

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

SUPPLY AND UTILIZATION OF TEXAS CITRUS 1960-61 TO 1974-75

Chan C. Connolly
Thomas L. Sporleder
John P. Nichols

Texas Agricultural Market Research and Development Center Texas A\&M University College Station, Texas

January, 1970

The purpose of the Center is to be of service to agricultural producers, groups and organizations; as well as processing and marketing firms in the solution of present and emerging market problems. Emphasis is given to research and educational activities designed to improve and expand the markets for Texas food and fiber products.

The Center operates as a combined education and research service of the

TEXAS AGRICULTURAL EXTENSION SERVICE
and

TEXAS AGRICULTURAL EXPERTMENT STATION

Members of the Texas Agricultural Market Research and Development Center

STAFF

Robert E. Branson, Ph.D. Coordinator
William E. Black, Ph.D. Associate Coordinator
Chan C. Connolly, Ph.D.
John P. Nichols, Ph.D.
Thomas L. Sporleder, Ph.D.
Randall Stelly, Ph.D.
H. R. Roberts

Research Assoclate

ASSOCIATE STAFF
Edward Uvacek, Ph.D.
Livestock
John Seibert
Grains
Johnny Feagan
Organization
Charles Baker
Cotton and Foreign Trade

TABLE OF CONTENTS

Page
I. Summary and Conclusions 1
U. S. Citrus Supply 1
Per Capita Production 1
Consumption 1
Utilization 2
Texas Citrus Processing Capacity and Future Requirements 3
II. Introduction. 4
III. Citrus Production--Texas and Other States 5
Estimated Texas Citrus Production, 1974-75. 6
Citrus Production in Other States 7
Historical Production by States 7
Estimated Production by States and Aggregate United States, 1974-75. 10
IV. National Citrus Consumption 13
Review of Orange Consumption 18
Review of Grapefruit Consumption. 21
Changing Characteristics of Per Capita Consumption of
Oranges and Grapefruit 21
V. Utilization of Texas Citrus 23
Current Capacity 25
Utilization of Texas Citrus, 1968-69 25
Estimated Utilization of Texas Citrus Supply, 1974-75. 27
Aggregate Texas Citrus Processing Capacity 32
VI. Processing Potential for Texas Citrus 32
Advantages 36
Disadvantages 38

CONTENTS (Continued)

Page
Appendix 40
Table I Forecasted Citrus Production - Rio Grande Valley, Texas, 1974-75 Crop Year 41
Table II Citrus Tree Census - October 1, 1967 44
Table III Texas Citrus Tree P1anting in the Lower Rio Grande Valley, 1952-68 45
Table IV Fresh Weight Equivalents of One Pound of Selected Citrus Juice Products 46
Table V Factors for Conversion From One Ton of Fresh Citrus to Cases of Selected Juice Products. 46
Table VI Net Weight of Oranges and Grapefruit Per Box 47
List of References 48
Page
TABLE 1. Estimated Grapefruit and Orange Production, Texas, 1969-70 to 1974-75, (In Tons, Boxes and Cartons) 8
TARLE 2. Total Production of Oranges by States, 1960-61 to 1968-69s in Boxes 11
TABLE 3. Total Production of Oranges by States, 1960-61 to 1968-69, in Tons 12
TABLE 4. Total Production of Grapefruit by States, 1960-61 to 1968-69, in Boxes 14
TABLE 5. Total Production of Grapefruit by States, 1960-61 to 1968-69, in Tons 15
TABLE 6. Estimated Total Production of Oranges by States for the 1974-75 Crop Year, with Estimated Range in Boxes 16
TABLE 7. Estimated Total Production of Oranges by States for the 1974-75 Crop Year, with Estimated Range in Tons 16
TABLE 8. Estimated Total Production of Grapefruit by States for the 1974-75 Crop Year, with Estimated Range in Boxes 17
TABLE 9. Estimated Total Production of Grapefruit by States for the 1974-75 Crop Year, with Estimated Range in Tons 17
TABLE 10. Per Capita Consumption of Fresh Oranges and Selected Orange Products, United States, 1961-68, Fresh Weight Basis 20
TABLE 11. Average Annual Change in Per Capita Consumption of Fresh Oranges and Selected Processed Orange Products, Fresh Weight Basis 22
TABLE 12. Per Capita Consumption of Fresh Grapefruit and Selected Grapefruit Products, United States, 1961-68, Fresh Weight Basis 24
TABLE 13. Utilization of Texas Citrus, 1960-61 to 1968-69, in Tons 26
TABLE 14. Capacity of Texas Citrus Processing Facilities, 1968-69 28
TABLE 15. Utilization of Texas Gxapefruit, Early Oranges and Late Oranges, 1968-69 29
TABLE 16. Utilization of All Texas Citrus Processed in Texas, Cases of 24/2 Product Equivalents, 1968-69. 30
TABLE 17. Forecasted Tons of Texas Grapefruit Utilized in Fresh and Processed Forms, 1974-75. 33
TABLE 18. Forecasted Tons of Texas Early Oranges Utilized in Fresh and Processed Forms, 1974-75 34
TABLE 19. Forecasted Tons of Texas Late Oranges Utilized in Fresh and Processed Forms, 1974-75 35
TABLE 20. Texas 1968-69 Citrus Processing Capacity and Capacity Required by 1974-75. 37

LIST OF FIGURES

Page

FIGURE 1. $\left.\quad \begin{array}{l}\text { Projected Aggregate Long Run Citrus Supply in } \\ \text { Tons, Rio Grande Valley, Texas, } 1969-70 \text { to } 1974-75 . \ldots \ldots . . .9\end{array}\right)$.

I. SUMMARY AND CONCLUSIONS

U. S. Citrus Supply

Oranges: The 1968-69 aggregate production level of all oranges in the United States was almost 7.9 million tons. By the $1974-75$ season production is expected to increase to a level of 10.8 million tons.

Florida's increased production will contribute almost 86 percent to the total absolute increase of 2.9 million tons followed by California, Arizona and Texas with an expected contribution of about 8 percent each.

The production of Texas early oranges is expected to increase slightly faster than late oranges. About 60 percent of Texas aggregate orange production will be early oranges and 40 percent late oranges.

Grapefruit: The 1968-69 aggregate U. S. production level of grapefruit is about 2.2 million tons. By the $1974-75$ season, production is expected to increase to a level of almost 2.9 million tons.

Texas increased production will contribute about 36 percent to the U. S. 0.7 million ton expected increase. Florida's increase will contribute 49 percent followed by California's and Arizona's increase of 14 percent.

Per Capita Production

Oranges: U. S. per capita orange production for the 6 -year period, 1969-70 to 1974-75, is estimated to increase from about 79 to 101 pounds representing a little more than a 28 percent increase.

Grapefruit: U. S. per capita grapefruit production for the 6 -year period, $1969-70$ to $1974-75$, is estimated to increase from 24 to aimost 27 pounds, representing a little more than a 10 percent increase.

Consumption

Total consumption of citrus in the United States, among other things,
depends upon the population level and supply available to be consumed. In general the entire production less economic abandonment will be consumed in some form in most years, except for changes in carry-over of processed stock and changes in the net export level.

Citrus is consumed either as fresh or as processed. The citrus consumption pattern has changed during the past quarter of a century with fresh per capita consumption declining and processed increasing.

Given a 15 -pound per capita fresh orange production level, a zero level of economic abandonment and the current (1969) export level, the residual production available for processing will increase from about 60 to 81 pounds for the 6 -year period, 1969-70 to 1974-75. Grapefruit consumption will follow the same trend, but the increase in per capita production will be of less magnitude. Given a nine pound per capita fresh grapefruit consumption level, a zero level of economic abandonment and the current net export level, the residual production available for processing will increase from 13 to 15 pounds during this same period.

Utilization

Oranges: With increasing U. S. per capita orange production and the shifts in consumption from the fresh to the processed form, the greatest potential in the utilization of the increased production for the next 6 -year period is in the processed form. With the ordinary appearance associated with Texas oranges, the shift toward increased consumption of oranges in the processed form is complementary with an increased utilization of Texas oranges in the processed form.

Texas utilization of the 1968-69 total production of early oranges
was 53 percent fresh and 47 percent processed. By the $1974-75$ season, it is expected that from $80-85$ percent of the total Texas production of early oranges and from $70-75$ percent of the late orange production will be utilizied as processed. This compares to Florida utilization which was about 93 percent processed for the 1968-69 season.

Grapefruit: The magnitude of the 1948-49 to 1974-75 (6-year) increase in U. S. per capita grapefruit production is less than that of oranges. In addition, the shift in consumption of grapefruit from the fresh to the processed form is more gradual.

Texas current (1968-69) utilization of grapefruit is 68 percent of the crop in the fresh form and 32 percent processed. By the $1974-75$ season from 45-50 percent of the Texas total grapefruit production is expected to be utilized in the fresh form and the residual utilized in the processed form. This is a very reasonable expectation for the utilization of Texas grapefruit as Florida's 1968-69 utilization was about 58 percent in the processed form.

Texas Citrus Processing Capacity and Future Requirements
Texas current 1968-69 maximum citrus processing capacity is about 10 million cases of $24 / 2$ equivalents annually, which will utilize about 293 thousand tons of citrus raw stock. At normal capacity, production is about 6 million cases of $24 / 2$ case equivalents annually, which will utilize a total of about 175 thousand tons.

The Texas citrus processing capacity requirement by the $1974-75$ season ranges between 650 and 700 thousand tons of citrus raw stock which ranges from 22.2 to $23.9,24 / 2$ case equivalents. To accomodate Texas's increased
supply of available raw stock for processing by the $1974-75$ season, processing capacity will need to increase within a range from 13.1 to 14.8 million case 24/2 equivalents. The capital requirement for this increase capacity ranges from 14.6 to 21.6 million (1969) dollars.

II. INTRODUCTION

The purpose of this study is to provide decision-makers within the Texas Citrus Industry with information and analysis which may be used as guidelines for future planning. Important environmental changes are occurring which must be examined carefully by the Texas Industry in order to meet the challenges and opportunities created thereby. Two of the more apparent environmental changes are shifts in consumer tastes and preferences (such as increasing consumer demand for more convenient forms of traditional products), and rapidly increasing citrus supplies. The implications of these environmental changes may necessitate future structural changes with the Industry, of which several alternative structural changes may be possible and/or necessary. This study is designed to provide a basic analysis on which future policy decisions may be based.

Historical production of oranges and grapefruit by states and estimates of aggregate production of oranges and grapefruit for the 1974-75 season are presented in this study. In addition, national consumption patterns for fresh and various processed forms of citrus products are examined. These production and consumption statistics are analyzed and implications drawn concerning the need for additional citrus processing facilities in Texas. However, note that additional processing facilities represent only one possible structural change that could occur in the future. It is beyond the
scope of this study to examine other possible alternative sturctural changes or to determine an optimum change for the Texas Citrus Industry based upon the analyses contained herein.

In this study, "citrus" refers to only oranges and grapefruit, excluding crops such as tangerines, tangelos, mandarins, lemons and limes. Also, production and supply are used synonymously; that is, economic abandonment is assumed to be zero.

Estimates of citrus supply by states are presented for the 1974-75 season. Texas citrus supply estimates are presented on an annual basis to the 1974-75 season. A period of this general duration is often chosen as the relevant planning horizon for analyzing industry alternatives.

The estimates of future supply were based upon two general considerations. First, the appropriate historical consumption and production data were reviewed for relevant trends. These trends in combination with subjective judgement provided a basis for the estimates developed.

An important assumption throughout this study is that there will be no major freeze damage in any production area during the period under analysis. While it is expected that inflation will continue, it is assumed that costs and prices will be affected equally, and therefore all costs and prices relevant to citrus production will remain the same in relation to each other during the period of analysis.

III. CITRUS PRODUCTION-TEXAS AND OTHER STATES

Estimates are presented in two major components. First, annual citrus production, or supply, to 1974-75 for Texas is given. Historical citrus production for the four major states and aggregate (United States)
production is noted in the second part. In addition, estimated 1974-75 production by all major U. S. supply states and for the U. S. aggregate is presented.

The historical period consists of the nine citrus marketing seasons from 1960-61 to 1968-69. All estimates of future production are to the 1974-75 season.

Estimated Texas Citrus Production, 1974-75
The basic assumption in estimating Texas citrus production for the 1974-75 season is that no major freeze damage will occur in Texas between the 1968-69 period and 1975. In addition, it is assumed the new citrus tree plantings (both oranges and grapefruit) will continue to $1974-75$ at the 1967 rate. The Texas Citrus Mutual citrus tree census as of October 1 , 1967 , was utilized as a basis for estimating the acreage now planted. Texas citrus tree plantings in the Rio Grande Valley, Texas for the 17 year period 1952-68 were utilized to estimate the $1968-69$ rate of plantings. Also, $1968-69 \mathrm{U} . \mathrm{S}$. Department of Agriculture production statistics were utilized as a base period. (See Appendix)

The estimated total production of grapefruit, early oranges and late oranges for Texas to the $1974-75$ season is presented in Table 1 . The key 1974-75 estimates and basis thereof are given in detail in Appendix I of this study. Estimates for each crop season between 1969-70 to 1973-74, Table 1, assume a linear increase between the 1968-69 level and the 1974-75 forecast ${ }^{1}$.

The estimated 1974-75 total Texas citrus production represents a 116

[^0]percent increase over the 1968-69 level. This is an absolute gain of 548,030 tons, Figure 1.

The estimated $1974-75$ Texas grapefruit production represents an increase of 89.1 percent, or 238,860 tons above the $1968-69$ level. However, the largest percentage increases are likely to occur for oranges. The 197475 estimate for Texas early oranges represents a gain of 153 percent, or 192,940 tons. Late Texas orange production is expected to be up by 152 percent, or 116,230 tons.

An interesting aspect of the $1974-75$ production estimate is the change in composition of total Texas citrus crop. In 1968-69 57 percent was grapefruit, 27 percent early oranges, and 16 percent late oranges. This compares to a 1974-75 estimated composition of 50 percent grapefruit, 31 percent early oranges, and 19 percent late oranges. Thus, there probably will be some shift from grapefruit toward orange production.

Citrus Production in Other States

Florida, California, and Arizona comprise the other major production areas for grapefruit and oranges. Historical production of all four states (Texas included) is presented along with estimated 1974-75 production for grapefruit and oranges in Table 2.

Eistorical Production by States

Oranges: Florida is the most important state for this fruit, Tables 2 and 3. Total United States production for the $1968-69$ crop year was 7.8 million tons, with Florida accounting for 74 percent. California had 21 percent of the total and Texas and Arizona between 2 and 3 percent each ${ }^{2}$. During the

[^1]TABLE 1. Estimated Grapefruit and Orange Production, Texas, 1969-70 to 1974-75

GRAPEFRUIT

SEASON	TONS	BOXES-80 1bs.	CARTONS 40 1bs.
$1968-69 *$	268,000	$6,700,000$	$13,400,000$
$1969-70$	307,000	$7,695,250$	$15,390,500$
$1970-71$	347,620	$8,690,500$	$17,381,000$
$1971-72$	387,430	$9,685,750$	$19,371,500$
$1972-73$	427,240	$10,681,000$	$21,362,000$
$1973-74$	467,050	$11,676,250$	$23,352,500$
$1974-75$	506,860	$12,671,500$	$25,343,000$

EARLY ORANGES

SEASON	TONS	BOXES-90 lbs.	CARTONS-45 lbs.
$1968-69 *$	126,000	$2,800,000$	$5,600,000$
$1969-70$	158,160	$3,514,666$	$7,029,332$
$1970-71$	190,310	$4,229,111$	$8,458,222$
$1971-72$	222,470	$4,943,777$	$9,887,554$
$1972-73$	254,630	$5,658,444$	$11,316,888$
$1973-74$	286,780	$6,372,888$	$12,745,776$
$1974-75$	320,160	$7,114,667$	$14,229,333$

Late oranges (Valencia)

SEASON	TONS	BOXES-90 1bs.	CARTONS-45 lbs.
$1968-69 *$	76,500	$1,700,000$	$3,400,000$
$1969-70$	95,870	$2,130,444$	$4,260,888$
$1970-71$	115,240	$2,560,889$	$5,121,777$
$1971-72$	134,610	$2,991,333$	$5,982,666$
$1972-73$	153,980	$3,421,777$	$6,843,555$
$1973-74$	174,360	$3,852,444$	$7,704,888$
$1974-75$	192,730	$4,282,888$	$8,565,777$

*Actual Production

$1_{\text {Based on }}$ current production and a detailed forecast for 1974-75 with an assumed linear increase between these years.

FIGURE 1. Projected Aggregate Long Run Citrus Supply, Rio Graníe Valley, Tezas 1969-70 to 1974-75.

Source: Table l. Actur production 1969-70 and a detailed estimate for 1974-75. Linear growth is assumed between these two seasons.

5-year period, 1964-65 to 1968-69, Florida reported an average of about 77 percent of the total U. S. production, followed by California with 20 percent, Arizona with 2 percent, and Texas with nearly 2 percent.

Grapefruit: Florida again is the largest production state, Tables 4 and 5. The $1968-69$ crop year was 2.2 million tons, with Florida producing nearly 77 percent of the total. Texas had 12 percent of the total, California 7 percent, and Arizona almost 4 percent ${ }^{3}$. During the 5 -year period, 1964-65 to $1968-69$ the pattern was substantially the same. Florida averaged 79 percent of the output, California and Texas about 8 percent each, while Arizona averaged around 5 percent of the total production.

Estimated Production by States and United States Total, 1974-75
Estimates of orange and grapefruit production for Florida, California, Arizona, and Texas for the $1974-75$ season are necessarily based upon somewhat imperfect knowledge, Considered judgement has been used in the forecast plus the assumption of no severe freeze in any producing state. All production estimates are presented in the context of a low to a high production range.

Oranges: Of the four major citrus producing states, Florida, of course, will remain the dominant production area. The range of total 1974-75 production for all four states is estimated to be from a low of 10.0 million to a high of 11.6 million tons, Tables 6 and 7. The midpoint, or average, is 10.8 million tons. Of the latter amount, it is estimated that Florida's share will be about 77 percent, California and Arizona combined about 18 percent and 5 percent ${ }^{4}$ for Texas. U. S. orange production is estimated to gain from 34 to 55 percent over the 1968 -69 level.

[^2]TABLE 2. Total Production of Oranges by States, 1960-61 to 1968-69, in Boxes

CROP YEAR	TOTAL PRODUCTION ${ }^{1}$			
	FLORIDA	TEXAS	CALIFORNIA	ARIZONA
1960-61	82,700	3,500	25,000	1,160
1961-62	108,800	2,300	20,500	1,440
1962-63	72,500	40	28,600	1,560
1963-64	54,900	240	31,700	2,200
1964-65	82,400	880	31,200	2,420
1965-66	95,900	1,300	36,500	2,420
1966-67	139,500	2,800	37,400	3,910
1967-68	100,500	1,800	19,600	3,120
1968-69	129,700	4,500	43,600	5,380

${ }^{1}$ Includes economic abandonment
${ }^{2}$ Due to the variation in the number of pounds per box among states, boxes are not additive (See Appendix Table VI).

Source: U. S. Department of Agriculture, Citrus Fruits By States 1909 to 1969 , Crop Reporting Board, Statistical Reporting Service, Washington, D.C.

TABLE 3. Total Production of Oranges by States, 1960-61 to 1968-69, In Tons

CROP YEAR	TOTAL PRODUCTION ${ }^{1}$				UNITED STATES(FLORIDA, TEXAS,CALIFORNIA, ANDARIZONA)
	FLORIDA	TEXAS	CALIFORNIA	ARIZONA	
	---	---1	ons--------	------	-1,000 Tons---
1960-61	3,721.5	157.5	937.5	43.5	4,860.0
1961-62	4,896.0	103.5	768.8	54.0	5,822.3
1962-63	3,262.5	1.8	1,072.5	58.5	4,395.3
1963-64	2,470.5	10.8	1,188.8	82.5	3,752.6
1964-65	3,708.0	39.6	1,170.0	90.8	5,008.4
1965-66	4,315.5	58.5	1,368.8	90.8	5,833.6
1966-67	6,277.5	126.0	1,402.5	146.6	7,952.6
1967-68	4,522.5	81.0	735.0	117.0	5,455.5
1968-69	5,836.5	202.5	1,635.0	201.8	7,875.8

${ }^{1}$ Includes economic abandonment
Source: Table 2

Grapefruit: The range of production by states and the total for the 1974-75 season is presented in Tables 8 and 9 . It is estimated that the 1974-75 grapefruit crop will reach a level within the range from a low of 2.6 million to a high of 3.0 million tons, with a midpoint average of 2.8 million tons. Florida's share will be about 70 percent of the total grapefruit production, California and Arizona combined about 12 percent, and Texas about 18 percent ${ }^{5}$. Total grapefruit production is anticipated to increase within a range of 13 to 27 percent above the 1968-69 season level.

IV. NATIONAL CITRUS CONSUMPTION

Analysis of consumption trends and patterns is an important step in defining marketing opportunities available to an industry. This section reviews the historical changes in citrus product consumption. It considers the factors affecting per capita usage and examines the changing relationship among the various product forms consumed.

The market available to the Texas Citrus Industry goes beyond local or regional boundaries. The appropriate market to consider is the total United States ${ }^{6}$, whereas the production data examined in the preceding section was both by states and a national basis, consumption data is presented only on a national level.

Evaluation of per capita consumption data is useful. However, it may be misleading if its limitations are not recognized ${ }^{7}$. Total per capita consumption depends directly on population and very closely on the available

5
A11 percentages computed from Table 9
${ }^{6}$ It may even be argued that the relevant market should be extended to include other countries. It is, however, beyond the scope of this study to examine markets outside the U.S. In addition, Texas is currently a minor exporter of citrus.

TNichols, J. P. and Sporleder, T. L. "Recent Changes in Characteristics of Orange Consumption ${ }^{3}$, Journal of Lower Rio Grande Horticultural Society. Vol. 23. 1969. pp. 24-28.

TABLE 4. Total Production of Grapefruit by States 1960-61 to 1968-69, in Boxes

CROP YEAR	TOTAL PRODUCTION ${ }^{1}$			
	FLORIDA	TEXAS	CALIFORNIA	ARIZONA
	-	---	e^{2}	
1960-61	31,600	6,800	2,640	2,260
1961-62	35,000	2,700	2,940	2,270
1962-63	30,000	70	2,500	2,170
1963-64	26,300	500	4,200	3,210
1964-65	31,900	2,000	4,230	2,900
1965-66	34,900	3,800	4,950	3,050
1966-67	43,600	5,600	5,000	1,680
1967-68	32,900	2,800	4,618	3,740
1968-69	39,900	6,700	4,960	2,510

${ }^{1}$ Includes economic abandonment
${ }^{2}$ Due to the variation in the number of pounds per box among states, boxes are not additive (See Appendix Table VI).

Source: Same as Table 2.

TABLE 5. Total Production of Grapefruit by States 1960-61 to 1968-69, in Tons

CROP YEAR	TOTAL PRODUCTION ${ }^{1}$				UNITED STATES (FLORIDA, TEXAS. CALIFORNIA, AND ARIZONA)
	FLORIDA	TEXAS	CALIFORNIA	ARIZONA	
	------	---	Tons-	--	---1,000 Tons---
1960-61	1,343.0	272.0	86.6	72.3	1,773.9
1961-62	1,487.5	108.0	96.2	72.6	1,764.3
1962-63	1,275.0	2.8	82.0	69.4	1,429.2
1963-64	1,117.8	20.0	137.7	102.7	1,380.2
1964-65	1,355.8	80.0	138.7	92.8	1,667.3
1965-66	1,483.3	152.0	162.3	97.6	1,895.2
1966-67	1,853.0	224.0	163.9	53.8	2,294.7
1967-68	$1,398.3$	112.0	151.4	119.7	1,781.4
1968-69	1,695.8	268.0	162.6	80.3	2,206.7

${ }^{1}$ Includes economic abandonment
Source: Table 4

TABLE 6. Estimated Total Production of Oranges by States for the 1974-75 Crop Year, With Estimated Range in Boxes

STATE	LOW	TOTAL PRODUCTION	HIGH
		200,000	185,000
Florida	170,000	12,030	11,370
Texas 1	10,760	55,000	52,500
California and Arizona	50,000		

$1_{\text {From Appendix }}$
Source: Estimated

TABLE 7. Estimated Total Production of Oranges by States for the $1974-75$ Crop Year, with Estimated Range in Tons

STATE	TOTAL PRODUCTION		
	LOW	HIGH	MTDPOINT
Florida	7,650	9,000	8,325
Texas	484	541	512
California and Arizona	1.875	2,063	1,969
TOTAL	10,009	11,604	10,806

Source: Table 6

TABLE 8. Estimated Total Production of Grapefruit by States for the 1974-75 Crop Year, with Estimated Range in Boxes

STATE	TOTAL PRODUCTION		
	LOW	HIGH	MIDPOINT
	------	-1,000 B	----------
Florida	45,000	50,000	47,500
Texas ${ }^{1}$	11,570	13,773	12,671
California	5,500	6,000	5,750
Arizona	3,500	4,000	3,750

$I_{\text {From Appendix }}$
Source: Estimated

TABLE 9. Estimated Total Production of Grapefruit by States for the 1974-75 Crop Year, with Estimated Range in Tons

STATE	TOTAL PRODUCTION		
	LOW	HIGH	MIDPOINT
	-	,000 T	-
Florida	1,913	2,125	2,019
Texas	463	551	507
California	180	197	189
Arizona	112	128	120
TOTAL	2,694	3,029	2,862

Source: Table 8
supply of the product. In most years the entire production will be consumed in some form except for changes in processed product stocks which may not be consumed because of storage. When per capita consumption falls because of changes in supply, such as when freezes occur, the lower per capita consumption figures do not usually reflect any basic change in consumer preferences.

Likewise, total per capita consumption data may mask shifts among the several forms in which a product is consumed. Examination on a product-by-product basis can reveal the presence of such shifts.

Review of Orange Consumption

Per capita consumption of fresh oranges has followed a pattern similar to most other fresh fruits since the World War II period, generally declining since that time. The long decline hit its low point in 1963 (mainly as a result of the freeze in January 1962, which affected a large part of the U. S. citrus industry). Since 1962, per capita consurption has recovered the amount lost as a result of the freeze and has indicated a possible slow down in the rate of decline.

While fresh consumption was involved in a long decline (post World War II) utilization of oranges in the frozen concentrate form (FCOJ) increased significantly, As indicated in Table 10 per capita consumption of FCOJ had by 1967 recovered the amount lost due to the 1962 freeze.

Chilled orange juice represents the latest important marketing opportunity for oranges. After it was introduced, per capita consumption increased at a moderate rate. Since recovery from the freeze in January 1962 and introduction of new technology, the rate of increase has been dramatic. In 1967 per capita consumption was double that of 1965 for chilled orange
juice. This is a highly convenient item which has attracted the consumer's interest. Examination of the market share percentages reveals that the decline for fresh oranges was replaced by FCOJ and chilled orange juice which about equally divided the difference.

Canned single strength orange juice exhibited a downward trend similar to that for fresh oranges since the $1940^{\circ} \mathrm{s}$. The decline in per capita consumption of this product was closely associated with the concurrent increase in per capita consumption of FCOJ and chilled orange juice noted above. Canned single strength juice consumption was also depressed by the 1962 freeze. Increase has occurred since that time, but unlike fresh oranges, the pre-freeze level of per capita consumption has not been regained.

It is helpful to look at the long time trend of product consumption as indicated in Table 11. Over the 17-year period 1951-67, fresh oranges per capita consumption declined by an average of 0.9 pounds and canned single strength juice by about 0.3 pounds per year. FCOJ and chilled orange juice increased by 0.6 and 0.3 pounds respectively. These estimates are based on linear trend lines and are limited by the usual assumptions of regression analysis. They provide, however, a measure of the general shift away from fresh oranges toward FCOJ and chilled orange juice.

An additional product form for oranges is citrus fruit drinks. Orange juice is part of the composition of such a product. The proportion which is actual orange juice may vary depending on price and availability. It is important to recognize, however, that a given amount of oranges makes a much greater volume of orange drink than of singie strength orange juice.

The fruit drink segment of the fruit beverage market has shown an increase since the mid-1950's. In the 1956 marketing season fruft drinks

TABLE 10. Per Capita Consumption of Fresh Oranges and Selected Orange Products, United States, 1961-68, Fresh Weight Basis

YEAR	PRODUCT FORM									
	FRESH ORANGES		FROZEN CONCENTRATED ORANGE JUICE ${ }^{1}$		$\begin{aligned} & \text { CHILLED } \\ & \text { JUICE } \end{aligned}$		$\begin{aligned} & \hline \text { CANNED } \\ & \text { SINGLE } \\ & \text { STRENGTH }{ }^{2} \end{aligned}$		TOTAL	
	Lbs	\%	Lbs	\%	Lbs	\%	Lbs	\%	Lbs	$\%$
1961	16.1	31	29.1	57	3.0	6	3.1	6	51.3	100
1962	15.6	27	34.2	60	4.0	7	3.5	6	57.3	100
1963	11.9	30	22.5	57	2.1	5	3.1	8	39.6	100
1964	14,3	37	20.1	52	2.3	6	2.1	5	38.8	100
1965	16.4	34	26.8	55	3.4	7	2.2	4	48.8	100
1966	16.4	33	25.6	51	5.5	11	2.8	5	50.3	100
1967	18.0	28	37.0	57	7.5	11	2.8	4	65.3	100
1968	14.1	25	32.4	58	7.2	13	2.2	4	55.9	100

${ }^{1}$ Conversion factor: 6.7 1bs fresh oranges $=11 \mathrm{bFCOJ}$ at 45° brix
${ }^{2}$ Conversion factor: 1.81 lbs fresh oranges $=1 \mathrm{lb}$ single strength orange juice
Source: U.S.D.A., Fruit Situation, Economic Research Service, Washington, D. C., August 1969, pp. 14-20.
were 6.3 percent of the market ${ }^{8}$. In ten years, or by 1964 , this drink segment grew to 38 percent of the total fruit beverages market and has remained at about the same level ${ }^{9}$.

Review of Grapefruit Consumption

Fresh grapefruit consumption per capita has also declined since the 1940° s but more gradually both in absolute and percentage terms, than that of fresh oranges, Table 12. Grapefruit supply was affected in the same manner as oranges by the January 1962 freeze. Fresh grapefruit consumption approached the pre 1962 level by 1965.

Frozen concentrated grapefruit juice never developed the same consumer acceptance as FCOJ. As a result, this product represents less than 10 percent of the total grapefruit market. Chilled grapefruit juice has less than 1 percent of market share of total grapefruit usage. However, in 1969 it began to show an upward trend and may become more important in the future. Canned single strength juice is the most important form of grapefruit juice consumption. Affected to a degree by the 1962 freeze, its per capita consumption rate recovered quickly and has generally increased since then.

Changing Characteristics of Per Capita Consumption of Oranges and Grapefruit

Evaluation of the per capita citrus consumption data reviewed above

[^3]TABLE 11. Average Annual Change in Per Capita Consumption of
Fresh Oranges and Selected Processed Orange Products,
Fresh Weight Basis

PRODUCT
AVERAGE ANNUAL CEANGE

(pounds)
Fresh Oranges $\quad-0.90$
Canned Single Strength Orange Juice -0.27
Frozen Concentrated Orange Juice 0.58
Chilled Orange Juice 0.27
$1_{\text {Fresh }}$ weight basis derived from product weight basis using the following conversion: 1 lb . single strength orange juice $=1.81 \mathrm{lbs}$ fresh fruit.
2^{2} Based on data from 1951 through 1967.
Source: Nichols, J. P. and T. L. Sporleder, "Recent Changes in Characteristics of Orange Consumption", Journal of Lower Rio Grande Valley Horticultural Society. Vol. 23, 1969, pp. 24-28.

indicates several shifts. Most important among these is the move toward increased consumption of processed products at the expense of the fresh form. This, of course, is not unique to citrus. It has been occurring, post 1940, to most agricultural products. While this move $1 s$ more apparent for oranges, it is of some significance for grapefruit.

New significant changes are in the offing. Currently, a shift tom ward synthetic products is occurring. Another recent change is the introduction of FCOJ in high density form. This new high density brix concentrate will alter the amount of juice the consumer will be able to make from anit of concentrate, thereby allowing for price adjustments to some degree in the retail market. Thus, the industry may not be tied as closely to the historical price of the six-ounce can of FCOJ.

The future for synthetics appears to be optimistic, although their market share will be closely associated with the price levels for natural citrus products. If citrus production expands rapidly prices will decline and there may be less inducement for expansion of the synthetics into the market. If, on the other hand, a freeze should occur and prices for natural juices increase significantly, synthetic products may appreciably increase their share of the market.

The citrus drink market as a whole may offer some expansion possibilities for citrus utilization. In periods of heavy supplies with declining juice prices, the proportion of actual juice in the drink may be increased, thus providing an additional outlet for citrus juice.

V. UTILIZATION OE TEXAS CITRUS

Although Texas citrus is marketed in both fresh and processed form,

TABLE 12. Per Capita Consumption of Fresh Grapefrult and Selected Grapefruit Products, United States, 1961-68, Fresh Weight Basis

YEAR	PRODUCT FORM			
	FRESH GRAPEFRUIT	FROZEN CONCENTRATED GRAPEFRUIT JUICE	$\begin{aligned} & \text { CHILLED } \\ & \text { JUICE } \end{aligned}$	CANNED SINGLE Strength ${ }^{2}$
1961	9.8	1.2	0.1	3.0
1962	9.0	1.4	0.2	3.2
1963	6.4	1.0	0.1	2.8
1964	7.5	1.1	0.2	2.4
1965	8.2	1.3	0.1	3.0
1966	8.4	1.4	0.3	3.8
1967	9.0	1.9	0.5	5.1
1968	8.0	1.3	0.5	4.8

${ }^{1}$ Conversion factor: 8.67 lbs fresh grapefruit $=1 \mathrm{lb}$ frozen concentrated grapefruit juice at 40° brix.
${ }^{2}$ Conversion factor: 2.18 lbs fresh grapefruit $=1 \mathrm{lb}$ single strength grapefruit juice.

Source: U. S. Department of Agriculture., Fruit Situation, Economic Research Service, Washington, D. C., August 1969, pp. 14-20.
historically the Texas Citrus Industry has been primarily fresh market oriented (Table 13). The 1964 to 1968 seasons average was 23.8 percent of the total grapefruit supply and 34.1 percent of the total orange supply entering processing plants. During the 1968 season for the first time, more than half of the total Texas orange supply was utilized in the processed form.

The historical emphasis on marketing Texas citrus as fresh fruit partly reflected a limited local citrus processing capacity. After the 1951 and 1962 Texas freezes, a portion of the capacity was moved to Florida. Some of the other local facilities meanwhile became obsolete. Consequently it is now uneconomic to operate some of the present capacity.

Current Capacity

Early in 1969, Texas Citrus Mutual (TCM) conducted a survey in the Rio Grande Valley, Texas for the purpose of estimating the current citrus processing capacity, Table 14. The one facility not in operation was in dis-repair. Based on a 24 -hour a day operation, a six-day week and a 120day season, the combined total maximum citrus processing capacity in Texas was estimated at 293,000 tons per season, Table 14 . Measured in $24 / 2$ case equivalents, this is almost 10 million cases per year. At 65 percent of maximum capacity, which is considered a normal performance level, the processing capacity is about 175,000 tons of citrus raw stock or about 6 million $24 / 2$ case equivalents.

Utilization of Texas Citrus, 1968-69
About one-third of the commercial supply of Texas grapefruit, about one-half of the early oranges and nearly two-thirds of late oranges were

TABLE 13. Utilization of Texas Citrus, 1960-61 to 1968-69, in Tons

$\begin{gathered} \text { CROP } \\ \text { SEASON } \\ \hline \end{gathered}$	GRAPEFRUIT		ORANGES	
	FRESH	PROCESSED	FRESH	PROCESSED
1960-61	217,760	51,240	114,750	39,600
1961-62	91,760	14,240	55,485	46,440
1962-63	1,800	0	1,125	0
1963-64	17,200	1,000	9,000	1,260
1964-65	72,640	5,560	35,685	3,375
1965-66	120,400	28,800	50,085	6,840
1966-67	158,400	54,400	80,550	39,150
1967-68	88,200	20,600	64,800	14,400
1968-69	180,400	84,400	95,400	104,850

Source: U. S. Department of Agriculture, Citrus Fruits, By States 1909 to 1969. Crop Reporting Board, Statistical Reporting Service, Washington, D. C.
processed during the $1968-59$ season, Table 15. In total, almost $190 ; 900$ tons of citrus raw stock was processed with an output of about 6.3 million $24 / 2$ case equivalents, Table 16 . Slightly more than 0.15 million $24 / 2$ case equivalents of Texas oranges were processed in Florida and about 6.15 million 24/2 case equivalents were processed in Texas, Table 16. Consequently, the 1968-69 processed volume was in excess of the normal performance level of about 6.0 million $24 / 2$ case equivalents.

The entire existing citrus processing capacity in Texas is currently
(1969) privately owned. Management is natuarally interested in maximizing profits for the stockholders. The quantity of the Texas citrus crop processed is normally determined by the firm's projected sajes potential. When a quantive equal to projected sales is processed, the management ceases plant operatione for the season regardless of the additional fruit supply that could be processed. The balance of the fruit of processing quality is either placed on the fresh market as U. S. No. $2^{\text { }} \mathrm{s}$ or is not harvested and is classified as economic abandonment.

Estimated Ueilization of Texas Citrus Supply, 1974-75
The projected supply of Texas citrus for the $1974-75$ marketing sea. son is cited in Table 1. The required citrus processing capacity for the 1974-75 season at a zero level of economic abandonment requires estimate of the proportion of the supply to be utilized as fresh and as processed. The derivation of these estimates for grapefruit, early oranges, and late oranges is considered below.

Grapefruit: The most recent Texas experience (1968-69) reveals

TABLE 14. Capacity of Texas Citrus Processing Facilities, 1968-69

PERFORMANCE LEVEL ${ }^{1}$	INPUT		$\frac{\text { OUTPUT }}{\text { VOLIME } / \text { SEASON }}{ }^{2}$
	VOLUME/DAY	VOLUME/SEASON	
	--------	---------------	24/2 Equivalents
Maximum	2,440	293,000	9,950,280
Normal	1,453 ${ }^{3}$	174,600 ${ }^{3}$	5,929,416 ${ }^{3}$

${ }^{1}$ Maximum performance level is based on a 24 -hour day, season of 120 days (20 weeks, 6 days/week).
Normal performance level is defined as approximately 65 percent of maximum capacity of those facilities operating during the $1968-69$ season. (Two 8-. hour shifts per day, season of 120 days).
${ }^{2}$ Based on supply composition of 50 percent oranges and 50 percent grapefruit. Given this assumption, 1 ton of raw stock equals 33.96 cases of $24 / 2$ equivalents.
${ }^{3}$ This is not 65 percent of the maximum volume per season because one facillty did not operate during the 1968-69 season.

Source: Texas Citrus Mutual 1969 Survey of the Current Six Citrus Processing
Facilities in the Rio Grande Valley, Texas.

TABLE 15. Utilization of Texas Grapefruit, Early Oranges, and Late Oranges, 1968-69

Form	GRaperruit		EARLY ORANGES		Late oranges	
	TONS	percent	TONS	PERCENT	Tons	PERCENT
Eresh	180,400	68.1	67,395	53.1	28,005	38.1
Processed ${ }^{1}$	84,400	31.9	59,430	46.9	45,420	61.9
TOTAL	264,800	100.00	126,825	100.00	73,425	100.00

${ }^{1} 4,126$ tons of Texas oranges processed in Florida during the $1968-69$ season.
Source: Adjusted estimates from Texas Valley Citrus Comittee, Enal Texas Citrus Revi.ew. Pharr, Texas. June 19, 1969.

TABLE 16. Utilization of A1I Texas Citrus Processed in Texas, Cases of 24/2 Product Equivalents, 1968-69.

TYPE OF CITRUS	TONS PROCESSED	$24 / 2$ CASE EQUIVALENTS
		84,400
Grapefruit	$100,724^{2}$	$2,637,500$
Oranges	189,250	$3,693,549$
All Citrus		$6,331,049$

[^4]Source: Table 15.
that about 59 percent of the supply was utilized in the fresh form and 41 percent was processed. Long-run grapefruit consumption trends indicate that U. S. per capita consumption of the fresh fruit is declining while per capita consumption of the processed form is increasing slightly. Since there is no emerging reason for this consumption trend to change within the next six years, it is estimated that from 45 to 50 percent of the 1974-75 season Texas grapefruit supply will be utilized as fresh fruit and the residual of 50 to 55 percent as processed. Florida processed 58 percent of its total grapefruit production during the $1963-69$ season, therefore, the Texas forecast is a reasonable expectation. On this basis the estimated 1974-75 processing supply of grapefruit for Texas ranges from 253 to 278 thousand tons, Table 17.

Early Oranges: During the $1968-69$ season, slightly more than 53 percent of the Texas supply of early oranges was utilized in the fresh form and almost 47 percent was processed. Due to the lack of good external appearance of many Texas oranges plus the long-run trend of increasing per capita orange consumption in processed form, it is estimated that only about 15 to 20 percent of the $1974-75$ supply will be utilized as fresh. The residual 80 to 85 percent of the total early orange supply will be available for processing. This is equivalent to a range of 255 to 271 thousand tons of carly oranges, Table 10.

Late Oranges: About 38 percent of the Texas late orange supply was utilized as fresh end 62 percent processed during the $1968-69$ season. The January, 1969 light freeze in Florida resulted in an increased demend by Florida for Texas FCOJ to blend with Florida's FCOJ. Consequently, the percentage of the $1968-69$ Toxas supply utilized for processing was not
typical of previous years. Considering the external appearance problem of many Texas late oranges and the long-run trend toward increased per capita consumption of processed orange products, it appears logical to expect that no more than 25 to 30 percent of the $1974-75$ supply will be utilized as fresh, with the residual 70 to 75 percent available for processing. By comparison, during the $1968-69$ season, Florida processed almost 93 percent of its total orange production. The probability, therefore, is that 134,000 to 144,000 tons of late oranges will be available for processing during the $1974-75$ marketing season, Table 19.

Aggregate Texas Citrus Processing Capacity

A comparison of 1968-69 and 1974-75 citrus processing capacity needs for Texas is provided in Table 20. Using the normal operating capacity as a base, an additional 16.3 to 18.0 million cases of $24 / 2$ equivalents capacity will be needed over and above that of 1968-69. Using the maximum capacity as a base, from 13.1 to 14.8 million case $24 / 2$ equivalent capacity will need to be added. This increase in processing capacity may be converted into capital investment costs by applying a factor of $\$ 1.20$ per 24/2 case equivalent of processing capacity (1969 dollars) ${ }^{10}$. For example, an increase in processing capacity of 13.1 million cases ($24 / 2$ case equivalent) would require an investment of about 15.7 million dollars, while an increase of 18 million cases would require approximately 21.6 million dollars in invest-ment.

VI. PROCESSING POTENTIAL FOR TEXAS CITRUS

As stated previously the $1968-69$ citrus processing capacity in Texas

[^5]TABLE 17. Forecasted Tons of Texas Grapefruit Utilized
in Fresh and Processed Forms, $1974-75$
PRODUCT FORM
Fresh
Processed
ToTAL 3

TABLE 18. Forecasted Tons of Texas Early Oranges Utilized in Fresh and Processed Forms, 1974-75.

PRODUCT FORM	15% FRESH 1	20% FRESH 2
Fresh	48	64
Processed	271	255
TOTAL 3	319	319

${ }^{1}$ Assuming 15 percent of the $1974-75$ total estimated production of Texas Early Oranges will be utilized in the fresh form.

2
${ }^{2}$ Assuming 20 percent of the $1974-75$ total estimated production of Texas Early Oranges will be utilized in the fresh form.
${ }^{3}$ Table 1.

Table 19. Forecasted Tons of Texas Late Oranges Uti-
Iized in Fresh and Processed Forms, 1974-
75

PRODUCT FORM	$25 \% \mathrm{FRESH}^{1}$	30% ERESH 2
	Fresh	
Processed	48	58
TOTAL 3	144	134

1
Assuming 25 percent of the 1974-75 total estimated production of Texas Late Oranges will be utilized in the fresh form.
${ }^{2}$ Assuming 30 percent of the $1974-75$ total estimated prom duction of Texas Late Oranges will be utilized in the fresh form.
$3_{\text {Table }} 1$.
can be measured by two criteria. One is based upon maximum capacity and the other on normal, or 65 percent capacity. In terms of $24 / 2$ case equivalents, maximum capacity was estimated at 10 million cases, or approximately 293,000 tons of citrus fruit. Normal capacity was about 6 million cases, or 175,000 tons of citrus.

The forecast supply of Texas citrus available for processing in the 1974-75 season ranges from about 650,000 to 700,000 tons. In order to accomodate this increased supply processing capacity would need to be increased from $21 / 4$ to 4 times that of 1968-69,

The expected increase in processing utilization of Texas citrus fortunately coincides with anticipated further increases in consumer preferences for processed citrus. This trend appears strong enough to continue during the planning horizon of this study due to the factors noted in Section VI.

Although additional Texas citrus processing capacity would be required to utilize forecast increases in the fruit supply, both marketing advantages and disadvantages can accrue from the larger capacity. These are now considered.

Advantages

Advantages can accrue from both the fresh and processed fruit market by having the increased marketing flexibility added processing capacity affores in marketing. Two basic changes could occur. One may be termed a "direct" flexibility, resulting from the year around market for processed products as opposed to a seasonal market for fresh fruit. The other is a more "indirect" flexibility provided by the capability of allocating citrus fruit to either

TABLE 20. Texas 1968-69 Citrus Processing Capacity and Capacity Required by 1974-75

| PROCESSING |
| :--- | :--- | :--- |
| CAPACITY |\quad| AVERACE |
| :---: |

the Fresh or processed market to achieve the greatest profit combination aval able.

Processing of citrus also permits other advantages. Among these are increased product uniformity (quality control), use of storage, and product differentiation by type of brand name. The quality of a processed product can be more closely monitored than fresh fruit. Blending of FCOJ is widely practiced for this reason. Storage capabilities of processed fruit permit lengthening of the marketing period fron about 8 months (for fresh) to from 12 to 24 months. This enhances supply control capabilities. Establishment of consumer brands and consequent brand promotion is more easily attained for processed foods. Citrus is no exception.

Increasing the proportion of total citrus that is processed also indirectly affects the fresh market. Lover grade citrus removed from the fresh pack and processed will strengthen fresh fruit prices. This results from a higher grade fresh pack and a smaller quantity marketed in fresh form. Thus, additional processing capacity can provide the industry with increased marketing flexibility over quality and quantity in the fresh and processed sector with the goal of increasing total crop profits.

Disadvantages

There is risk and uncertainty associated with added capital investment in Texas citrus processing capacity. The extra expense of excess processing capacity for any one year is always a possibility. A short supply of frutt could be caused by several factors such as freeze, hurricanes, or insects. However, this risk is not new, nor is it unique to citrus. Some risk avoldance could be introduced by integrating new citrus
processing facilities with vegetable processing capabilities. For example, a processing facility in Texas may be designed to process boch citrus and tomatoes. Further processing of other products could also utilize "offseason" time. A diversified processing facility has the advantage of keeping key resources, especially top and middle managenent as well as labor, more fully employed throughout the year.

In order to promote and expand the market for Texas processed citrus products, aggressive capable management, and highly motivated sales personnel must be further expanded. Also, skilled food technologists are needed to work closely with management on product improvement and new product development. Sufficient capital must be available for market development activities. These are some of the challenges and opportunities that would be created by added citrus processing capacity in Texas.

APPENDIX

TABLE I. Forecasted Citrus Production - Rio Grande Valkey,
Texas, $1974-75$ Crop Year

COMMODITY	RANGE	AVERAGE
Grapefruit	462,808 to 550,913	506,859
Early Oranges	295,722 to 344,602	320,162
Late Oranges	188,634 to 196,827	192,730

Assumptions

The basic assumption in making the forecasts for 1974-75 citrus production is that no major freeze damage will occur between the period 1968-69 and 1974-75, and that new plantings will continue at the 1967 rate.

Methodology Used in Deriving Forecasted Estimates

The citrus tree census as of October 1, 1967, was used as a basis for estimating the acreage now planted. Texas citrus tree plantings in the Rio Grande Valley were used to estimate the current rate of plantings. The 1968-69 U.S.D.A. production estimates were used to determine present production levels. Early orange and late orange production levels are estimated by upward adjustment from the base level. No adjustment was made for grapefruit. These forecasts were developed with the assistance of Dr. Richard Hensz, Texas A\&I Citrus Center; Dr. Calvin Lyons, Texas A\&M Extension Horticulturtst: and Mr. Numan Maxwel1, Texas A\&M Research Horticulturist.

Grapefruit:
$35,241=$ acres now planted
$9.5=$ yield in tons per acre for bearing acreage for the 1968-69 season
$3,430=$ acres to be planted during the $1969-71$ period
$12.5-15.0=1975$ expected average yield in tons per acre for acreage now planted
$6.5=1975$ expected average yield in tons per acre for acreage to be planted during the 1969-71 period
$35,241 \times 12.5=440,513$ tons
$35,241 \times 15.0=528,615$ tons
$3,430 \times 6.5=22,295$ tons
Range of forecast in tons: 462,808 to 550,910
Average: 506,859 tons

Early Oranges:

$24,440=$ total acres now planted
$10.0=$ average yield in tons per acre for the $1068-69$ season
$814=$ estimated acreage to be planted during the $1969-71$ period that will be bearing in 1975
$12.0-14.0=1975$ average expected yield per acre for acreage now planted
$3.0=1975$ average expected yield per acre for acreage to be planted during the 1969-71 period
$24,440 \times 12.0=293,280$ tons
$24,440 \times 14.0=342,160$ tons
$314 \times 3.0=2,442$ tons
Range of forecasts in tons: 295,722 to 344,602
Average: 320,162

Late Oranges:

$16,386=$ acres now planted
$8.8=$ average expected yield in tons per acre for the 1968-69 crop
$150=$ expected acreage to be planted during the $1969-71$ period
11. $5-12.0=$ average expected yield in tons in 1975 for acreage now planted
1.3 = average expected yield in tons in 1975 for acreage to be planted during the 1969-71 period
$16,386 \times 11.5=188,439$ tons
$16,386 \times 12.0=196,632$ tons
$150 \times 1.3=195$ tons
Range of forecasts in tons: 188,634 to 196,827
Average: 192,730

Tasce If. Ctrrus Tree Census - October 1, 1967

hiddalgo County	NON-	EARING	BEARING		TOTAL	
VARIETY	Acres	Trees	Acres	Trees	Acres	Trees
Early Oranges	9,308	916,012	11.732	962,179	21,040	1,878,191
Valencias	3,080	330, 324	11,585	877,196	14,665	1,208,020
Total Oranges	12,388	1,246,836	23,317	1,839,375	35,705	3,086,211
Mandarins	255	22,695	220	20,539	445	43,234
Grapefruit	6,045	702,401	22,088	1,706,853	28,133	2,409,254
A11 Citrus	18,658	1,971,932	45,625	3,566,767	64,283	5,538,690
CAMERON COUNTY						
Early Oranges	513	58,576	1,200	110,947	1,713	169,523
Valencias	290	32,565	645	59,483	935	92.048
Total Oranges	803	91,141	1,845	170,430	2,648	261,571
Mandarins	40	5,122	40	3,662	20	8,784
Grapefruit	1,438	166,613	4.880	442,621	6,318	609.234
A11 Citrus	2,231	262,876	6,765	616,713	9,046	879,589
TILLACY COUNTY						
Tarly Oranges	378	36,768	589	42,627	967	79,395
Valencias	218	22,313	568	40,428	786	62.741
Total Oranges	596	59,081	1,157	83,055	1,753	142,136
Mandarins	31	4,036	60	4,036	91	8,072
Grapefruit	240	20,256	550	41,691	790	61.94%
A11. Citrus	867	83,373	1.767	128,782	2,634	212,155
total valiey						
Tarly Oranges	10,199	952,780	13.521	1,115,753	23,720	2,127,103
Valencias	3,588	385,702	12.798	-977.107	16.386	1,352, 6 ,
Total Oranges	13,787	1,397,058	26,319	2,092,860	40,106	3,489,9,
Mandarins	295	31,853	320	28,237	616	60,000
craperruit	7,723	889.270	27,518	2,191,165	35,241	2,080,436
Total Citrus	21,806	2,318,181	54, 157	4,312,262	75,263	6,620,443

Source: Thas Citrus Potual (Won) Fdinhog, Tems.

TABLE III. Texas Citrus Tree Planting in the Lower RLo Grande Valley. 1952069

Year beginning July 1	GRAPEFRUIT			ORANGES			Other Citrus	A11 Citrus
	White Flesh	Pink and Red Fles	Tocal	Early and Valen Mid-season cia		Total		
	--Thousand trees--							
1952	2	298	300	40	52	92	23	415
1953	8	509	517	74	88	162	10	689
1954	3	239	242	63	38	101	11	354
1955	5	237	242	53	42	95	17	354
1956	26	185	211	72	46	118	24	353
1957	28	209	237	92	83	175	11	423
1958	8	160	168	87	59	146	18	332
1959	16	191	207	112	79	101	5	1803
1960	34	150	184	182	83	265	17	466
1961	16	58	74	118	49	167	5	246
Before freeze$\underset{62}{\operatorname{Jan} .} 9-12,$								
After freeze								
${ }_{6}^{\mathrm{Jan} .} 9-12,$	1	2	3	5	4	9	--	12
1962	12	86	98	224	119	343	8	469
1963	14	192	206	268	98	366	26	593
1964	13	254	267	318	87	405	38	710
1965	10	350	360	301	98	391	35	786
1966	8	287	295	96	33	129	11	435
1967	2	158	160	38	7	45	5	210

Source: U. S. Department of Agriculture and Tesas Deparement of Agriculswe, Texas Citrus Tree Plantings in the Lower Rio Grande Valley 1952-60, Release September 2\%, 1958.

TABLE IV. Fresh Weight Equivalents of One Pound of Selected Citrus Juice Products ${ }^{1}$

PRODUCT FORM	FRESH WEIGHT EOUIVALENT
	(pounds)
FCOJ - at $45^{\circ} \mathrm{Brix}$	6.70
Orange Juice - Single Strength	1.81
Frozen Concentrated Grapefruit Juice - 40° Briz	8.67
Grapefruit Juice - Single Strength	2.18
$1_{\text {The }}$ amount of fruit (by weight) which it takes, under average conditions, to produce one pound of the citrus juice product.	
Source: U. S. Department of Agriculd	ious pubilicetion

TABLE V. Factors for Converstion From One Ton of Fresh Citrus to Cases of Selected Citrus Juice Products

	JUICE EQUIVALENT
PRODUCT	FROM ONE TON
FORM	ERESH CITRUS
Orange - single strength juice	$\begin{aligned} 36.67 & \text { cases } \\ & \left(24 / 2^{\prime} \mathrm{s}\right) \end{aligned}$
Orange - FCOJ	$\begin{aligned} & 13.33 \text { cases (48 } \\ & \text { 6-oz. cana) } \end{aligned}$
Grapefruit - single strength juice	$\begin{aligned} & 31.25 \text { cases } \\ & \left(24 / 2^{\circ} \mathrm{s}\right) \end{aligned}$

Source: U. S. Department of Agriculture and various publications.

TABLE VI. Net Weight of Oranges and Grapefruit Per Pox

		ORANGES
STATE	75	64
Arizona	75	67
California	90	85
Florida	90	80
Texas		

Note: California desert valleys and Arizona grapefruit box has a net weight of 64 pounds. All other areas of California have a net average of 67 pounds.

Source: U. S. Department of Agriculture, Citrus Eruits by States, Crop Reporting Service, Statistical Reporting Service, Washington, D. C. Fr Nt 3-1 (10-69) October 1969.

LIST OF REFERENCES

1. Black, W. E. Economic Outlook for Florida Citrus for Next Five Years 1965 71, Economic Research Department, Florida Citrus Comission, Lakeland, Florida. May 1966, p 14
2. Consumer Purchases of Fruit Juices and Drinks, Market Research Department, Florida Citrus Conmission, Laveland, Florida. November 1968.
3. Nichols, J. P. and Sporleder, T. L. ERecent Changes in Characteristics of Orange Consumption", Journal of Lorer Ric Grande Horticultural Soctiety. Vol. 23. pp 24-28.
4. U. S. Department of Agriculture, Citrus Fruits by States 1909 to 1959, Crop Reporting Board, Statistical Reporting Service, Washington, D. C.
5. U. S. Department of Agriculture, Eruit Situation, Economic Research Service, Washington, D. C. August 1969, pp 14-20.
6. U. S. Department of Agriculture and Texas Department of Agriculture, Texas Citrus Tree Plantings in the Lower Rio Grande Valley 1952-68, Austin, Texas. September 20, 1968.
7. Texas Citrus Mutual 1969 Survey of the Current Six Citrus Processing Faciratios in the Rio Grande Valley, Texas.
8. Texas Citrus Mutual, Citrus Tree Censys, Edinburg, Texas. October 1, 196.
9. Texas Valley Citrus Committee, Final Texas Citus Review, Fharr, Texas. Jme 19. 1969.

[^0]: $\mathbf{1}_{\text {Linearly }}$ means "increase by a constant amount each year". The value of the constant is determined by dividing the change in production from the base year $1968-69$ to $1974-75$ by six crop seasons.

[^1]: ${ }^{2}$ A11 percentages computed from Table 3.

[^2]: ${ }^{3}$ All percentages computed from Table 5. ${ }^{4}$ All percentages computed from Table 7

[^3]: ${ }^{8}$ Black, W. E., Economic Outlook for Florida Citrus for the Next Five Years 1966-71, Economic Research Department, Florida Citrus Commission, Lakeland, Florida. May 1966, p. 14.
 ${ }^{9}$ Consumer Purchases of Fruit Juices and Drinks, Market Research Department, Florida Citrus Commission, Lakeland, Florida, November 1968.

[^4]: ${ }^{1}$ One ton of grapefruit raw stock equals 31.25 cases of $24 / 2$ single-strength equivalent. One ton of orange raw stock equals 36.67 cases of $24 / 2$ singlestrength equivalent.
 ${ }^{2}$ A total of 104,850 tons of Texas oranges were processed during the 1968-69 season, 4,126 of which were processed in Florida.

[^5]: ${ }^{10}$ Walker, Charles of Gulf Machinery Company, Clearwater, Florida.

