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1 Introdu
tionThere has developed an interest in the theory and appli
ations of linking, also 
alled `inter
onne
-tion'. The basi
 idea is the following. Consider a group of de
ision makers who are simultaneouslyinvolved in several di�erent real world problems (issues). The standard approa
h is to 
onsider thede
ision making pro
ess for ea
h problem in isolation. In pra
ti
e, however, the de
ision makingpro
ess with respe
t to one problem is usually in�uen
ed by the de
ision making pro
esses withrespe
t to the other problems (spill-over e�e
ts or links). Dis
arding the links among the issuesand analyzing the de
ision pro
ess on ea
h issue separately rather than in a multi-issue de
isionmaking 
ontext is likely to lead to biased out
omes. Parti
ularly, a single issue approa
h ignoresthe possibility that if the issues have 
ompensating asymmetries of similar magnitudes, an ex-
hange of 
on
essions may allow and enhan
e 
ooperation whi
h extends beyond 
ooperation inthe single issue 
ontext. Some well-known real world examples of linking are the negotiations `onland for pea
e' between Israel and Palestina and the deal on WTO membership and parti
ipationin the Kyoto agreement between the EU and Russia.In the e
onomi
s literature the notion of linking has been applied in the 
ontext of multimarketbehavior in oligopolisti
 markets (see e.g. Bernheim and Whinston, 1990; Spagnolo, 1999) and ofinternational environmental problems (see e.g. Folmer et al., 1993; Botteon and Carraro, 1998;Carraro and Sinis
al
o, 1999; Finus, 2001).A game theoreti
al framework for the linking of repeated games was developed by Folmer et al.(1993) and by Folmer and von Mou
he (1994). In Folmer and von Mou
he (2000) the followingthemes for linking of repeated games were suggested: linking may sustain more 
ooperation,1 mayeliminate so
ial welfare losses, may bring Pareto improvements and may fa
ilitate 
ooperation.We observe that `may' is used here to indi
ate that the 
hara
teristi
s of linking of repeatedgames mentioned do no hold un
onditionally but depend on the parti
ular nature of the problemat hand. However, to our best knowledge, the 
onditions under whi
h these 
hara
teristi
s holdhave not yet been thoroughly analyzed whi
h is a major omission in the light of the pra
ti
al andtheoreti
al relevan
e of linking. Admittedly, some results about the 
onditions under whi
h the
hara
teristi
s of more 
ooperation and Pareto improvements hold 
an be found in Ragland (1995)and Just and Netanyahu (2000). However, these results are limited in s
ope be
ause the settingsin these publi
ations 
on
ern the spe
ial 
ase of linking of two repeated 2 × 2-bimatrix games.The main purpose of this paper is to identify 
lasses of isolated stages games for whi
h thethemes 'linking may sustain more 
ooperation' and 'linking may bring Pareto improvements' mate-rialize or not. For that purpose we formalize the themes 'linking may sustain more 
ooperation'and'linking may bring Pareto improvements'. Our results apply to the linking of an arbitrary numberof repeated games with an arbitrary number of (the same) players. In se
tion 2 we present pre-liminaries and introdu
e 
on
epts. In se
tion 3 we present �gures that illustrate these 
on
eptsand that will be referred to in the next se
tions. In se
tion 4 we dis
uss 'more 
ooperation' and inse
tion 5 Pareto improvements. Se
tion 6 
on
ludes. Various proofs will be given in the appendix.2 PreliminariesNegotiation sets. Consider a game in strategi
 form among N players. That is, for ea
h player
i ∈ N := {1, . . . , N} we have a non-empty (a
tion) set X i and a real-valued (payo�) fun
tion f ion the set of multi-a
tions X := X1 × · · · × XN . In order to avoid some te
hni
alities we willrestri
t ourselves here often to what we 
all regular games in strategi
 form, whi
h are games instrategi
 form that satisfy the following three assumptions. First, ea
h payo� fun
tion is bounded.This assumption assures that the minimax payo� vj of ea
h player j is a well-de�ned real number.Se
ond, without any loss of generality, we assume that vj = 0 for ea
h player j. This assumptionimplies that a payo� ve
tor (i.e. an element of RN ) is individually rational if and only if it belongsto RN

+ , i.e. the 
losed positive o
tant of RN . Third, denoting f(x) := (f1(x), . . . , fN (x)), the1This is the 
ounterpart of the theme `repetition enables 
ooperation' for repeated games. 'More' is relative tothe single issue 
ase. 2



feasible set, i.e. the 
onvex hull co(U) of the set U := {f(x) | x ∈ X} of basi
 payo� ve
tors, isassumed to be 
losed. This 
ondition is always satis�ed in the 
ase ea
h a
tion set is �nite.2For a regular game in strategi
 form Γ, the interse
tion of its set of individually rational payo�ve
tors and its feasible set is an important obje
t. We 
all it here simply the negotiation set of Γand denote it by H :3
H := 
o(U) ∩ RN

+ .The three assumptions presented above ensure that H is a 
ompa
t set.4Be
ause ea
h Nash equilibrium payo� ve
tor of Γ is individually rational, H 
ontains the set ofNash equilibrium payo� ve
tors. By PB(H) we denote the Pareto boundary of H and by PBw(H)its weak Pareto boundary.5 Be
ause H is 
ompa
t, PB(H) 6= ∅ if H is non-empty. Also we have(see Appendix A.4)
PB(H) = PB(co(U)) ∩ RN

+ . (1)Given a game in strategi
 form Γ we 
all a maximizer x of the total payo� fun
tion ∑N
j=1 f ja full-
ooperative multi-a
tion. The set of su
h multi-a
tions will be denoted by Y . It is easy tosee that (see Appendix A.4) for a regular game in strategi
 form we have

Y 6= ∅. (2)Dire
t sum games and 
anoni
al mapping. Consider M games in strategi
 form 1Γ, . . . , MΓamong (the same) N players. We refer to them as isolated stage games and use pre-subs
ripts torefer to obje
ts related to them. Let M := {1, . . . , M}, the set of issues. Let kXj be the a
tionset of player j in kΓ. De�ne for ea
h k ∈ M

kX := kX1 × · · · × kXNand for ea
h player j

∗X
j := 1X

j × · · · × MXj .Moreover, de�ne the mapping Ψ : 1X× · · · × MX → ∗X
1 × · · · × ∗X

N by
Ψ(




1x...
Mx


) := (∗x

1, . . . , ∗x
N ).

Ψ is 
alled the 
anoni
al mapping. Note that the 
anoni
al mapping is a bije
tion.For M games in strategi
 form 1Γ, . . . , MΓ among N players, the trade-o� dire
t sum game
(⊕Γ)α is de�ned as the game in strategi
 form where player j has a
tion set ∗X

j and his payo�fun
tion is given by6
f j(∗x

1, . . . , ∗x
N ) :=

M∑

k=1

kf j(1x
1, . . . , 1x

N ).(In the 
ase of two bimatrix games (⊕Γ)α is the tensor sum of the individual bimatrix games.)The set of possible payo�s ve
tors Uα of (⊕Γ)α equals ∑
k∈M kU := 1U + · · ·MU .72 Note that for a regular game in strategi
 form it is possible that its feasible set does not 
ontain 0. Indeed,this for example holds for the regular bimatrix game „

−2; 2 0; −4
1; −3 −2; 0

«.3The negotiation set plays an important role in Folk theorems whi
h relate to the geometri
 stru
ture of the setof (average) subgame perfe
t Nash equilibrium payo� ve
tors for repeated games < Γ > with Γ as stage game. Inthis 
ontext it is 
ustomary to assume that repeated games are with dis
ounting and that ea
h player has the samedis
ount fa
tor δ ∈ (0, 1). Finally, if we 
onsider several repeated games below (with the same players) together,then it is assumed that in ea
h of them the periods are the same and the dis
ount fa
tors are the same. For thepurpose of this paper it is not ne
essary to go into the details of (te
hni
ally 
ompli
ated) Folk theorems. For this,we refer to, for example, Benoît and Krishna (1996).4This set may be empty, as for example is the 
ase for the bimatrix game in footnote 2.5See appendix A.3 for Pareto boundaries.6The α refers to the fa
t that in this formula the payo�s of the isolated games are added (with weights 1).7For two subsets A, B of R
N its Minkowski sum A + B is de�ned by A + B := {a + b | a ∈ A, b ∈ B}.3



Let kE be the set of Nash equilibria of kΓ, kY the set of full-
ooperative multi-a
tions of kΓ,
Eα the set of Nash equilibria of (⊕Γ)α and Yα the set of full-
ooperative multi-a
tions of (⊕Γ)α.It 
an be shown that (see Folmer et al., 1993; Folmer and von Mou
he, 1994)

Ψ(1E × · · · × ME) = Eα, (3)
Ψ(1Y × · · · × MY ) = Yα. (4)Suppose ea
h kΓ is regular. Then (⊕Γ)α also is regular. The negotiation set of kΓ is

kH := RN
+ ∩ co(kU).Using the fa
t that a 
onvex hull of a sum is the sum of the 
onvex hulls, the negotiation set of

(⊕Γ)α is
Hα = RN

+ ∩
∑

k∈M

co(kU).Linking. Again, let 1Γ, . . . , kΓ be M regular games in strategi
 form and 
onsider the repeatedgames < kΓ >. Linking of the (isolated) repeated games < kΓ > is done by 
ombining them intoa repeated game (⊗Γ)α, a so-
alled trade-o� tensor game. This trade-o� tensor game has as stagegame the trade-o� dire
t sum game (⊕Γ)α.In order to analyse the e�e
ts of linking, we de�ne the aggregated negotiation set as
Hag :=

∑

k∈M

kH.

Hag may be 
onsidered as the negotiation set when the M repeated games are not linked butmerely aggregated. We remark that Hag = ∅ when some kH is empty. Be
ause
∑

k∈M

(RN
+ ∩ co(kU)) ⊆

∑

k∈M

RN
+ ∩

∑

k∈M

co(kU) = RN
+ ∩

∑

k∈M

co(kU) (5)it follows that
Hag ⊆ Hα. (6)We observe that equality holds in (6) if and only if the ⊆-symbol is a =-symbol in (5).More 
ooperation and Pareto improvements. In Folmer et al. (1993) it is shown that Nashequilibria for ea
h repeated game < kΓ > lead in a 
anoni
al way to a Nash equilibrium for thetrade-o� tensor game (⊗Γ)α.8 In general, the trade-o� tensor game also has other (subgameperfe
t) Nash equilibria. Folk theorems are useful in order to investigate the question how manymore subgame perfe
t Nash equilibria there are, parti
ularly by fo
ussing on the set Hα \ Hag.This leads to the following de�nition:De�nition 1 There is an enri
hment of the aggregated negotiation set if the stri
t in
lusion Hag

⊂ Hα holds. ⋄Hen
e, enri
hment of the aggregated negotiation set 
an be interpreted as `Linking sustains more
ooperation'.We 
all u ∈ PB(Hag) a (strong) expansion point of PB(Hag) if there exists w ∈ Hα su
h that9
w ≫ u and a weak expansion point of PB(Hag) if there exists w ∈ Hα su
h that w > u. By EXPwe denote the set of expansion points and by EXPw the set of weak expansion points. Of 
ourse,
EXP ⊆ EXPw and EXP ⊆ PB(Hag). Moreover, (see Appendix A.4)

EXP = PB(Hag) \ PBw(Hα). (7)Below we shall only deal with strong expansion points.8It is straightforward to show that this statement remains valid if one repla
es `Nash equilibrium' by `subgameperfe
t Nash equilibrium'.9For a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ R
N we write a ≥ b if ai ≥ bi for all i. We write a > b if a ≥ b and

a 6= b. And we write a ≫ b if ai > bi for all i. 4



De�nition 2 We speak of partial expansion (of the Pareto boundary of the aggregated negotia-tion set) if ∅ ⊂ EXP ⊂ PB(Hag). In the 
ase EXP = ∅ we say that there is expansion nowhere.Finally, in the 
ase ∅ ⊂ EXP = PB(Hag) there is expansion everywhere. ⋄We observe that by virtue of Folk theorems the existen
e of an expansion point of PB(Hag)is related to possible Pareto improvements. This may be interpreted as `Linking brings Paretoimprovements'.Finally, we observe that if there is no enri
hment of the aggregated negotiation set, i.e. if
Hag = Hα, then Hag and Hα have the same Pareto boundaries and thus, by virtue of (7), EXP = ∅.3 FiguresIn this se
tion we present �ve �gures that illustrate the 
on
epts de�ned above. Moreover, we wilrefer to these �gures in se
tions 4 and 5. The �gures present the linking of two repeated games,where the isolated stage games are (regular) 2 × 2- bimatrix games.Figure 1 relates to the games

1Γ :=

(
2; 1 −3; 2

5; −1 0; 0

)
, 2Γ :=

(
1; 2 −1; 5

2; −3 0; 0

)
.

–4

–2

0

2

4

6

–4 –2 2 4 6Figure 1: Expansion everywhere.Figure 1, and also Figures 2 � 5, are to be interpreted as follows. Four polygons are drawn:the feasible sets co(1U), co(2U), the sum of these two sets and the aggregated negotiation set
Hag = 1H + 2H . Be
ause the minimax payo� ve
tors for 1Γ and 2Γ are 0, the sets 1H and 2H 
anbe distinguished. Hag = 1H + 2H is the boldfa
ed polygon. Be
ause the minimax payo� ve
torfor (⊕Γ)α is 0, the set Hα 
an also be distinguished. For reasons of 
onvenien
e these four setsfor Figure 1 are drawn below.
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0

1

2
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1 2 3 4The sets in the above three �gures respe
tively 
on
ern co(1U) and co(2U), co(1U) + co(2U)and Hag = 1H + 2H . 5



We note that in the 
ase of Figure 1
(⊕Γ)α =




3; 3 1; 6 −2; 4 −4; 7
4;−2 2; 1 −1;−1 −3; 2
6; 1 4; 4 1; 2 −1; 5

7;−4 5;−1 2;−3 0; 0


 .Figure 2 relates to the two games

1Γ :=

(
0; 2 3; 1
−3; 0 0; 0

)
, 2Γ :=

(
0; 1 1; 0.5
−2; 0 0; 0

)
.

0

0.5

1

1.5

2

2.5

3

–4 –2 2 4Figure 2: No enri
hment of the aggregated negotiation set.Figure 3 relates to the two games
1Γ :=

(
7; 1 −3; 3

10; −2 0; 0

)
, 2Γ :=

(
1; 7 −2; 10

3; −3 0; 0

)
.
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12

–4 –2 2 4 6 8 10 12Figure 3: Partial expansion (non-symmetri
 isolated stage games).Figure 4 relates to the two games
1Γ :=

(
2; 2 −2; 4

4; −2 0; 0

)
, 2Γ :=

(
2; 2 −1; 1

1; −1 0; 0

)Finally, Figure 5 relates to the two games
1Γ :=

(
2; 2 −2; 10

10; −2 0; 0

)
, 2Γ :=

(
3; 3 −3; 4

4; −3 0; 0

)
.6
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–2 2 4 6Figure 4: Enri
hment of the aggregated negotiation set and expansion nowhere.
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–4 –2 2 4 6 8 10 12 14Figure 5: Partial expansion (symmetri
 isolated stage games).4 Linking sustains more 
ooperationThe next theorem, proven in Appendix A.4, identi�es three 
ases where linking does not lead toan enri
hment of the aggregated negotiation set.Theorem 1 Ea
h of the following 
onditions is su�
ient for that there is no enri
hment of theaggregated negotiation set.1. For ea
h k the payo� fun
tion of ea
h player in kΓ is a positive multiple kr of its payo�fun
tion in 1Γ; this result holds in parti
ular if all isolated stage games are identi
al.2. In ea
h isolated stage game ea
h basi
 payo� ve
tor is individually rational.103. Hα = ∅. ⋄Theorem 1 is a negative result and 
learly shows that the stru
ture of the isolated stage gamematters to a
hieve more 
ooperation. Figure 2 shows that there are situations of no enri
hmentof the aggregated negotiation set that are not 
overed by Theorem 1. In all other �gures there isan enri
hment.Now we turn to the 
onditions under whi
h a positive general result holds, i.e. linking leadsto an enri
hment of the aggregated negotiation set. For that purpose we present Theorem 2 asa �rst general result. This theorem deals with isolated stage games that have `
ompensatingasymmetries of exa
tly the same magnitude'. This notion is de�ned as follows. Given isolatedstage games 1Γ, . . . , NΓ (so M = N) we say that they have `
ompensating asymmetries of ex-a
tly the same magnitude' if there are N permutations π1, . . . , πN of N with π1 := Id (i.e. theidenti
al permutation) su
h that for ea
h j ∈ N one has {π1(j), . . . , πN (j)} = N and su
h that
kΓ := πk(1Γ) (k ∈ M). So ea
h kΓ is a permutation of 1Γ (see Appendix A.1 for permuted games),but not all N ! permuted games of 1Γ are allowed.1110Note that this is equivalent with `in ea
h isolated stage game ea
h point of its feasible set is individuallyrational'.11It should be noted that regularity of 1Γ implies regularity of ea
h kΓ and that if one of then is symmetri
, allare su
h. 7



Another 
ondition in Theorem 2 is that Γ has a defe
t (Folmer and von Mou
he, 2000): a gamein strategi
 form with bounded payo� fun
tions has a j-defe
t (where j ∈ N ) if for player j nofull-
ooperative payo� ve
tor is individually rational. The game has a defe
t if it has a j-defe
t forsome j. Of 
ourse, a defe
t ex
ludes the possibility that a Nash equilibrium is full-
ooperative.12It also ex
ludes the possibility that the game is symmetri
 and regular.13Theorem 2 Consider isolated regular stage games that have 
ompensating asymmetries of exa
tlythe same magnitude. If Γ := 1Γ has a Nash equilibrium and a defe
t, then there is an enri
hmentof the aggregated negotiation set. Moreover, the game (⊕Γ)α has a Nash equilibrium for whi
hthere exists a full-
ooperative unanimous Pareto improvement. ⋄The proof of Theorem 2 is given in Appendix A.4. Note that in Theorem 2 all the isolatedstage games have a defe
t, but (⊕Γ)α does not have. Theorem 2 explains the enri
hment of theaggregated negotiation set in Figure 1 (where Γ has a 2-defe
t). Figures 3�5 show that there aresituations of enri
hment of the aggregated negotiation set that are not 
overed by Theorem 2. Weobserve that Theorem 2 does not ex
lude the possibility that in the 
ase the isolated stage gamesare symmetri
 (without having 
ompensating asymmetries of exa
tly the same magnitude), there
ould be an enri
hment of the aggregated negotiation set (Figures 4 and 5).We note that in Figures 1, 3 and 5 the isolated stage games are prisoners' dilemma games,14but that this is not the 
ase for Figure 4. Con
erning this aspe
t:Corollary 1 Consider isolated regular stage games that are 2 × 2-bimatrix prisoners' dilemmagames, with a unique full-
ooperative multi-a
tion that have 
ompensating asymmetries of exa
tlythe same magnitude, Then there is an enri
hment of the aggregated negotiation set. Moreover,
(⊕Γ)α has a Nash equilibrium for whi
h there exists a full-
ooperative unanimous Pareto improve-ment. ⋄Indeed, for this situation 1Γ automati
ally has a Nash equilibrium and a j-defe
t for some j.155 Linking brings Pareto improvementsWe have already seen that if there is no enri
hment of the aggregated negotiation set, then there isexpansion nowhere. A natural question now is whether enri
hment of the aggregated negotiationset implies that there is an expansion point. The answer is `no' as Figure 4 shows. Note that inthis �gure the Pareto boundary PB(2H) is the singleton {(2, 2)}.Theorem 1(2) implies that if in ea
h isolated stage game ea
h point of its feasible set is indi-vidually rational, then there is expansion nowhere. Also in Figure 2 there is expansion nowhere,but this 
an not be explained in this way. Individual rationality of ea
h point of the feasible setsis a strong 
ondition. In Theorem 4 there is a weaker 
ondition that also guarantees expansionnowhere and explains expansion nowhere in Figure 2. The proof of Theorem 4 uses the te
hniqueof normal 
ones16 and is a little bit 
ompli
ated. Therefore, before we turn to this theorem, westate a spe
ial 
ase of it, Theorem 3, for whi
h we 
an provide a simple proof.12In this sense one may say that a defe
t implies that ea
h Nash equilibrium has a welfare loss. For su
h a gamethe welfare loss remains when we repeat the game. See Folmer and von Mou
he (1994, Proposition 4.2.) for apre
ise statement.13Here is a proof of this statement, by 
ontradi
tion. Suppose Γ is symmetri
, regular and has a j-defe
t. Thenfor ea
h permutation π of N the game π(Γ) has a π−1(j)-defe
t. But π(Γ) = Γ, so Γ has an i-defe
t for ea
h
i ∈ N . By (2) there exists a full-
ooperative multi-a
tion y. Let n be a Nash equilibrium. Then one has (usingthe fa
t that ea
h Nash equilibrium payo� ve
tor is individually rational) PN

j=1
fj(n) ≥

PN
j=1

0 >
PN

j=1
fj(y), a
ontradi
tion.14We 
all a game in strategi
 form a prisoners' dilemma game if ea
h player has a stri
tly dominant a
tion andthe stri
tly dominant equilibrium is not Pareto-e�
ient in the weak sense.15The last statement is a dire
t 
onsequen
e of the fa
t that for every 2 × 2-bimatrix prisoners' dilemma gamethe Nash equilibrium payo� for ea
h player equals his minimax payo�.16A more dire
t proof of Theorem 4 would be wel
ome.8



Theorem 3 If, in 
ase M = 2, for ea
h of the isolated stage games ea
h point of the Paretoboundary of its feasible set is individually rational and at least one of these Pareto boundaries isa singleton, then PB(Hα) = PB(Hag) and therefore there is expansion nowhere. ⋄For the proof of this theorem see Appendix A.4. The 
on
lusion of expansion nowhere in Theorem 3even holds for general M without the singleton assumption:Theorem 4 If for ea
h of the isolated stage games ea
h point of the Pareto boundary of its feasibleset is individually rational, then there is expansion nowhere. ⋄Also for the proof of this theorem see Appendix A.4.Figure 2 illustrates Theorem 4 and Figure 4 shows that there are situations of expansionnowhere that are not 
overed by Theorem 4. Note that in Figure 2 there even is no enri
hment ofthe aggregated negotiation set (and that for player 2 the �rst isolated stage game 'is half the se
ondone'). An important issue for further resear
h is whether for the 
ases spe
i�ed in Theorem 4 therealways is no enri
hment of the aggregated negotiation set.Figures 3 and 5 show 
ases where there is partial expansion. Note that in Figure 1 thereis expansion everywhere. Another interesting question for further resear
h is whether expansioneverywhere always holds in Theorem 2. An even more basi
 question is whether or not an expansionpoint always exists in Theorem 2.Finally we note that even in 
ase ea
h isolated stage game is symmetri
, there may be partialexpansion as Figure 5 shows.6 Con
lusionIn this paper we have presented some general results on more 
ooperation and Pareto improvementswhi
h 
an be a
hieved by linking of repeated games. We have de�ned `more 
ooperation' by thenotion of enri
hment of the aggregated negotiation set and `Pareto improvement' by the notion ofexpansion point of the Pareto boundary of the aggregated negotiation set. Using these notions wehave formalized for tensor games the theme `linking may sustain more 
ooperation' and `linkingmay bring Pareto improvements'.We have shown that in the 
ase linking brings Pareto improvements, it also sustains more
ooperation but that the reverse does not hold in general. We have identi�ed a 
lass of isolatedstage games for whi
h linking does not sustain more 
ooperation and a 
lass for whi
h it does.In order to identify this last 
lass we formalized the basi
 idea that an ex
hange of 
on
essionsmay enhan
e 
ooperation if the issues have 
ompensating asymmetries of similar magnitude. Forthis 
lass all isolated stage games are asymmetri
 and permutations of ea
h other and all have theproperty that ea
h full-
ooperative payo� ve
tor is not individually rational. Con
erning Paretoimprovements, we derived (in the appendix) a 
hara
terization of expansion points in terms ofpositive normal 
ones and used this in order to identify a 
lass where linking does not bringPareto improvements. We showed that also in the 
ase all isolated stage game are symmetri
 (butnot identi
al), more 
ooperation and even partial expansion is possible.The �gures that we used for illustrating our results lead to interesting questions for furtherresear
h:A. How far 
an one deviate in Theorem 2 from the situation of (exa
t) permuted games? Thiswould model the notion of `similar magnitude' in the expression `an ex
hange of 
on
essionsin issues that have 
ompensating asymmetries of similar magnitude'.B. Derive (interesting) su�
ient 
onditions (like the 
onje
ture in C) for the existen
e of expansionpoints.C. If the isolated stage games have 
ompensating asymmetries of exa
tly the same magnitude andone of them has a Nash equilibrium and a defe
t, is there then always expansion everywhere?More basi
ally, we 
onje
ture that there then always is at least one expansion point.9



D. If for ea
h of the isolated stage games ea
h point of the Pareto boundary of its feasible set isindividually rational, is there then no enri
hment of the aggregated negotiation set?Finally, we observe that although this paper is about game theory, the problems we deal with arein fa
t geometri
 problems related to Minkowski sums and interse
tions of 
onvex sets. Therefore,basi
 resear
h on linking should (also) relate to these topi
s.A Appendi
esBefore turning to the proofs in Appendix A.4 we present some de�nitions and useful results. Forthose for whi
h it is di�
ult to tra
e them in the literature we also give a proof.A.1 Permuted gamesGiven a Cartesian produ
t of sets A1 × . . .×AN , we de�ne for a permutation κ of {1, . . . , N} themapping Tκ : A1 × · · · × AN → Aκ(1) × · · · × Aκ(N) by Tκ(a1, . . . , aN ) := (aκ(1), . . . , aκ(N)).Let Γ be a game in strategi
 form and π a permutation of N . We de�ne the game in strategi
form π(Γ) (
alled a permuted game of Γ) as the game in strategi
 form where the a
tion set Zi ofplayer i is Xπ(i) and his payo� fun
tion hi is fπ(i) ◦ Tπ−1. So,
hi(z1, . . . , zN) = fπ(i)(zπ−1(1), . . . , zπ−1(N)).Finally, a game in strategi
 form Γ where ea
h player has the same a
tion set X is 
alledsymmetri
 if for ea
h permutation π of N one has Γ = π(Γ).A.2 Normal 
onesLet A be a non-empty subset of RN and x ∈ A, i.e. x is an element of the topologi
al 
losure of

A. Then
NA(x) := {d ∈ RN | (y − x) · d ≤ 0 for all y ∈ A}.

NA(x) is a 
onvex 
one and is 
alled the normal 
one of A in x. Moreover, we de�ne for x ∈ Athe positive normal 
one of A in x as
N+

A (x) := {d ∈ NA(x) | d > 0}.Note that 0 ∈ NA(x), but that N+
A (x) may be empty.Let kA (1 ≤ k ≤ M) be subsets of RN . It is straightforward to prove hat for ka ∈ kA (1 ≤ k ≤

M), with a :=
∑N

k=1 ka, one has
NP

M

k=1 kA(a) = ∩M
k=1NkA(ka). (8)A.3 Pareto boundariesDe�ne the fun
tion C : RN → R by C(x) :=

∑N

l=1 xl. For a subset A of RN we de�ne Ã as the setof maximizers of the restri
ted fun
tion C ↾ A, i.e. of the fun
tion C : A → R. Moreover, de�ne
s(A) ∈ R ∪ {−∞, +∞} as the supremum of the fun
tion C ↾ A. Closedness (boundedness) of Aimplies 
losedness (boundedness) of Ã and if A is a non-empty 
ompa
t subset of RN , then Ã isnon-empty and 
ompa
t as well.It is also straightforward to prove the following properties for all subsets A, B of RN :
̃o(A) = 
o(Ã); (9)

s(
o(A)) = s(A); (10)
s(A + B) = s(A) + s(B). (11)10



For a subset A of RN its (strong) Pareto boundary PB(A) is de�ned as the set of elements a of
A for whi
h there does not exist c ∈ A with c > a whereas its weak Pareto boundary PBw(A) isde�ned as the set of elements a of A for whi
h there does not exist c ∈ A with c ≫ a. Of 
ourse,
PB(A) ⊆ PBw(A). For ∂A, the topologi
al boundary of A, we have

Ã ⊆ PB(A) ⊆ PBw(A) ⊆ ∂A.So PB(A) 6= ∅ if A is 
ompa
t and non-empty.Let Ak (1 ≤ k ≤ M) be subsets of RN . It is easy to show that for ak ∈ Ak (1 ≤ k ≤ M), with
a :=

∑N

k=1 ak, one has
a ∈ PB(

M∑

k=1

Ak) ⇒ ak ∈ PB(Ak) for all k.Thus in parti
ular
PB(

M∑

k=1

Ak) ⊆
M∑

k=1

PB(Ak). (12)Lemma 1 Let A be a 
ompa
t subset A of RN . For ea
h a ∈ A there exists b ∈ PB(A) with
b ≥ a. ⋄Proof.� Z := {z ∈ RN | z ≥ x} is 
losed. This implies that Z∩A is 
ompa
t. Be
ause x ∈ Z ∩A,
Z ∩ A 6= ∅ and therefore also PB(Z ∩ A) 6= ∅. Take y ∈ PB(Z ∩ A). Then y ∈ Z, so y ≥ x. Also
y ∈ PB(A), be
ause otherwise there would exist b ∈ A with b > y. Then we had b > y ≥ x, so
b ∈ Z ∩ A and b > y, whi
h is a 
ontradi
tion with y ∈ PB(Z ∩ A). Q.E.D.Lemma 1 now will be used to derive further properties.Lemma 2 For two non-empty subsets A and B of RN with A ⊆ B and a ∈ A one has:

B 
ompa
t and PB(B) ⊆ A ⇒ N+
B (a) = N+

A (a). ⋄Proof.� Be
ause A ⊆ B one has N+
B (a) ⊆ N+

A (a). By 
ontradi
tion we prove that N+
B (a) ⊇

N+
A (a). So suppose γ ∈ N+

A (a) \N+
B (a). Now (w− a) ·γ ≤ 0 for all w ∈ A, but not for all z ∈ B.This implies that there is a w ∈ B \ A su
h that γ · (w − a) > 0. Be
ause B is 
ompa
t, there is,by Lemma 1, b ∈ PB(B) su
h that b ≥ w. Be
ause γ > 0, also γ · (b − a) > 0. So b 6∈ A. But

b ∈ PB(B) ⊆ A, whi
h is a 
ontradi
tion. Q.E.D.In general the in
lusion in (12) is not an equality. Here is a spe
ial 
ase where equality holds:Lemma 3 [A, B ⊆ RN , B 
ompa
t and #PB(B) = 1] ⇒ PB(A + B) = PB(A) + PB(B). ⋄Proof.� Only ⊇` remains to be proved. This we do by 
ontradi
tion. So suppose x ∈ PB(A) +
PB(B), but x 6∈ PB(A + B). Write PB(B) = {b}. Let a ∈ PB(A) su
h that x = a + b.Be
ause B is 
ompa
t, there is for ea
h y ∈ B an element of PB(B), i.e. b, su
h that y ≤ b. So
b − y ≥ 0 (y ∈ B. Be
ause x ∈ A + B and x 6∈ PB(A + B), there is d ∈ A + B with d > x. Let
a′ ∈ A and b′ ∈ B su
h that d = a′ + b′, Then a′ > a + (b− b′) ≥ a, so a′ > a. But a ∈ PB(A),a 
ontradi
tion. Q.E.D.Lemma 4 Let B, C ⊆ RN su
h that for no c ∈ C there exists d ∈ Cc with d > c. Then
PB(B ∩ C) = PB(B) ∩ C. ⋄Proof.� �⊆�: by 
ontradi
tion. So suppose a ∈ PB(B ∩ C) and a 6∈ PB(B) ∩ C. Be
ause
a ∈ B ∩ C ⊆ C, it follows that a 6∈ PB(B). Now there is b ∈ B with b > a. Be
ause
a ∈ PB(B ∩ C), it follows that b 6∈ B ∩ C. Thus b ∈ Cc, a ∈ C and b > a, whi
h is a
ontradi
tion.�⊇�. Suppose d ∈ PB(B) ∩ C. One has d ∈ B ∩ C. If we would have a ∈ B ∩ C su
h that
a > c, then, noting that a ∈ B and d ∈ B, we would have a 
ontradi
tion. Q.E.D.11



Lemma 5 Let A be a non-empty 
onvex subset of RN . Then a ∈ PBw(A) ⇒ N+
A (a) 6= ∅. ⋄Proof.� De�ne B := {x ∈ RN | x ≥ a}. One has B◦ = {x ∈ RN | x ≫ a} and thus B◦ ∩ A = ∅.

B◦ and A are 
onvex, non-empty and disjoint. Using a separation theorem, there exists an a�nehyperplane that A and B◦ separates. Therefore there exists γ ∈ Rn\{0} su
h that γ ·z ≤ γ ·b (z ∈
A, b ∈ B◦). Even now

γ · z ≤ γ · b (z ∈ A,b ∈ B). (13)With b = a it follows that γ · z ≤ γ · a (z ∈ A). Now we prove by 
ontradi
tion that γ > 0. So(remembering that γ 6= 0) suppose γi < 0 for some i. For b ∈ B de�ned by bj := aj (j 6= i) and
bi := x aar x ≥ ai, we have

γ · b =

n∑

j=1,j 6=i

γjaj + γix.For x large enough this number is less than γ · a, whi
h is a 
ontradi
tion with (13). Q.E.D.A.4 Remaining proofsProof of (2). Be
ause the game is regular, co(U) is 
losed, and bounded. So it is 
ompa
t.17Be
ause it is also non-empty, c̃o(U) also is non-empty and therefore, by (9), also Ũ 6= ∅. Be
auseof the general identity
Ũ = f(Y ), (14)also Y 6= ∅. Q.E.D.Proof of (1). `⊆': by 
ontradi
tion. So suppose u ∈ PB(H) and u 6∈ PB(
o(U))∩RN

+ . Be
ause
u ∈ RN

+ , it follows that u 6∈ PB(
o(U)), Noting that u ∈ 
o(U), there exists w ∈ 
o(U) with
w > u. Therefore w ∈ RN

+ and thus w ∈ H , whi
h is a 
ontradi
tion with w ∈ PB(H).`⊇': suppose u ∈ PB(
o(U)) ∩ RN
+ . Then u ∈ H and there does not exist w ∈ 
o(U) with

w > u. Thus there also dos not exist w ∈ H with w > u. Q.E.D.Proof of (7). `⊆': suppose u ∈ EXP. Then u ∈ PB(Hag) and there exists w ∈ Hα su
h that
w ≫ u. By (6), u ∈ Hα. Therefore w 6∈ PBw(Hα).`⊇': suppose u ∈ PB(Hag) \ PBw(Hα). By (6), u ∈ Hα. Be
ause u 6∈ PBw(Hα), there is an
w ∈ Hα with w ≫ u. Thus u ∈ EXP. Q.E.D.Proof of Theorem 1. 1. We 
he
k that equality in (5) holds. For r :=

∑
k kr one has (withsums on k ∈ M)

∑
(RN

+ ∩ co(kU)) =
∑

(RN
+ ∩ kr co(1U)) =

∑
(krRN

+ ∩ kr co(1U)) =
∑

kr(RN
+ ∩ co(1U)) =

r(RN
+ ∩ co(1U)) = rRN

+ ∩ rco(1U)) = RN
+ ∩ rco(1U) = RN

+ ∩
∑

(kr co(1U)) = RN
+ ∩

∑
co(kU).We observe that the fourth equality holds be
ause RN

+ ∩ co(1U) is 
onvex and the seventh holdsbe
ause co(1U) is 
onvex.2. Using kU ⊆ RN
+ and ∑

k co(kU) ⊆ RN
+ we obtain ∑

k(RN
+ ∩ co(kU)) =

∑
k co(kU) =

co(
∑

k kU) = RN
+ ∩ co(

∑
k kU) = RN

+ ∩
∑

k co(kU).3. Be
ause of (6). Q.E.D.Proof of Theorem 2. First a lemma:Lemma 6 Suppose the following two 
onditions hold:17Note that U need not be 
ompa
t. 12



A. There exists an l su
h that no element of the 
onvex hull of the full-
ooperative payo� ve
torsof lΓ is individually rational,B. The trade-o� dire
t sum game (⊕Γ)α has an individually rational full-
ooperative payo� ve
tor.Let b be su
h a payo� ve
tor.Then b ∈ Hα \ Hag and thus there is an enri
hment of the aggregated negotiation set. ⋄Proof.� Condition A 
omes down to co(l̃U) ∩ RN
+ = ∅ and Condition B to b ∈ Ũα ∩ RN

+ . Using(11) and the s-notation of Appendix A.3, we obtain
s(Uα) =

∑

k

s(kU).Of 
ourse, b ∈ Hα.Next we prove by 
ontradi
tion that b 6∈
∑

k kH . Suppose that b =
∑

k kh with the kh ∈ kH .Using (10) we have for ea
h k ∈ M

∑

j

khj ≤ s(co(kU)) = s(kU). (15)Be
ause lh ∈ RN
+ it follows that lh 6∈ 
o(l̃U) and so lh ∈ 
o(lU) \ 
o(l̃U). By virtue of (9) we have

co(l̃U) = c̃o(lU) and so lh ∈ 
o(lU) \ 
̃o(lU). Therefore, in (15) we have a stri
t inequality for
k = l. Be
ause b ∈ Ũα, one has ∑

j bj = s(Uα). It follows that s(Uα) =
∑

k s(kU) >
∑

k

∑
j khj =∑

j

∑
k khj =

∑
j bj = s(Uα), whi
h is a 
ontradi
tion. Q.E.D.Now we will prove Theorem 2. We start by observing that if a regular game in strategi
form has a j-defe
t, then no element of the 
onvex hull of the full-
ooperative payo� ve
tors isindividually rational. Indeed, let Ij be the set of individually rational payo� ve
tors for player j.Having a j-defe
t means that Ũ ∩Ij = ∅. Note that this is equivalent to co(Ũ)∩Ij = ∅.18 Finally,using (14) it follows that co(f(Y )) ∩ RN

+ = ∅.Be
ause of the above observation and 1Γ = Γ, 
ondition A of Lemma 6 holds for l = 1.The proof is 
omplete if we show that (⊕Γ)α has a full-
ooperative multi-a
tion Y and a Nashequilibrium N su
h that Y is a Pareto improvement of N. Indeed, denoting the payo� fun
tionsof (⊕Γ)α with g1, . . . , gN , g(N) is individually rational and therefore g(Y) too. Let n be a Nashequilibrium of 1Γ. By virtue of (2), 1Γ has a full-
ooperative multi-a
tion y. Be
ause kΓ = πk(Γ),
Tπk

(n) is a Nash equilibrium of kΓ and Tπk
(y) is a full-
ooperative multi-a
tion of kΓ. Let

N := Ψ(




Tπ1
(n)...

TπN
(n)


 ), Y := Ψ(




Tπ1
(y)...

TπN
(y)


 ).By (3) and (4) we have that N is a Nash equilibrium of (⊕Γ)α and Y is a full-
ooperative multi-a
tion of (⊕Γ)α. Be
ause 1Γ has a j-defe
t, n is not full-
ooperative; (4) implies that N is notfull-
ooperative either. The payo�s in N are

gi(N) =

N∑

k=1

(fπk(i) ◦ Tπ
−1

k

)(Tπk
(n) =

N∑

k=1

fπk(i)(n) =

N∑

l=1

f l(n).So ea
h player has the same payo�, say a, in N. In the same way one shows that ea
h player hasthe same payo�, say b, in Y. The total payo� in N is Na and that in Y is Nb. Be
ause N is notfull-
ooperative it follows that Na < Nb, i.e. a < b whi
h implies that Y is a unanimous Paretoimprovement of N. Q.E.D.18Here we use that for two subsets A and B of R
N with Bc 
onvex: A ∩ B = ∅ ⇔ 
o(A) ∩ B = ∅.13



Proof of Theorem 3. We may assume that #PB(co(2U)) = 1. Next note that by (1)
PB(co(kU)) = PB(kH) (k = 1, 2).So also #PB(2H) = 1. And be
ause, using (1 and (12), PB(co(Uα)) = PB(co(1U) + co(2U)) ⊆

PB(co(1U)) + PB(co(2U)) ⊆ RN
+ , also

PB(co(Uα)) = PB(Hα).Now we obtain, noting that feasible sets and negotiation sets are 
ompa
t, using Lemma 3,
PB(Hα) = PB(co(Uα)) = PB(co(1U) + co(2U)) =

PB(co(1U)) + PB(co(2U)) = PB(1H) + PB(2H) = PB(1H + 2H) = PB(Hag). Q.E.D.Proof of Theorem 4. First a lemma:Lemma 7 Suppose a ∈ PB(Hag). Then
a ∈ EXP ⇔ N+

co(Uα)(a) = ∅. ⋄Proof.� ⇒. Let c ∈ PB(Hα) su
h that c ≫ a. For all γ > 0 one has γ · (c − a) > 0. Be
ause
c ∈ co(Uα), it follows that γ 6∈ N+

co(Uα)(a).
⇐. By Lemma 5 one has a 6∈ PBw(co(Uα)). Let c ∈ co(Uα) with c ≫ a. Sin
e a ∈ RN

+ , also
c ∈ RN

+ . This implies c ∈ Hα. Thus a ∈ EXP. Q.E.D.Now we prove Theorem 4. A

ording to Lemma 7 the proof is 
omplete if we 
an prove that
N+

co(Uα)(a) 6= ∅ for all a ∈ PB(Hag).So suppose a ∈ PB(Hag) = PB(
∑

k kH). By Lemma 5 one has N+
P

k kH
(a) 6= ∅. Be
ause

a ∈
∑

k kH , there exists ka ∈ kH(k ∈ M) su
h that a =
∑

k ka. With (8) one obtains
∩kN+

kH(a) 6= ∅.By assumption PB(co(kU)) ⊆ RN
+ for all k. Therefore PB(co(kU)) ⊆ RN

+ ∩ co(kU) = kH . So we
an apply Lemma 2 with A = kH and B = co(kU) and get
N+

co(kU)(ka) = N+
kH(ka) (k ∈ M)and therefore

∩kN+
co(kU)(a) 6= ∅.Applying again (8) one obtains N+

co(Uα)(a) 6= ∅. Q.E.D.Referen
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