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UPDATING PARAMETER ESTIMATES: A LEAST
SQUARES APPROACH WITH AN APPLICATION
TO THE INVENTORY OF BEEF COWS®

J. W. Freebairn* and Gordon C. Raussery

A least squares estimator for utilizing forthcoming information to update or
revise estimates of the parameters of an econometric model is derived, some
properties of the updated estimates are discussed, and an illustrative
application is provided. The forthcoming information includes new sample
observations and a priori probabilistic information about changes, if any,
occurring in the parameters of the estimated model over time. Recursive
formulae for sequential updating of the parameter estimates are derived.
The procedure is used to update estimates of the parameters of an equation
describing annual net changes in the inventory of Australian beef cows.

1 INTRODUCTION

A variant of the mixed least squares estimator derived by Theil
and Goldberger [I13] is reported for utilizing forthcoming in-
formation to update or revise estimates of the parameters of a single
equation linear regression model. The forthcoming information refers
to new time series sample observations and to independent probabilistic
information specifying changes in the parameters over time. The
updated estimates provide a more accurate and reliable basis for
hypothesis testing, for forecasting and for policy analyses in the current
or updated period.

The paper outline is as follows. The next section provides a background
discussion of potential reasons for anticipating changes in the parameters
of a time series regression model with the passage of time, and hence the
need for updating parameter estimates. In section 3 the components
of the updating estimation problem are described and the enabling
assumptions specified. Section 4 develops the sequential updating
formulae. Some properties of the updated parameter estimates are
discussed in section 5. In section 6 the updating procedure is applied to a
regression equation describing the net change in the inventory of
Australian beef cows. The final section provides a brief summary of the
major results.

° Giannini Foundation Rescarch Paper No. 360.
* N.S.W. Department of Agriculture

1 University of California, Davis.
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2 PARAMETER CHANGE IN REGRESSION MODELS

Available empirical evidence and some theoretical considerations
described below suggest that the parameters of commonly specified time
series econometric models change over time. For example, it is not
unusual to observe that models of demand and of supply for commodities
and models of the economy fitted with prewar data give significantly
different parameter estimates when fitted with postwar data.

Given the simplifying assumptions employed in specifying econometric
models and the constraints imposed by available data it is not surprising
that the parameters of estimated models change over time. While in a
conceptual sense models could be specified so as to allow for the myriad
of potential causal relationships, in practice, for reasons of ignorance,
unavailability of data, and simplicity we omit many potential explanatory
variables. For example, usually we do not include variables to reflect
changes in consumer tastes, changes in technology, changes in
institutional relationships or all the factors influencing decision-makers’
expectations. In econometric models the effects of these excluded
variables are assumed to be constant or, at most, random about a
stationary level. When the excluded variables exhibit non-stationary
behaviour, i.e., when the cereris paribus assumption of no structural
change breaks down, changes in the levels of these variables may induce
changes in the parameters of the included variables.

Due to data limitations some of the included variables will be proxy
variables only. As examples we note the approximations implicit in
measures of capital and the measures of expected prices. The proxy
variables may detect only partial changes in the economic stimuli they
purport to measure. In such cases changes in the real economic stimuli
could induce changes in the parameters of the proxy variables. Often
estimated econometric models represent an aggregate (macro relation)
weighting of the behavioural responses for heterogeneous sets of micro
units. Here, changes in the relative importance of the different sets may
be expected to influence the weighted average parameters of the
relationship being estimated.

Another potential cause of change in the parameters of an estimated
regression equation results from the use of approximate mathematical
forms. Often the causal effect of variables is assumed to be linear and
independent of the levels of other varjables. In such cases changes in
the levels of the explanatory variables may result in parameter changes in
the specified model. For example, if under the pretext of a Taylor series
expansion a linear relation is estimated as an approximation to a non-
linear specification, the assumption of constant parameters for the
estimated relation constitutes a reasonable approximation only if the
observed explanatory variables remain within some narrow range.

The cumulative implication of these observations is that with the progress

of time we may reasonably expect the specified parameters of estimated
econometric models to change. An investigation of the simplifying
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assumptions implicit in the maintained hypothesis should provide a
starting basis for isolating parameter changes, if any!.

It is in this context that our estimator for updating estimates of the
parameters of an econometric model is developed. Based on the above
arguments for parameter change, one set of additional information is
specified as a prior probability distribution function of changes, if any,
in the regression parameters over time2. The second set of additional
information refers to more sample observations®. We proceed next to
specify in detail the updating estimation problem.

3 MODEL SPECIFICATION

For the sake of simplicity, and without any real loss of generality, two
periods denoted as period » and period n + I are considered. For the
first period, n, parameter estimates of a regression equation based on a
sample of size T are obtained. Information in period n + / becomes
available for updating these parameter estimates.

The model for the first period sample is specified as:
) ye = 2t Bn + we fort=1,2,..,T

where y is an endogenous variable, zis a I x k vector of fixed explanatory
variables, 85 is an unknown vector of parameters assumed to be constant
over the period n sample, and u is an error term with the properties
Eu = 0O, Eus us = 35 o2, where 8;; denotes the Kronecker delta, and
Euozs=0fors<t=12,..,T

! In passing we note three possible statistical tests of parameter changes. First,
Chow’s test based on the use of dummy variables. This test requires discrete
piecewise parameter change assumptions and is demanding of degrees of freedom.
Second, tests of the residuals for autocorrelation, heteroscedasticity and non-
normality may reveal specification errors associated with parameter changes.
Third, failure of actual values to be within forecast confidence intervals may be
interpreted as significant structural changes, which includes parameter changes.

2 The estimation problem differs in several respects from related problems reported
in the literature. Models such as the random coeflicient regression model, e.g.
Hildreth and Houck [10], and the adaptive regression model, e.g. Cooley and
Prescott [5], allow for non-constant parameters but the parameters are restricted to
the case of a stationary distribution function in the sense that the expected value of
the parameter vector is constant over time. Our problem relaxes this stationarity
assumption. Kalman filter problems which have been discussed in an econometric
context by Duncan and Horn [7] allow for parameter changes over time, but they
assume perfect knowledge about these parameter changes; our problem relaxes this
perfect knowledge assumption to an assumption of probabilistic knowledge.

3 Unfortunately, in most cases the number of additional sample observations will not
be sufficient to justify the use of a piecewise constant coefficient change model
based on the use of dummy variables. For a recent review of such models see
Goldfeld and Quandt [9].
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The period n sample of T observations is used to obtain estimates of the
unknown parameters 8, and o2 Applying the least squares estimator,
the best, linear, unbiased estimates are given by b, and s2, respectively,
and the unbiased estimated covariance matrix for b, is given by 52, Ny.
These statistics are given as:

(2a) Ny = [X'n Xn]
2b) bn = Ny X'n yn.
(20) $*n = (1| (T = k) ('nyn — b'n X'n yn).
where X, is a Tzk matrix and y, is a T x I vector.

For the second or updating period, »n + 1, a regression equation of the
form:

(3) yt = @ Buyy + e fort=T+1,...,T+r

is specified. The terms in (3) are as defined for (1) with the exception
that the unknown parameters in B, ., may differ from the corresponding
unknown parameters in B,. The estimation problem involves using
information available from the period n sample and new information
coming available in period » + I to obtain estimates of Bn;; and o2
(= Eu?)in (3).

The additional information which becomes available in period n + I
will be cast into two categories. The first category concerns changes,
if any, in the parameter vector between periods n and » + 1. It is
assumed that B makes a discrete transition between period n and n + I
according to the linear relation:

@) Bnyy = An Bu + dn

where Bz, and By are as defined in (3) and (1), A is a k x k matrix and
dnisak x Ivector. The 4 matrix provides for multiplicative changes in
the regression parameters while the ¢ vector provides for additive changes
in the regression parameters between periods » and » + 1.

In the general formulation probabilistic information about the elements
of A, and d,, is assumed. Specifically it is assumed that the k2 x [ vector
a ( = Vec A, where Vec is the vector stacking operatort) and the k x /

vector d are independently distributed with mean E («, d) = («, d) and

covariance matrix Cov (¢, d) = with «, d, @ and @ known and

o
that « and 4 are independent of u; for all £. The “larger” or more
positive definite the covariance matrices Q and o the greater will be
uncertainty regarding the parameter changes between periodsnand n + 1.5

4 The vestor stacking operator, Vec, has the following interpretation, Specifying
A ]= [a;, as, . ., ai], where a; is the i—th column of 4, Vec 4 = « = [a'; a2 . .
a'k ‘.

® The matrix X is said to be greater than the matrix L if, for all non-zero vectors =,
the scalar quantity 'K a>a'L «.
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Clearly, upon imposing restrictive assumptions on 4 and 4 in (4) a number
of special cases regarding parameter changes may be specified. If we
assume perfect knowledge about 4 and d and specify the former to be
the identity matrix and the latter to be the null vector we have the text-
book constant parameter regression model. Duncan and Horn [7]
consider the case where A4 is known and 4 has a null vector expectation
and known covariance matrix g.

The second category of information that becomes available in period
n + 1 is the set of new sample observations.

We represent these observations as:

(5) Yasy> Xniq
where y,.q is an r x [ vector and Xy, is an r X k matrix.

The updating problem is one of combining the additional information
generated during period n + I as described in (4) and (5) with the
parameter estimates available from period » as described in (2) to obta
estimates of £, and o2,

4 UPDATED PARAMETER ESTIMATES

In obtaining estimates of the unknown parameters ., and o of (3)
we proceed in two steps. Step one involves combining information
relating to changes in the B parameter vector specified in (4) with the
parameter estimates available from the period »n sample specified in (2).
The resulting estimates are termed updated parameter estimates with
independent parameter change information (but without additional
sample observations). In step two the mixed least squares estimator 1s
used to combine these estimates with the additional sample observations,
(5). The resulting estimates are termed the updated estimates with
parameter change information and with sample information.

4.1 UPDATED ESTIMATES WITH PARAMETER CHANGE INFORMATION

Given the period n sample estimates (2) and the parameter change
information (3), together with the assumptions of independence of Ay, dj
and By, all of which are implied by our probabilistic assumptions, the
updated estimate of By.,, which we denote as *;,,, and the covariance
matrix of this estimate, which we denote as o> N*,,,, are derived as:

(6) lb*m—l = E(Angn + dn)
= Apbn + dy
and
(7) o2 N¥*p,, = E{(Anﬁn + dy — ann - 67;&) (An@n + dp — ,ann - Jn)’}
= E {(Anfn — ann) (AuBn — Apbn)'} + 0
J 4o
= o[ (J + o)]

I
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where, with the exception of J, all terms are as defined above. The
ij-element of the k x k matrix J, J(ij), is given by:

@) J(ij) = o®ds Nud; + b'nQiybn + o2 trace (Np Q)

where a; is the i-th row of A4, ; is the ij-submatrix of Q corresponding
to the i-th and j-th rows of A4, and all other terms are as defined above.

4.2 UPDATED ESTIMATES WITH PARAMETER CHANGE INFORMATION AND
WITH SAMPLE OBSERVATIONS

The next step of the updating procedure requires a variant of the mixed
least squares approach®.

Formally, the problem is to estimate 8, ., from the augmented model:
b*niq 1 b*niy — Bria
(9) = Bat1 +
Va1 Xty Unyy
or, in compact form,
(10} yniy = Xnty iy + Uniq
where all terms are defined above. Now, from:
(3) Euu,y = O and Eupyy'ny, = oIy, and from (6) and (7)
E(b*n+1_" Bn+y) = O and E (0% — Baty) (D*niy ~ Bryy)” = o* N¥nyy,
and our independence assumptions imply E (b¥py — Bpyy) Wney = O
Then,
N*n+1 O
0 I,
Given the covariance matrix Zp,, of (11), generalized least squares may
be employed in the context of (10) to obtain updated estimates of B, ;.

The mean estimate, bn,,;, and its associated error covariance matrix,
6% Nu., are derived as:

(12) bpiy = Nayy [IN* Yy B¥niq + X'niy Vi)
and
(13) 0 Npyy = o [N* Ty + X'nyy Xngq]™V

Clearly the updating formulae (6), (7), (12) and (13) may be applied
sequentially as the process moves from one period to another.

(11) EE”+1 = O alld Eitn+1 u'n+1 - 0'2[ ] == 0'2 z-n+1.

4.3 COMPUTATION OF THE PARAMETER ESTIMATES

In practice formulae for computing b, , in (12) are not directly applicable
when the covariance matrices @ and @ of the parameter change relation
(4) are not null, i.e. when we do not have perfect knowledge of the
Ay and d, parameters of the parameter change relation (4). The problem
arises because the matrix N*,, of (7) depends on the matrices s~2 Q and

¢ For details of this estimator see Theil [12, pp. 347-349].
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6~2 g and <2 generally is unknown. The matrices 62 Q and ~* @ measure
the relative importance of the variance of the error term u in the
observation equation (3) to the covariance matrices of the independent
distribution function for the elements of the multiplicative change matrix
A and the additive change vector d, respectively, of the parameter change
relation (4). In an operational setting the following approximate
procedure might be followed. Replace o* with a consistent estimate,
say 62, and proceed as if 62 = o2 It can be shown the 5,2 of (2c) is a
consistent estimate of o2 and that the difference 5%, — o2 is of order 7%
in probability (Theil [11, p. 405]). Furthermore, information about Q
and @ is unlikely to be exact so that even if ¢* were known, the ratios c=2 Q
and o2 g would be approximate only.

For computationally efficient sequential updating, and for the purpose of
obtaining further insights into the updated parameter estimate (12) and
(13), the estimation formulae for bp,, and N, may be specified in the
form of recursive equations. Usmg a matnx inversion lemma reported
in Aoki [1, p. 69] the matrix Nnﬂ, where NnJr1 is Nu., as stated in

(13) with s%, substituted for % may be restated as’:

(14) Nn+1 = N 1 N ni1 X'nps Ur + Xﬂ+1N ni1 X'ni1]™ Xory N*nyq
where

(15) N*uiy = 572 (J + 0)

where J and & are as specified in (7) and (8), respectively, with s2, replacing
o2, and all other terms are as previously defined. Substituting (14) for

]\Afnﬂ in (12) and after some algebraic manipulations, the updated
parameter estimate b, ., may be restated as®:

(16) bpyy = b*uiy + ]\Afnﬂ X'ni1 [ne1 — Xagr D¥nql
where b*,, is as specified in (6).

Usually (14), (15) and (16) are more convenient than (12) and (13) for
computing since the former involves inversion of an r X r matrix (where r
is the number of additional observations) while the latter involves inver-
sion of a k x k matrix (where k is the number of regression parameters).
Formulae (6), (7), (14), (15) and (16) are readily applicable for the
sequential updating of parameter estimates for a sequence of forthcoming
sets of new information.

5 PROPERTIES OF THE UPDATED ESTIMATES

In this section we consider some properties of four estimates of the
parameter vector P, obtained under different information assumptions.
While we focus on the bias property of the estimates of Bn., and on the

7 The lemma states that the matrix [G! + D’ H™! D] ! can be expanded to the
matrix [ — GD’'[H + DG D'I'* DG].

8 Details may be obtained from either of the authors.
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precision (i.e. the inverse of the covariance matrix) of the parameter
estimates we note that the bias squared plus the variance determine
another interesting parameter estimate property, the mean square error.
1t seems useful to consider properties of the following four estimates of
Bur1. The case 1 estimate—the non-updated estimate is given by the
estimator in (2). This estimate of B,,, ignores the contributions of new
information coming available in period n + I. The case 2 estimate—
the updated estimate with parameter change information—is given by
the estimator of (6) and (7). The case 3 estimate—updated estimate with
additional sample information—utilizes the n period and n + I period
sample sets as an augmented sample to estimate B,,.,. In essence this
estimator assumes By = PBpyq, 160 Ay, = I and d, = 0, and ignores
independent information about parameter changes. The case 4 estimate
—updated estimate with parameter change information and with
additional sample information—utilizes all sources of information and
the estimator is given by the equations (14), (15), and (16).

To assess the bias property of the different mean estimates of 3,,, we
apply the expectation operator under the assumptions that Fu; = 0 and
that ¢ is exogenous for all 7, and that the estimate of 3, based on the »
period sample, b, in (2a), is an unbiased estimate. The case 1 or non-
updated estimate of B,.,, by Will provide an unbiased estimate only if
the true situation corresponds to one of no parameter change between
period n and period # + I; the expected bias, if any, will be given by
Buy: — Bn. Gilven our assumption that information about the elements
of the A, matrix and d, vector of the parameter change relation (4) are
independent of #; in (1) and (3) for all 7, the expected value of the mean
updated estimate without sample data 5*,,; as specified in (6) will be:

(17) Eb*y,, = EA,Eb, + Ed,

= EIIan + ECll-'ln.
Then, b*,,, provides an unbiased estimate of 8., if A, and o, which
specify expected parameter changes, are unbiased estimates. To assess

the expectation of the case 3 and case 4 estimates of B,., we take
the expectation of (16) as follows:

(18) Ebnyy = EAuEby, + Edn + ]Cer—l X'npr (Xniy Buyy + Engy —
Xnsy [E AnEby + Edy))
= EAuBu + Edp + Nasy X'nys Xoiy (Bniy — EAn o — Edy)

where A, and d,, correspond to the actual levels of A, and d, respectively,
used by the estimator: for the case 3 estimator A, = I and d, = 0 and
for the case 4 estimator A4, = A, and dy = d,,. Now l;nﬂ provides an

unbiased estimate of By, if EAy = A4, and Ed, = dy, where Ap and dy
refer to the true values. That is, the updated estimate with sample data,
case 3, will be an unbiased estimate if the true case is one of no parameter
change; otherwise it yields biased estimates. Similarly, the updated
estimates with parameter change information and with sample data, case 4,
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will be unbiased if A, and d, are unbiased estimates of 4, and dy,
respectively. The direction and magnitude of the parameter estimate

bias depends on (4, — Ag) P + (dn — dy) and the kazk matrix Ny,
X'uyq Xnpqo The latter matrix is peculiar to the particular sample set
and this makes it difficult to make general statements about the direction
and order of bias in the estimates.

Further inspection of (18) indicates that for cases 3 and 4 the extent of
bias in by, approaches zero as the matrix ﬁfnﬂ X'ny1 Xnyq approaches
the identity matrix. Expansion of ]’anﬂ X'nyy Xngy to

[Nn+ U+ X'py1 Xoeq]™ Xupy Xno, indicates that the bias declines (1) as the

additional or n + [ period sample increases and (2) as the matrix Np,4,
which in turn is influenced by the covariance matrices Q and o, becomes
larger. The latter implies that, other things being equal, the greater the
uncertainty about parameter changes reflected in Q and o, the smaller
becomes the extent of the bias. The first point puts the case for including
forthcoming sample observations in the updated parameter estimates.

Inspection of the recursive form of the updating estimator, equation (16),
indicates two aspects of the inclusion of additional sample observations
in the parameter estimates. The case 4 updated parameter estimate,
bniy, is given by the case 2 updated parameter estimate, b*,.,, plus a
correction term proportional to the difference between the actual value
of the vector of additional observations on the explanatory variable and
the mean prediction of this vector using 5%y, 1.€. 0N Yny1 — Xniy ¥y
Thus, ceteris paribus, the more accurately the updated estimate with
parameter change information predicts forthcoming observations, the
smaller will be the effect of incorporating the additional sample data on
the mean updated estimate of B3,,,. The relative weight placed on the

mean prediction error vector is given by Npyq X'nyq, Where o2 Ny is the
covariance matrix for the updated parameter estimate. Thus, the greater
is the precision of the parameter estimates the less weight is placed on
the additional sample observation information.

Turning to the covariance matrices for the updated parameter estimates
two observations are noted. First, comparison of the covariance
matrix o2 N, for the non-updated estimate with the covariance matrix
o2 N*,., for the updated estimate with parameter change information
indicates that the latter is augmented by the covariance matrices €, and
o, of the parameter change relation (4) and it is augmented (decreased)
by the A, matrix when the characteristic roots of Ay are outside (inside)
the unit circle®. Thus, while greater uncertainty about the parameters
of the parameter change relation, as reflected in larger Q and ¢ matrices,
tends to result in estimates with a lesser degree of bias at the same time

% In general, the incorporation of probabilistic information about parameter changes
in the updated estimates has the effect of bounding the parameter covariance matrix

c? Nn+1 away from the null matrix.
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it results in less precise estimates. Second, incorporating additional
sample observations in the parameter estimates increases the precision
of the estimates. This result is shown by expanding o® N, in (13) as
(19) ® Npyy = 0* [N¥*ap1 = N*npy X'npo [Ir + Xn N¥0p 3 X017 Xy g N*ny ]
Now 62 N*,,, is the covariance matrix for the updated parameter estimate
with parameter change information (but without additional sample
observations) and the second right hand matrix of (19) is a positive
definite matrix.

While the foregoing discussion has been concerned with properties of
estimates of Py, obtained under different information assumptions,
analogous properties may be derived for forecasts yielded by the
different estimates. Some of these properties may be briefly summarized
as: (i) forecasts yielded by the non-updated estimates will be unbiased
only in the event of no parameter changes over time; (ii) forecasts
yielded by updated estimates incorporating the parameter change
information will be unbiased if expected changes in the parameters are
unbiased; (iii) the effects of biased estimates of parameter change will be
reduced by increasing the covariance matrices for the parameter change
relation parameters, but this involves some loss of precision in the
forecasts, or by incorporating additional sample observations in the
parameter estimates; and, (iv) incorporation of additional sample
observations in the parameter estimates leads to more precise forecasts.

6 ILLUSTRATIVE APPLICATION

In this section we apply the least squares updating estimator reported
above to update estimates of the parameters of a regression model
describing the net change in the annual inventory of Australian beef cows.1°
For an initial sample period 1953—4 through 1968-9 ordinary least squares
estimates of the parameters are derived. Assuming we arrive at 1971 and
are interested in parameter estimates applicable for an analysis of the
early 1970’s beef cow inventory levels, we illustrate how the additional
information coming available since 1968-9 could be used to update the
initial period parameter estimates. The section concludes with a
discussion of the parameter estimates and forecasts obtained under
different information assumptions.

6.1 BEEF COW INVENTORY RESPONSE MODEL

The underlying economic model of the specified relationship describing
net changes in the annual inventory of Australian beef cows is a product-
product production economics model. In this model producers allocate
a bundle of fixed pasture resources between beef production and the
production of alternative grazing activities—wool, lamb and dairy

10 To date no published study known to the authors has used econometric procedures
to analyse the Australian inventory of beef cattle.
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production. The available pasture resources are measured in terms of
two proxy variables: the net change in the area of sown grasses and clovers
and a rainfall index variable. Producers are assumed to allocate the
pasture resources so as to maximize expected net returns to the limiting
resource. Conceptually the net return variables should be specified as
output price less variable input costs, including labour costs, per unit
production. In practice the lack of suitable data regarding input costs
led us to approximate net returns by output prices!’. In algebraic terms
the model to be estimated is specified as:

(203) Ve = Bon + Bin 1t + Bon Tt + Ban X3t + Ut

or, in the concise notation of the conceptual portion of the paper,

(20b) yt = x4 B + ugfort = 19534, . . ., 1968-9,

where y denotes annual net change in the inventory of Australian beef
cows, z,; denotes the ratio of expected beef prices to a weighted average of
expected wool, lamb and butter prices, =, denotes the annual change in the
area of sown grasses and clovers, z, denotes the index of annual rainfall,

and u is the error term'2, We assume a constant vector of parameters,
8, for the sample period 19534 through 1968-9.

6.2 FIRST PERIOD SAMPLE ESTIMATES

For the sample period 1953-4 through 1968-9 the following least squares
estimates of the unknown parameters B, and o2 in (20) were obtained:

(21) y = — 4813 + 14939 2, + 6724 z, + 330-90 w,
(204-9) (3739 (99-91) (92-76)
2, = 36312.

The estimated standard errors of the parameter estimates are given in
parentheses’s.

The estimated function indicates that the net change in the annual
inventory of beef cows is positively related to the expected profitability of
beef production relative to that of alternative grazing activities and to
the availability of pasture resources.

11 J, Street has suggested that a more appropriate specification would include the
labour index variable as a separate explanatory variable. This suggestion had to be
rejected on statistical grounds because the high level of collinearity between this
variable and the x, variable of (20a) resulted in unsatisfactory estimates for the
sample period of interest.

12 The definitions and data sources for the variables used were as follows: y — net
change in other cows and heifers one year and over at the end of March in 1000’s
[4] ; 21 = (-5 Pg + -33 Pp—y - 17 Pp—») [ (:6(:5 Py + 33 Pw—, + 17 Pw—,)
4 2(SPrL 4 33 Pr—y + 17 Py} + 2(:5 Pp + 33 Pp—y + 17 Pp—,)) where
PB is the price in cents per kg first and second quality bullocks and cows, Homebush
[2], Pw is the average price in cents per kg realized for greasy wool at auction [4],
P is the price in cents per kg for first and second quality export lamb, Homebush
[2], and Pp is the average export butter price in cents per kg [3]; =, is in million
hectares [3], and; x; is based on the following weights, +1 for annual rainfall in
deciles 9 and 10, 0 for annual rainfall in deciles 4 through 8, —1 for annual rainfall
in decile 3, —2 for annual rainfall in decile 2 and — 3 for annual rainfall in decile 1 [8].

13 The covariance matrix from which the standard errors were derived is reported in
an appendix,
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6.3 TUPDATING THE PARAMETER ESTIMATES

For the next or updating period, n + 1, we specify a beef cow inventory
relationship of the form:

(22) y¢ = ¢ Bnyq + uy for ¢ = 1969-70, 1970-1,

where all terms are as defined for (20) but where elements of 8., in (22)
are not necessarily constrained to be the same as the comparable elements
of 8, in (20b). Our objective is to obtain an estimate of fy., in (22)
using the least squares estimator described above to combine new
information generated during 1969-71 with the estimates obtained
from the sample period 1953-4 through 1968-9 reported in (21).

As before, the new information forthcoming in 1969-71 falls into two
categories; information on parameter changes and additional sample
observations. For the first category we focus on a change in the 8,
parameter; we assume no changes in the other parameters. In the
estimated model the §, parameter describes the effect on the inventory
of beef cows of a change in the relative expected output price of beef
production to the output price of alternative grazing activities and this
effect is assumed to be constant and independent of the levels of the
price variables. In the discussion of the specified model in section 6.1
it was noted that z,, the relative expected output price variable for beef
production and alternative grazing activities, is a proxy variable for the
relative expected net return variable of the underlying product-product
economic model. The proxy variable z; does not allow for the effects of
changing labour costs on the relative attractiveness of beef production
to the alternative grazing activities. Labour costs rose in 1969-71
relative to the earlier sample period and available evidence indicates
substantially lower labour costs per unit of beef production relative to
that incurred in wool, lamb and butter production'4. 1In this context it is
contended that the proxy variable z; underestimates the attractiveness of
beef production in more recent times (specifically period » + 1 as
compared to period n). In short, we expect the g, parameter to increase
between period » and period n + 1, but we are uncertain about the extent
of the change.

Specifically we assume By, nyy = a B, n and specify probabilistic
information about “@” to reflect our somewhat arbitrary presumption
that we are 95 per cent confident that 8,, »,, is zero to twenty per cent
greater than 8,, , with an expected increase of 10 per cent!®. To a large
extent these assumptions reflect the ten per cent increase in the Bureau of
Agricultural Economics index of price of wages paid between June, 1969
and June, 1971 [3]. Then, in the notation of the parameter change

relation (4), the 4 matrix has diagonal elements equal to 1.0, except for
d,, Which is 1.1 and all off-diagonal elements are zero, the  matrix has
all elements zero except the variance term for a,, which is set at (-:05)2, the

d vector is null, and the & covariance matrix is specified to be null.

14 For a discussion of some evidence see Davidson [6].

15 We have approximated the 95 per cent confidence interval as plus or minus two
standard deviations.
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The second set of information that becomes available in period n + I is
two additional observations, viz.

912 1.0 731 1-866 — -21
2 _ - .
(23) ynis [1 125]’ and Xnss [1-0 839 1-588 — -06}

As above we will consider estimates of the parameter vector B3ny, in
(22) obtained under four different information states. Case 1—the non-
updated estimate—utilizes only the 1953-69, or period n, sample
information. Case 2—updated estimate with parameter change
information—utilizes the 1953-69 sample information and the independent
information that B, increases between n and n + I; but it ignores the
additional 1969-71 sample observations. Case 3—updated estimates with
additional sample data—utilizes the two sets of sample observations
1954-69 and 1969-71; but it ignores the independent information about
parameter changes. In essence for this case the least squares estimator
is applied to the augmented sample under the assumption of constant
parameters, Case 4—updated estimates with parameter change
information and with additional sample observations—utilizes both
categories of new information generated in 1969-71 and the 1953-69
sample data. For cases 2, 3, and 4 the least squares estimator described
in section 4 is employed.

Estimates of the parameter vector Bu..q in (22) and of the standard errors
for these estimates obtained for the four information states described
above are reported in table 1*¢. Inclusion of the additional sample
observations in the parameter estimates, cases 3 and 4, resulted in

TABLE 1

Estimates of Regression Parameters of 1969-71 Relation for Inventory of Australian
Beef Cows for Different Information States

Explanatory variables
Information
States
Constant X, X X,
|
Case 1l .. .. — 4813 E 1,493-9 67:24 3309
(204-9y (373-9) 99-97) 92:8)
Case 2 .. .. — 481-3 1,643-3 67:24 3309
(204-9) 418-5) (99-97) (92-8)
Case3 .. .. — 6452 1,780-9 116-12 328-3
(156-6) (290-9) (90-9) (92-0)
Case 4 .. .. — 5626 1,813-1 8875 3306
(151-8) (292-7) (92-00) (92:4)

e As defined in text.
b Details of the complete covariance matrix are given in appendix.

16 The covariance matrices from which the standard errors were derived are reported
in an appendix.
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estimates of B,, 5., which were greater than those obtained by the
estimates which ignored the new sample observations, cases 1 and 2.
These results are consistent with our argument that the parameter on
the relative output price variable has increased in recent years.

Table 2 reports mean forecasts of changes in the inventory of Australian
beef cows for 1969-70, 1970-1 and 1971-2 using the four estimated
functions collated in table 1.  For this example, and clearly one sample
provides a limited basis for assessing forecasting performance, the
parameter estimates incorporating both sources of additional informa-
tion, case 4, provide the most satisfactory forecasts while the parameter
estimates which do not incorporate this additional information, case 1,
provide the least satisfactory forecasts.

TABLE 2

Forecasts Annual Changes in the Invenfory of Australian Beef Cows for 1969-70,
1970-1 and 1971-2 Using the Different Estimated Relations of Table 1

Forecast period
Forecast 1969-70 . 1970-71 | 1971-72
function .f
! |
i Mean | Forecast ‘ Mean Forecast Mean @ Forecast
j forecast | error | forecast error forecast [ error
Case 1 .. 668 244 | 859 266 899 603
Case 2 .. 776 136 984 141 1,039 463
Case 3 .. 803 109 1,012 113 996 506
Case 4 .. 860 52 ‘ 1,080 | 45 1,098 ’ 404

7 CONCLUSION

In this paper we have argued that it is desirable to incorporate forthcoming
information in the parameter estimates of time series models to be used in
studies of the current situation. A least squares estimator was derived
for incorporating independent information about parameter changes and
additional sample observations in the updated parameter estimates.
Recursive formulae for the sequential updating of parameter estimates are
reported in equations (6), (7), (14), (15) and (16). The formulae involve
a minimal computational burden.

The bias properties of the updated estimates are directly related to the
independent prior information of expected changes, if any, in the
parameters of the specified regression model over time. In view of our
discussion of section 2 that the typical case with time series econometric
models will be one of non-constant parameters, the conventional
procedure of assuming constant parameters will result in biased updated
estimates. Such biases can be minimized by incorporating quasi-
unbiased mean estimates of parameter change in the updated estimates, by
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explicitly recognizing one’s state of imperfect knowledge about these
parameter changes, and by incorporating forthcoming sample observations
in the updated parameter estimates. Incorporation of additional sample
observations in the parameter estimates increases the precision of the
updated estimates.

We have applied the least squares estimator to update estimates of the
parameters of an equation describing annual changes in the inventory of
Australian beef cows. Judging by the criteria of mean square
forecasting error the updated parameter estimates were more successful
than forecasts obtained from the model with non-updated parameter
estimates.

Throughout the paper we have restricted the discussion to a single
regression equation. Just as the least squares estimator has been
extended to the estimation of parameters in multiple equation models,
including simultaneous equation models, so may the updating estimator
reported in this paper.
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APPENDIX: PARAMETER COVARIANCE MATRICES

Case 1. Non-updated estimate
Constant Xy X, X,
Constant 41,995 ..
Xy — 63,916 139,830 ..
X, — 10,864 1,507 9,993 ..
Xa 1,641 7,335 — 3,889 8,600
Case 2. Updated estimate with parameter change information
Constant } X, X, l Xa
Constant 41,995 I .. é
X, - 70,307 | 175,118 . ;
X, — 10,864 | 1,659 9,993 ..
Xz 1,641 : 8,068 — 3,889 } 8,606
Case 3. Updated estimate with sample observations
Constant X, X, X,
Constant 24,518 ..
1 — 33,416 84,400 ..
X, — 5,755 — 6,950 8,257 ..
Xs 1,398 7,375 — 3,642 8,468

Case 4. Updated estimate with parameter change information and with sample

information
Constant X, X, X;
Constant 23,033 ..
' — 29,246 84,520 ..
X, -~ 6,079 —3,733 8,468 ..
X, 1,739 7,368 — 3,733 8,544
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