIC DETERMINISTIC MODELS

Less attention has been given to explicitly time-dependent than to static
deterministic models. Several time-dependent neoclassical models have
been reviewed [23], taking examples from multiharvest crops, feeding
period and rations for broilers and pigs, and grazing systems to illustrate
some diverse ways in which time enters production models. Neo-
classical production models have now been extended to the multistage
multiproduct case in potentially operational style [55].

L This reference to risk and uncertainty alludes to that inherent within the
modelled system rather than the analyst’s uncertainty about the system or his
model of it—uncertainty which could usefully be distinguished as ‘“‘ignorance”.
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Other optimizing models designed to model time-dependent economic
systems have been of three broad types: (i) dynamic programming [8]
employing Bellman’s [6] “Principle of Optimality’’2; (ii) recursive
linear programming [14, 42] in which a linear programming model is
solved for one period, the solution used to revise the resource restraints
for the next period and the process repeated for several periods; and
(iii) multiperiod linear programming [7, 50, 53] in which several
production periods are modelled and solved simultaneously. For
problems involving many periods (i.e., having distant planning horizons),
the size of multiperiod models may become large and exceed the
capability of presently available computers. Since production is seldom
deterministic and conditions inevitably change over time, most of the
information generated in such multiperiod models for periods other
than the first is not very useful except in solving the first-period decision.

Non-optimizing models developed for dynamic deterministic problems
have been mostly variants of parametric budgeting often highlighting
long-run aspects of development plans such as animal breeding
performance [5]. Deterministic simulation models have been used
infrequently {34].> Some attempts have also been made to apply Monte
Carlo programming techniques to multiperiod problems [I19] but the
indications are that this is not a very fruitful line of enquiry.

2.3 STATIC STOCHASTIC MODELS

Modern decision theory [25] can be regarded as encompassing all
stochastic optimizing models used in management. Recent years have
seen increasing recognition of the importance of risk in production and
this has been reflected in the development of decision theory and the
inclusion of stochastic elements in nearly all types of models so far
mentioned. Consideration of uncertainty necessarily implies some
dynamic aspects. This category of “‘static” stochastic models therefore
refers to cases where the time dimension is relatively unimportant.

Stochastic versions of static neoclassical response functions have been
developed [2, 4, 33, 51], however, much more attention has been given
to incorporating stochastic effects in mathematical programming models.
This has followed two broad directions, the first “risk programming”
being to add a second dimension to the objective function to assess
risk, for example, via a quadratic programming formulation in which
vartance of income is minimized for given levels of expected income
[32, 40, 48]. The computational difficulties of quadratic programming

* Any optimizing procedure can be used in dynamic programmmg such as linear
programming or response analysis {31]. Note that the “Principle of Optimality”
can be used in the solution of mathematical problems that are not dynamic in the
temporal sense used here.

2 Some simulation modellers (e.g. [64]) have classified their models as deterministic
even though an input for running them is an historical rainfall trace. Since this
trace is simply a sample from a probabilistic process, such models are more
properly classified as dynamic stochastic.
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have recently been circumnavigated by minimizing total absolute
deviations of income as the measure of risk in linear programming
models [37, 38]. The next logical extension in this direction is to add a
third dimension to the objective function to handle the skewness of
activity incomes. However, at least this reviewer’s attempts at
formulation and solution of “‘cubic programming” models have so far
been fruitless.

The other important approach (of several) to programming for stochastic
variables had been to employ discrete probability distributions in
“stochastic linear programming” models [13, 57, 58]. The structure of
such models is essentially simple [66] and for small problems solution
is straightforward and of low cost. Non-optimizing static stochastic
models have received only minimal attention and are represented mainly

by some flirtation with game theory algorithms for games against nature
[22].

2.4 DYNAMIC STOCHASTIC MCDELS

Since all agricultural production processes are dynamic and to some
extent stochastic, models which adequately account for both these
features have obvious merit but also involve the greatest modelling
difficulties.

Apart from some simple models [51], dynamic stochastic versions of
neoclassical response functions do not appear to have been developed.
Most operational attention to optimizing models has been placed on
stochastic linear programming [13, 57] and to a lesser extent on
stochastic recursive programming [49]. Multiperiod stochastic pro-
gramming models that realistically represent agricultural production
systems are destined to be large and perhaps temporarily beyond feasible
computability. Similar problems of extensive computation are
encountered in solving realistic stochastic dynamic programming models
[28]. Methodologically, the analysis of multistage risky decision trees
[36, 44, 59] is closely related to the backward induction procedure of
dynamic programming.

Many other operations research models such as inventory models [26],
replacement models and queueing models have been developed to
optimize dynamic stochastic problems but these have only seldom been
applied in agriculture. On the other hand, simulation models have
more often been used in non-optimizing approaches to problems of this
class in agricultural management [11, 18, 35, 46].

2.5 SOME IMPERFECTIONS OF THE CLASSIFICATION

The classification presented is oriented to highlighting different techniques
of modelling and to an extent this reflects the situation that has often
prevailed in agricultural economics wherein practitioners have adopted
a technique-oriented rather than a problem-oriented approach. How-
ever, in the future, it is likely that the classification will become less
adequate as models become increasingly hybridized.
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With their flexible structure, simulation models more than others will
confuse the taxonomy. Simulation models usually incorporate a varicty
of deterministic and stochastic response functions.  Linear programming
models have less often been incorporated within simulation models
[29, 49] but, with increasing capacity of computers, this situation is
bound to change. Composite models involving simulation components
will also be useful in analyzing problems presently not soluble through
a stochastic dynamic optimizing model alone [66].

A decision theoretic framework is at least implicitly involved in any
stochastic optimizing model. However, decision theoretic submodels
have only rarely been included in non-optimizing models [3]. Again,
decision analysis of some sort is required (at least implicitly) to interpret
output from non-optimizing stochastic models [24] and (when necessary)
to select among alternative models [63].

3 APPLICABILITY OF THE CLASSIFIED MODELS

Models are appraised here in very general terms with respect to three
criteria—realism, workability and communicability [52]. Since ap-
preciation of a model cannot be divorced from the purpose for which
the model is intended, worthwhile generalizations are difficult. Purposes
of modelling are almost as diverse as models themselves with some
extreme points of the spectrum represented by (a) prediction, (b) learning
for the sake of understanding, and (c) control or management that is
optimal in some sense.

Response functions may be judged as sufficiently realistic and workable
for prediction and control when a rather crude description in terms
of only a few variables is appropriate. However, such models become
unwieldy for analyses involving many variables and interdependencies,
and for these problems which abound in agriculture, their use for such
purposes is virtually ruled out on grounds of unrealism and unworkability
despite the comparative ease with which such models can be communic-
ated. A difficulty with stochastic versions of response function models
lies in estimation of parameters to describe the probabilistic structures
but this seems amenable to solution [4, 17].

Mathematical programming models generally offer the best prospects
for success in optimizing work. Although they necessarily involve the
linearization of many relationships, practitioners find that this feature
usually does not restrict the realism of these models too much. The
logic of programming models, however, is only readily communicated
to others with some (easily acquired) knowledge of the principles of
programming. The question of workability is potentially more serious.
A realistic multiperiod stochastic linear programming model may be
readily conceived and formulated but is quite likely to be either insoluble
or soluble only at large cost on available computers. This “curse of
dimensionality” is largely a function of the complex optimizing problem
itself rather than of the type of model employed.
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In contrast, simulation models that are comparable to such complex
programming models in the sense that the same process is modelled
with comparable realism, may be quite workable if and because they
are used for a different purpose, e.g., formalized understanding rather
than optimal control. The logic of simulation models can be com-
municated, even to inexperienced people, fairly readily by flow charts
and block diagrams (but not by listings of computer coding!). Even
when they are not explicitly optimizing, simulation models may be used
to identify “reasonably efficient” decisions on resource use and control.
The reasonableness will again depend on the analyst’s purpose and on
his philosophic perception of optimality [I5, 16].

4 SOME PRACTICAL PROBLEMS IN MODELLING

Perhaps it is because the distinct steps in simulation studies tend to be
recognized more explicitly than in other modelling studies that the
advent of systems simulation has crystallized the recognition of some
problems that are to an extent common to all modelling activities.
Three such topics are briefly noted. These are the closely connected
problems of validation, sensitivity analysis and experimentation.

4.1 VALIDATION

Validation is the process of determining the acceptability of a model
for its intended purpose. Much will be written on this topic as it is
certain to be the focal point of controversies in modelling. Most of the
presently scanty literature (e.g., [56, 62]) concentrates on testing the
goodness of fit between the behaviour of the model and observed data.
This has been conventional practice with response function and
simulation models whereas mathematical programmers have usually
given little formal attention to validation.

Validation must be essentially a subjective procedure and would be
better recognized as such. Of course, subjective appraisal may well be
extended to involve several people knowledgeable about the modelled
processes. This is partly because of the considerable dependence of
models upon non-quantitative subjective knowledge and partly because
history may have little bearing on the future and observed data may be
of doubtful validity. Certainly models should be internally consistent
and superficially valid and comparison with historical traces may assist
in judging this. But historical goodness of fit is of limited assistance
in “assessing ‘‘variable-parameter” validity and ‘‘event” validity [43]
which are usually more important for analytical purposes. Assessment
of such validity will probably mean introducing other available
knowledge, special new collections of data or the conduct of new
experiments on the modelled system [68]. The intrinsic subjectivity of
validation does not mean that modellers should be embarrassed by it
and thus conceal it or fail to explain it adequately; but it does mean
that validation will persist as a potential problem inherent in virtually
all modelling in agricultural management.
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4.2 SENSITIVITY ANALYSIS

Sensitivity analysis is a constructive step in learning about a model
and the unique information gleaned can be displayed systematically
and instructively. It is the testing of a model for robustness in the
performance variables, ¥;, with respect to the incorporated parameters
(including assumptions and decision rules), X;, and is thus sometimes
regarded as part of the validation phase. In optimizing models it is
the sensitivity of the objective function, particularly in the region of
the optimum, rather than of the optimal solution (which is usually
sensitive) that is of most interest. Modern parametric programming
routines greatly facilitate sensitivity analysis.

Various techniques for sensitivity analysis have been developed, notably
by econometricians, involving systematic perturbation of parameters
not known with certainty. That is, models are run or solved while
adjustments, denoted here by AX;, are made to such parameters. The
magnitude of AX; is often taken as a multiple of the standard error of
Xy where these are known or can be guessed.* Assessment of relative
sensitivities has then been appraised by inspecting ratios of response
changes to adjustments, such as AY;/AX;. Another possibility would
be to express sensitivities analogously to elasticities, (A Y/ Y)/(AXi/ X?),
so that a matrix of dimensionless measures of sensitivity could be defined.
In turn, these measures might be weighted by coefficients specifying the
relative importance of each performance measure, ¥;.

A ranking of sensitivities indicates where any further refinement of
parameters is best concentrated. If important output is very sensitive
to many uncertain parameters, the exercise has qualified the modeller’s
ignorance of his system. If it is sensitive to only a few, a possible (but
perhaps expensive) procedure would be to conduct the remaining analysis
conditional on specified values of these parameters finally combining
the results as an expectation taken over the analyst’s subjective
probability distribution.?

4.3 EXPERIMENTATION ON MODELS

It is appropriate to view all modelling work as developing a framework
for testing hypotheses about the modelled system [1, 63] and this implies
the need for some form of experimentation on models of all types.

* A practical difficulty emerges in perturbing jointly distributed parameters. A
simple yet extreme example would be in examining sensitivity of a simulation
model to variations in the parameters of an embedded quadratic response function
where, for instance, there will be a high correlation between the respective first-
and second-order coefficients.

% When it is feasible, such an approach accounts for uncertainty appropriately
and directly where it arises, rather than ignoring the uncertainty by simply using
expected {or some other best-guess) parameter settings. In general, the ex-
pectation of a function of random variables does not equal the function evaluated
at their expectations.
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Simulation workers have concentrated on experimentation rather more
than modellers using optimizing models, such as response functions and
linear programming models, who may sometimes have been too optimistic
about optimality. It may be that linear programmers often engage in
considerably more informal experimentation than is revealed in reports
of their work. Such a situation would arise in part from a failure to
recognize explicitly ihat model development is a legitimate part of
analysis and therefore should be recorded and, in methodological and
expository reports, explained.

Experimental designs merely provide an efficient way of learning about
a system so, in models characterized by many decision variables and
many output variables of interest, designs that allow concise summary
and presentation of information through efficient estimation of multi-
factor response functions will be of greatest value [45, 47]. Candler
and Cartwright [10] have demonstrated the use of a composite design
to handle several variables in this context but without specifying how a
trade-off [25, 67] might be made among the various performance
measures. In stochastic simulation experiments there is unexploited
scope for reducing error variances through blocking based on repeatable
pseudo-random number sequences for different sets of stochastic
variables [12, 65].

5 CONCLUSION

Agricultural economists will probably continue to give most attention
to static deterministic models for “quick and dirty” analysis and to
dynamic stochastic models when deeper analysis is called for. For
the former type of analysis, irrespective of purpose, choice of models
will usually be between response functions for single-product processes
and linear programming for multiproduct processes. For analysis using
dynamic stochastic models, purpose is much more important and the
choice will probably be simulation when the analytic stance is one of
learning and description, and probably mathematical or dynamic pro-
gramming or a composite model when the stance is normative.

Modelling is a fundamental activity in the practice of economics
generally and management in agriculture in particular. Accordingly,
activity in this field is certain to continue at an accelerating rate. Along
with the continuing improvements in capacity and capability of electronic
digital computers, modelling will doubtless become more sophisticated
and esoteric. Hopefully, modelling will concurrently become more
adequate to the task of solving real-world planning problems. A trend
towards empirical adequacy and relevance will probably involve increasing
use of composites of the types of models described above, occasioned
by a problem-oriented rather than a technique-oriented approach to
modelling. Compromise between elegance and relevance is inevitable
but hopefully will favour relevance and workability rather than
sophistication for its own sake.
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