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Batterham, Drynan, Clarke and Carter: Single-Index and Quadratic Models

A Note Comparing Single-Index Models and
Quadratic Programming Models for Farm

Planning Under Risk

R.L. Batterham, R.G. Drynan, D.K. Clarke and P.H. Carter"

Single-index models from portfolio theory have pre-
viously been adapted for risk efficient farm planning in
North America. The potential for using single-index
models in farm planning is considered in this paper both
theoretically and in the light of two illustrati ve Australian
case studies. It is concluded that single-index models
have no significant computational or other advantages
over full quadratic programming portfolio selection mod-
els for farm planning and may produce relatively poor
plans and poor assessments of the risks associated with
those plans.

1. Introduction

A common planning problem in finance, farm-
ing and other contexts is that of choosing
amongst various combinations of risky and
often interrelated activities, that is, the prob-
lem of identifying an optimal portfolio. Al-
though most economists would view the
optimal portfolio as the one which maximises
the decision maker’s utility function, proce-
dures used for portfolio selection have been
somewhat pragmatic. In this paper, the role of
‘single-index’ portfolio models in farm plan-
ning is considered.

Modem portfolio theory dates back to Mark-
owitz (1952) who showed how the standard
deviation of a portfolio of stocks could be
reduced by choosing stocks which do not
‘move together’. He then presented the basic
principles of portfolio construction based on
the assumption that decision makers preferred
greater expected return and less risk of return,
developing the notion of mean-variance (EV)
‘efficient’ portfolios: portfolios such that no
other portfolio exists having less (/as little)
risk (variance) and as much (/more) expected

return. Markowitz showed that quadratic pro-
gramming (QP) can be used to obtain the set
or frontier of EV efficient portfolios.

At about the same time, Heady (1952) identi-
fied the role that diversification on farms could
play in reducing risk to achieve stability in
farm incomes. Whilst not developed under the
title of portfolio selection, Heady’s concepts
are quite similar to the independent work of
Markowitz.

It is now known that, from a utility theory
perspective, the set of EV efficient portfolios
contains the optimal portfolios for all risk
averse decision makers seeking to maximize
utility of income if the activity retums are
normally distributed. For other types of dis-
tributions of returns however, the EV efficient
set generally holds the optimal portfolios only
for decision makers with quadratic utility
functions. Thus, the set of EV efficient port-
folios is generally not identical to the set of
utility efficient portfolios.

While the notion of utility efficiency is well
developed in the stochastic dominance litera-
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ture (for example Drynan 1986), and proce-
dures for the identification of the efficient sets
for some special classes of utility functions
and particular forms of uncertainty are being
devised (see for example Hardaker et al 1991),
procedures for identifying the full set of utility
efficient portfolios remain elusive. In prac-
tice, portfolio theory continues to be applied
largely within an EV framework.

Even in this context, considerable difficulty
was experienced with the use of QP codes to
solve the portfolio selection problem untii the
early 1970s when the Rand Corporation code
became available to researchers (see
Takayama and Batterham 1972). These early
difficulties led researchers interested in EV
portfolio selection to seek alternative methods
for identifying the set of efficient portfolios.
This work was initiated by Sharpe (1963,
1970) who showed that a significant amount
of the variation in the returns to activities could
be captured via the relationship that the return
from each activity has with some common
factor, thereby allowing the use of ‘single-in-
dex’ models to approximate the variance
measure of risk in portfolio selection prob-
lems.

Single-index models have the advantage that
activity (and portfolio) risk can be specified
with many fewer parameters than are neces-
sary in specifying the variance-covariance ma-
trix required in the general QP model for
portfolio selection. A further advantage of
some versions of the single-index model is that
the set of efficient portfolios can be deter-
mined using linear programming (LP). In the
past, LP codes were more widely available,
generally more familiar to researchers, and
more reliable than QP codes. Index models
became relatively widely used for portfolio
selection, at least in the scholarly finance lit-
erature (see Harrington 1987).

Agricultural economists concerned with farm

planning under risk have also sought simple
alternatives to QP and a number of North
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American studies based on single-index mod-
els have been reported (examples are Collins
and Barry 1986; and Turvey, Driver and Baker
1988). Australian agricultural economists
have been active in the search, but have chosen
means other than single-index models for sim-
plification, most notably MOTAD models, fo-
cus-loss models, and linear-segmented
objective functions (Hardaker et al 1991).
The application of single-index models in a
New Zealand farm setting has been reported in
the Australian literature (Johnson 1992), but
there seems to be no published paper exploring
their application in Australian farm planning.

Several hypotheses could be put forward to
explain the relative lack of interest in single-
index models, ranging from lack of awareness,
inapplicability of the assumptions to farm
planning, difficulties in application, to a sim-
ple lack of any incentive to adopt such models.
It is not the intention in this paper to search for
an explanation of the past behaviour of our
profession. Instead, the main aim is to exam-
ine what these models have to offer farm plan-
ning to-day by presenting the basics of
single-index models and some results from
illustrative case studies. Two versions of the
Sharpe single-index model are outlined. The
models are used to derive EV efficient portfo-
lios for two farm case studies in central and
southern New South Wales and these sets. of
portfolios are compared to those produced by

QP.

2. The Quadratic Programming
Model

Quadratic programming can identify the set of
EV efficient farm plans under the usual farm
planning assumption of a known linear con-
straint set. The QP model can be expressed as
follows:

Maximise Z=cx-AxQx
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subjectto  Ax<b
and x>0
where Z is the objective function,

c is the vector of expected activ-
ity returns,

Q is the variance-covariance ma-
trix of activity returns,

x is the vector of activity levels,

A is a parameter which is varied
to alter the relative weights on
expected return and variance of
returns to produce the EV fron-
tier,

A is a matrix of input-output co-
efficients,

b is the vector of resource con-
straints or requirements.

The QP model requires knowledge of the
mean and variance of the gross margin for each
activity considered and of the covariances be-
tween gross margins. As these parameters are
unknown, sample means and variance-covari-
ances based on historical time series of gross
margins are commonly used as estimates.
This ‘introduces a further element of uncer-
tainty that strictly should be taken into ac-
count, but which is typically ignored in
deriving EV efficient plans.

3. Single-Index Models

Sharpe’s single-index model (1963,1970) rep-
resents a special case of the QP model for
deriving the EV frontier. The model is based
on the assumption that each activity’s return

(Ri) is related to some common factor (Rp)
and dependent on a random element (gj);

(I) Ri=04+BiRym+¢

In farm planning situations R; in equation (1)
represents the gross margin for the ith activity;
0 a constant; B; the expected change in Rj in
response to a change in Rm; R the index; and
€ an error term.

According to Sharpe, the common factor Ry
should be the single most important factor
influencing returns. In the work on index
models in finance, this factor is the ‘market
portfolio return’. One or other of the available
financial indices is used as a proxy for the
market portfolio. Relationships among secu-
rities are derived from common relationships
with the index. In farm planning, Collins and
Barry (1986) and Turvey, Driver and Baker
(1988) used a reference farm portfolio for Rp,.
However any factor believed to explain a sig-
nificant amount of the joint variation in activ-
ity returns could be used. If, for example, the
set of feasible activities consisted only of dry-
land winter cropping alternatives, rainfall
throughout the growing season or subsoil
moisture may provide a reasonable explana-
tion of the variations in gross margins.

The error term ¢; reflects factors unique to the
individual activity itself and unrelated to the
level of the index. Its expected value is as-
sumed to be zero. The expected retumn to
activity i is then:

(2) Ei=04+BiEn

where En, is the expected level of the index.
The risk associated with activity i, measured
by the variance of returns (oR;2), can be di-
vided into two parts, systematic (or market)

risk, and non-systematic (or unique) risk:

(3) ORi2=V( + 8i Rm + &)
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=V(Bi Rm) + V(&)
= Bi2 sz + Gei2

2. ]
Om" 1s the variance of the com-
mon factor or index,

where

Ggiz is the variance of the error
term, and

~ V(.) also denotes variance.

The firstterm in (3) is the systematic risk. The
second term is the risk unique to the particular
activity. The systematic risk for a particular
activity depends on its B coefficient and the
variation in the common factor. No covari-
ance terms appear in (3) because the unique
factors are assumed independent of the index.

The returns from any two different activities
will be correlated because of their joint de-
pendence on the common single index:

4)  Covij = B; Bj Om?

The set of efficient farm plans can be calcu-
lated via parametric QP using the variance-co-
variance matrix formed with the variances and
covariances defined above. The various pa-
rameters are unlikely to be known and will
usually need to be estimated, for example by
ordinary least squares regressions of activity
gross margins on the index.

In summary, given an appropriate index,
Sharpe’s single-index model allows the mean
and variance of a portfolio to be calculated
with knowledge only of the variance of the
common factor (0’2m) and of the following
parameters for each activity: its expected re-
turn (Ei); the responsiveness of return to
changes in the level of the index (8;); and its
unique or non-systematic risk (0gi“). The
ready availability of activity betas, and hence
reduced primary information requirements,
have given this model considerable appeal in
the finance area.
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3.1 The Diagonal Model

A particular portfolio of n activities at levels
Xij, i=1...n, has an expected return

n
(5) Ep= EIXi Ei
1=
and variance
n n
6) op’= EXi Bi)® 0% + ,zlxiz Oei’
1= i=

The form of the expression for the portfolio
variance suggests that the QP problem in n
activities with a variance-covariance matrix
based on a single-index can be rewritten as one
in n+1 activities with a diagonal variance-co-
variance matrix. That is, if an n+1th activity
is defined (along with an additional constraint)
as the beta-weighted sum of the first n activi-
ties (Xn+1 = Z X Bj), portfolio expected return
and variance are correctly calculated when this
new activity is given a zero expected gross
margin and the variance-covariance matrix is
defined as diagonal with the unique risks in the
first n positions and the variance of the com-
mon factor in the n+1th position. This diago-
nal representation of the single-index model is
usually used in preference to the non-diagonal
equivalent since it avoids pre-QP calculation
of the systematic risks and covariances.

3.2 The Minimise Portfolio Beta Model

Sharpe (1963) argued that when a portfolio of
activities is well diversified, non-systematic
risk becomes relatively small and, as an ap-
proximation, can be ignored. Retums to all
activities are effectively assumed to be per-
fectly correlated. Equation (6) reduces to:

™ o= EXiB)
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Portfolio variance will then be minimised
when portfolio beta (XXB;) is minimised. The
problem can therefore be solved using LP.

Often there will be no a priori reason to believe
that a well-diversified portfolio is optimal
(Frankfurter and Booth 1985) and thus there
will be a danger that the error in approximating
the diagonal model may not be insignificant.
The more relevant concern is whether the im-
plied variance-covariance matrix can approxi-
mate well the general or full variance-co-
variance matrix and so identify portfolios
which are close to being EV efficient with
respect to the latter matrix.

A major advantage of the minimise portfolio
beta model is the further reduction in parame-
ters needed to specify the model. A measure
of each activity’s beta, the risk or variance of
the index, and each activity’s expected return
are the only items needed to identify efficient
portfolios. The ability to solve the problem
using LP is an added bonus.

4. The Case Studies

The analysis is based on two sets of historical
gross margins obtained for two mixed live-
stock and cropping areas within New South
Wales. The raw data along with the mean and
variance-covariance estimates for the two
farms are outlined in Appendix 1.

In the first case study, the gross margins were
based on price, yield and variable cost records
for the property ‘Bull Plain’ near West Wy-
along in the South West Slopes and Plains.
Additional data for activities considered in the
farm planning exercise, but not previously
pursued on the property, were obtained from
neighbouring properties that have similar re-
sources and productive capacity. Price figures
were indexed to 1990 prices using an index of

prices received by farmers published by the
Australian Bureau of Agricultural and Re-
source Economics (ABARE) and detrended in
order to provide a measure of stochastic vari-
ation about the expected prices at any time.
Variances were assumed to be unchanging
over time and were estimated as if the obser-
vations represented the entire population of
possible gross margins. Costs were assumed
to be constant at 1990 levels. Information that
could not be provided from the property re-
cords or from neighbouring properties was
obtained from district records obtained from
the local office of New South Wales Agricul-
ture.

In the second case study, the gross margins
were based on historical records of price, yield
and variable costs associated with a number of
farm activities undertaken in the Orange Dis-
trict in the Central Tablelands. The data re-
lates to the period 1975 to 1989. For the
cropping activities considered, average yield
data from the Shire of Weddin as published by
the Australian Bureau of Statistics, served as
the basis of production variability over the
period. The use of Shire data will obviously
reduce estimates of the variability of yields,
and hence gross margins, as compared to esti-
mates derived from farm level data.

Grain prices were based on Sydney retail feed
ingredient bi-monthly estimates provided by
New South Wales Agriculture. Sheep enter-
prise returns reflected variability in wool pro-
duction per head, wool prices, live weight sale
and purchase prices. Livestock values were
based upon information provided by New
South Wales Agricultures’ monthly Home-
bush saleyard reports and the New South
Wales Meat Industry Authority state-wide
monthly averages. Statistics provided by the
Australian Wool Corporation were used to
formulate production estimates as well as
wool price variability over the period. Addi-
tional information was collected from New
South Wales Agriculture staff in the district,
and from a number of producers.
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The choice of the factor to serve as the single
index is potentially important since the ob-
served performance of the single-index mod-
els will depend not just on the applicability of
a single-index model but also on the appropri-
ateness of the particular index used. Single-
index models could be made to appear better
than they really are by selecting an index based
on some form of factor analysis of the gross
margins data. Such an approach to defining an
index would seem inappropriate, for apart
from giving a biased view of performance, it
would seem to be of little relevance when a
major argument for considering single-index
models is simplified analysis. An advantage
of the approach in a research study, however,
would be that it would give some indication of
the maximum potential of single-index mod-
els The alternative approach, and the one
which would be used in practice, is to identify
the factor ex-ante. As already noted, this fac-
tor could be some climatic variable or a per-
formance index for a reference portfolio. A
naive and somewhat arbitrary specification of
the index has been used in the case studies, the
index simply being the average gross margin
across all activities under consideration.

The beta parameters were estimated by ordi-
nary least squares regressions of activity gross
margins on the index and then taken as if
known with certainty. Details of the simple
regressions are provided in Appendix 2. The
unique variance for an activity was calculated
as the difference between the variance for the
activity’s gross margin and the activity’s sys-
tematic risk.

5. Results

5.1 Case Farm 1

Frontiers were determined for each of the three
models using parametric LP and QP. The
mean-standard deviation frontiers from the
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three models are displayed in Figure 1 along
with the mean-standard deviation loci calcu-
lated on the basis of the full variance-covari-
ance matrix for the plans derived from each of
the models. Full results are available from the
authors.

Comparing the frontiers, the minimise portfo-
lio beta model necessarily has a frontier lying
to the left of that for the diagonal model since
the former model has the same covariances as
the latter but has smaller variances. Depend-
ing on how well the single-index models cap-
ture the full covariance structure, these models
may have frontiers lying to the right or to the
left of the QP model’s frontier (the ‘real’ fron-
tier). In the event, the minimise portfolio beta
model understates the minimum risk levels for
different levels of expected gross margin,
whereas the diagonal model generally over-
states the risk.

The two loci calculated using the full variance-
covariance matrix and the frontier solutions
from the single-index models necessarily lie to
the right of the real frontier. Differences here
indicate opportunity costs in using single-in-
dex models. The diagonal model produced
plans which were close to being EV efficient
over the whole range of expected gross mar-
gin. This is consistent with the results of the
studies of Collins and Barry (1986) and Tur-
vey, Driver and Baker (1988). In effect, the
average gross margin index has been able to
capture most of the joint variation in activity
returns.

The mean-standard deviation locus associated
with the plans derived from the minimise port-
folio beta model lies close to the real frontier
only over the ‘upper’ parts of the frontier
where risk is relatively lightly weighted by the
decision maker. The selection of portfolios
that are actually quite EV inefficient when risk
is given greater weight reflects the signifi-
cance of the substantial non-systematic risk
ignored by this model and indicates the oppor-
tunity to lower overall risk by accepting more
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Figure 1: Mean-standard Deviation Frontiers and Loci for
Case Farm 1
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systematic risk in reducing non-systematic
risk. In the lower expected income portfolios,
oats, a low systematic risk crop, dominates the
solutions. But the R” statistic for oats gross
margin regressed on the index is zero to two
decimal places (Appendix 2). The index
therefore has little ability to predict the income
for a portfolio containing only the activity
oats, and the minimise portfolio beta model
cannot estimate well the real variance of such
a portfolio. Itis not until the activities barley
and yearlings (R of 0.02 and 0.11 respec-
tively) enter the solutions and oats is forced
out, that the portfolios approach the frontier
generated by the full QP model.

5.2 Case Farm 2

The results, shown in Figure 2, exhibit analo-
gous patterns to those of the first case study.

Both index models produce portfolios which
are reasonably efficient, the diagonal model
again producing the better plans. The mini-
mise portfolio beta model performs relatively
better than in the first case study, though it
seriously understates the risk associated with
its plans. Its solutions are generally domi-
nated by one activity, merino wethers, which
has a zero systematic risk. The wethers activ-
ity also happens to have a high expected re-
turn. It dominates the solutions up to an
expected return of $90,000. It also has rela-
tively low unique risk, making it an attractive
activity in all three models. Except for the ‘do
nothing’ portfolio, the quality of the approxi-
mations (in terms of relative efficiency of
plans) is again better for the higher expected
return portfolios.

The near-linear shape of substantial sections

of the frontiers reflects the dominance of the
wethers activity and relatively few changes in
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Figure 2: Mean-standard Deviation Frontiers and Loci for
Case Farm 2
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wethers activity and relatively few changes in
the optimal basis as expected income in-
creases.

6. Discussion

In both case studies the plans derived from the
diagonal single-index model generally lie
closer to the real frontier produced by the full
QP portfolio selection model than do the plans
from the minimise portfolio beta LP model.
This result is somewhat different from that of
the Turvey, Driver and Baker (1988) study
where the diagonal single-index model and the
minimise portfolio beta model provided simi-
lar approximations of the real frontier.

Mean-standard deviation loci developed from

single-index models might be expected to dif-
fer from the real frontier whenever the ‘errors’
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in using the two approximations of the full
variance-covariance are large. Thus, the di-
agonal model may ‘fail’ if the assumption of a
single index is inappropriate; and the minimise
portfolio beta model may produce a locus dif-
ferent from that of the diagonal model when
its further assumption of zero-valued unique
variances is inappropriate. One might expect
that this locus would differ from the real fron-
tier if either of the two assumptions is violated
and be more different when both assumptions
are violated. Potentially, though, errors in the
two assumptions could offset. Case study 1,
for example, does show one instance in which
the minimise beta portfolio gets closer to the
real frontier than does the diagonal model.

For any of these differences to be expressed,
the constraint set must allow sufficient flexi-
bility for the optimum solution to adjust to the
altered variance-covariance matrices. Collins
and Barry (1986) have noted this. The nature
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for our results differing from those of Turvey
et al (1988). Our constraint sets were devel-
oped independently of the risk analysis and,
while relatively simple, are of a size and style
of construction commonly used in modelling
for Australian farm planning research.

A more likely factor contributing to different
results is our use of detrended data whereas
Turvey et al (1988) analyse raw data series.
Common trends in raw data series would ef-
fectively amount to a common factor, thus
contributing to apparently better performance
of the single-index models when using raw
data. Systematic risk certainly represents a
relatively smaller part of total risk in our study
than was the case in the North American study.

Previous authors have claimed several advan-
tages of the single-index models. These ad-
vantages can be classified as computational
advantages and data collection/model specifi-
cation advantages. The computational advan-
tages include the need for a smaller capacity
computer and less computer processing time
(Collins and Barry 1986) and the relative sim-
plicity of the models. However, over the last
decade there has been enormous progress in
personal computing technology. This tech-
nology has been accepted, in part at least, as a
tool for farm planning purposes. Reliable and
user-friendly software for QP and general non-
linear programming is now available', casting
doubt as to the need for single-index models.
Running a general QP portfolio selection
model is now no more difficult than running
the diagonal model. The minimise portfolio
beta model is somewhat easier to specify and
solve, requiring only LP, but this computa-
tional saving is relatively minor to-day. This
study has thrown some doubt on the usefulness
of the plans it generates, at least in the two case
studies.

The potential advantages associated with the
fewer parameters needed to construct the sin-
gle-index models are largely irrelevant to farm
planning situations. In contrastto the situation

for financial markets, there are no published
beta and residual error estimates available for
agricultural activities. Without published be-
tas and unique variances, the same raw data (or
even additional data if the index is not based
on the gross margins series) that is needed to
construct a full QP portfolio selection model
is still needed in estimating the beta coeffi-
cients (and the residual error variances for the
diagonal model) in the single-index models.

The likelihood of widely applicable indexes
being developed for Australian farms seems
remote. Such an index could be based on
rainfall or other general influence on gross
margins, or it might be based on the gross
margin performance of a standard or reference
portfolio. But with gross margins varying as
a result of both yield and price movements, it
is unlikely a single factor will explain well the
covariance structure of activity returns. Re-
gional variations in weather and agronomic
factors would certainly limit the spatial appli-
cability of any particular climatic or reference
portfolio index and its associated betas. Regu-
lar developments of new varieties and other
technology and continually changing pest
problems would also serve to alter any pub-
lished betas and unique variances.

Ultimately, only further experience with the
use of single-index models and different in-
dexes will determine the utility of such mod-
els. Monte Carlo studies of the performance
of different forms of index under a variety of
data generating models for activity gross mar-
gins may be useful. The two small case studies
reported here prove little, but do add weight to
the view that there is more to be lost than
gained in using single-index models for farm
planning.

! Most farm management researchers now use MINOS (see
Murtagh and Saunders 1983), LINDO (see Schrage 1991) orthe
Rand code for QP problems. However there are other commer-
cial QP packages available for microcomputers.
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Appendix 1: Historical Gross Margins Data and Derived Risk Parameters

Table A1.1: Case One Farm

Activity Gross Margins ($/ha for crop activities, and $/hd for livestock)

Field Firstcross  Yearding  Market
Year Wheat Oats Barley peas Wool steers steers return*
1982 282 181 201 92 23 44 270 156
1983 118 144 191 -65 26 42 198 93
1984 186 54 158 199 29 40 304 139
1985 129 56 132 132 25 35 322 119
1986 220 75 138 127 27 35 265 127
1987 362 93 166 219 41 57 277 174
1988 202 104. 169 153 52 67 204 i36
1989 199 168 213 101 37 38 226 140
1990 124 129 171 88 18 28 239 114
Mean 202 112 171 116 31 43 256 133

* Simple average of per unit returns of each activity.

Table A1.2: Case One Farm

Variance-covariance Matrix

Field Firstcross  Yearling
Wheat Oats Barley peas Wool steers steers Market

Wheat 6385 338 282 3714 344 516 672 1750
Oats 338 2203 1174 -2146 -39 -12 -1211 44
Barley 282 1174 740 -956 28 35 -690 88
Field peas 3714 -2146 -956 6706 353 330 2065 1438
Wool 344 -39 28 353 109 112 -150 108
First cross

steers 516 -12 35 330 112 150 -149 140
Yearling

steers 672 -1211 -690 2065 -150 -149 1840 339
Market 1750 44 88 1438 108 140 339 558
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Table A1.3: Case One Farm

Risk Parameters for Single-index Models

Systematic Risk Unique
Activity Beta Beta*Beta * Var (market) variance
Wheat 3.135 5487 898
Oats 0.079 3 2200
Barley 0.157 14 726
Field peas 2.576 3704 3002
Wool 0.194 21 88
First cross steers 0.251 35 115
Yearling steers 0.608 206 1634
Market 1.000 558
Table A1.4: Case Two Farm

Activity Gross Margins ($/ha for crop activities and $/hd for livestock)

Second

Merino Cross

Year Wheat Oats Barley Triticale Canola Lupins Wethers ewes lambs Yearling  Market
1975 272 194 73 172 331 86 45 22 35 30 126
1976 242 207 114 234 267 111 47 22 53 22 132
1977 57 18 -45 171 18 87 49 32 59 23 47
1978 544 69 26 198 342 152 46 39 65 44 152
1979 235 56 34 16 116 -63 40 30 52 50 57
1980 145 108 3 262 -48 -36 33 26 55 69 62
1981 388 164 97 248 -121 195 36 28 49 51 113
1982 -70 -63 -158 -67 -132 -121 40 19 22 37 -49
1983 512 148 100 357 166 236 34 26 47 69 169
1984 188 80 16 185 80 336 40 32 40 56 105
1985 253 104 40 346 139 274 31 30 37 55 131
1986 132 129 17 195 236 136 35 26 55 30 99
1987 146 99 6 164 150 123 61 34 55 23 86
1988 209 147 83 208 266 190 52 31 51 29 127
1989 131 92 32 176 193 131 40 31 46 31 90
Mean 226 103 29 191 134 122 42 29 48 41 96
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Table A1.5: Case Two Farm

Variance-covariance Matrix

Second
Merino  cross Yearling

Wheat Oats Barley Triticale Canola Lupins Wethers ewes lambs steers Market
Wheat 25786 5684 7578 9893 10111 9553 -168 290 627 1061 7042
Oats 5684 4736 4265 4858 5250 3854 2 -51 174 -25 2875
Barley 7578 4265 4561 4914 5254 4574 -12 34 253 119 3154
Trticale 9893 4858 4914 11511 4131 9390 =226 103 345 620 4554
Canola 10111 5250 5254 4131 22713 5987 398 190 503 -881 5366
Lupins 9553 3854 4574 9390 5987 15280 -38 257 123 302 4928
Wethers -168 2 -12 -226 398 -38 64 15 27 93 -3
Merino
ewes 290 =51 34 103 190 257 15 26 34 2 90
Second
cross lambs 627 174 253 345 503 123 27 34 115 -21 218
Yearling
steers 1061 25 119 620 -881 302 93 2 -21 261 135
Market 7042 2875 3154 4554 5366 4928 -3 90 218 135 2836
Table A1.6: Case Two Farm
Risk Parameters for Single-index Models

Systematic Risk Unique

Activity Beta Beta*Beta * Var (market) variance
Wheat 2.48 17485 8301
QOats 1.01 2914 1822
Barley 1.11 3508 1053
Triticale 1.61 7313 4198
Canola 1.89 10153 12560
Lupins 1.74 8565 6716
Wethers 0.00 0 64
Merino ewes 0.03 3 24
Second cross lambs 0.08 17 98
Yearling steers 0.05 6 255
Market 1.00 2836
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Appendix 2: Estimation of Beta Coefficients

Table A2.1: Case One Farm

Field First Yearling
Regression output: Wheat Qats Barley peas Wool Cross steers  steers
Constant -214.44 10099 15024 -226.31 5.09 938 175.05
Standard error of
estimate - 32.04 50.14 28.81 58.57 10.03 1145 4321
R Squared 0.86 0.00 0.02 0.55 0.19 0.23 0.11
Number of observations 9 9 9 9 9 9 9
Degrees of freedom 7 7 7 7 7 7 7
B coefficient 3.14 0.08 0.16 2.58 0.19 0.25 0.61
Standard error of
co-efficent 048 0.75 0.43 0.88 0.15 0.17 0.65
Table A2.2: Case Two Farm

Second
Merino cross  Yearling

Regression output: Wheat Oats Barley Triticale Canola Lupins Wethers ewes lambs steers
Constant -13.96 5.65 -78.15 36.04 49.01 -45.22 41.99 25.45 40.56 36.67
Standard error of
estimate 94.55 44.30 33.68 67.24 11630 85.04 8.28 5.04 10.26 16.57
R squared 0.68 0.62 0.77 0.64 0.45 0.56 5.00E-05 0.11 0.15 0.024
Number of
observations 15 15 15 15 15 15 15 15 15 15
Degrees of freedom 13 13 13 13 13 13 13 13 13 13
B co-efficient 248 1.01 1.11 1.61 1.89 1.74 -1.00E-3 0.03 0.08 0.05
Standard error of
co-efficent 0.47 0.22 0.17 0.34 0.58 0.43 0.04 0.03 0.05 0.08
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