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On Economic Optimization: 
A Nontechnical Survey 

Richard H. Day 
Professor of Economics 

University of Southern California, Los Angeles 

For at least two centuries economic principles have involved three fundamen
tal concepts. First, individual or group behavior can be explained —at least in 
part —as the result of pursuing one's advantage. Second, a given system of in
dividuals or nations may possess a kind of harmony or equilibrium when each 
individual or nation pursues its own advantage. Third, if the environment is 
properly structured, the working of an economy may bring about individual 
optima and group equilibria. As early as Cournot [1838], these ideas began 
to receive an explicit mathematical treatment. It was Cournot who first used 
calculus to analyze the three classical notions of optimum, equilibrium, and 
process in markets. The methods that he initiated dominated analytical eco
nomics for over a century. The more or less definitive form of this neoclassi
cal, marginalisteconomics was established by Jevons [1871] .Marshall [1890] , 
and Walras [1874] and culminated with Hicks's Value and Capital [1939] 
and Samuelson's Foundations of Economic Analysis [1948] . 

From the vantage point of our generation it is clear that something sub
stantial was lost in the neoclassical mathematization of classical economic 
thought. The issue involves alternative assumptions about the underlying 
structure of choices and its role in bringing about compatibility between indi
vidual optimization and group equilibrium. It is now clear, thanks to Samuel
son [1949, 1959a, 1959b] and others, that some of the classical ideas—for 
example, the theory of rent (Malthus, West) and the theory of trade (Ri
cardo, Mill) —are most naturally expressed by means of linear programming 
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58 RICHARD H. DAY 

models, a postneoclassical development. But this linear programming struc
ture could not be accommodated in the "smooth" neoclassical world. With 
the advent of Arrow and Debreu's analysis [1954] of general equilibrium this 
problem was overcome. Classical linearities and inequalities could be incorpo
rated into the general economic optimization framework. Thus, modern opti
mization theory not only helps to mathematize and illustrate classical ideas, it 
makes it possible to identify the fundamental unity in two centuries of eco
nomic thought. 

The transition to the modern period began to occur even before the clos
ing of the neoclassical system by Hicks and Samuelson. The catalysts for this 
include Leontief, Von Neumann, and Wald. Leontief's input-output or inter
industry model [1928, 1936] and Von Neumann's growth model [1937, 
1945] captured essential features of classical thought and through the use of 
algebra forced a shift away from the calculus of the neoclassical school. The 
game theory of Von Neumann [1928] and Von Neumann and Morgenstern 
[1944] made possible a profound new formalization of the multiperson joint 
optimization problem inherent in economics and introduced the axiomatic 
method and topology. Wald [1936, 1951] contributed the first rigorous 
proof of the existence of general equilibrium among economic optimizing in
dividuals. The full impact of this reorientation came at mid-century when the 
duality of constrained optimization and economic valuation was established 
by Gale, Kuhn, and Tucker [1951] and Kuhn and Tucker [1951] and when 
efficient optimization algorithms were discovered. Especially because of 
Dantzig's simplex method [1949] for linear programming, optimization be
came a tool for planners as well as a theory for economists. Further back
ground material relating optimization concepts to the history of economic 
thought will be found in Samuelson [1948] , Koopmans [1951] , Dorfman, 
Samuelson, and Solow [1958] , and Leontief [1960] . 

During the past two decades modern optimization theory and methods 
have continued to develop, and at the same time their effective application 
has spread to a growing variety of important applied problems. The literature 
is indeed by now so vast as to preclude a comprehensive survey. In this over
view, therefore, we shall present a nontechnical summary of the most impor
tant concepts involved in these developments for economic theory and ap
plied analysis. The applications of optimization theory to problems in agricul
tural and resource economics are reviewed elsewhere in this volume (see "Op
timization Models in Agricultural and Resource Economics" by Richard H. 
Day and Edward Sparling). 

Optimization Models 

For a very long time the mathematical development of theoretical and ap-
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plied economics was severely circumscribed by the limited class of optimiza
tion model types with which it could cope. Though many fundamental bar
riers remain, the breakthroughs just recalled resulted in a spectrum of opera
tional optimizing models. This spectrum can be broken down according to 
the components of an optimization model which we will outline. Various im
portant examples are then illustrated. Next, the concept of infinite program
ming is used to show how the classical and neoclassical optimization ap
proaches are related. Remarks on the distinction between problems and mod
els conclude the chapter. 

The following more or less standard definitions will facilitate our discus
sion: "Optimizing" is finding a best choice among possible or feasible alter
native choices. An "optimization model" is a specific formalization of a prob
lem in terms of its comparable alternatives, the criterion for comparing alter
natives, and the feasible alternatives. A "mathematical optimization model" 
consists of a "choice space," which is the set of comparable alternatives, an 
"objective function," which describes how alternatives are to be compared, 
and a "feasible region," which is a subset of the choice space and contains 
those alternatives that are eligible for choice. The feasible region is usually — 
though not always —defined by equations or inequality constraints. 

The choice space. Virtually all economic optimization models involve real 
linear spaces in which each comparable choice may be represented by a vector 
of real variables. If the dimension of the choice space is finite, so that the 
number of choice variables is finite, we have a finite-dimensional optimization 
model. Otherwise the model is called infinite-dimensional. If each variable or 
component in the choice space can take on any real value, we have "continu
ous" or "real" optimization; if each variable may take on only discrete values, 
we have "discrete" or "integer" optimization. If some variables are discrete 
while others are continuous, we have "mixed integer" optimization. Accord
ing to the type of choice space, then, we may distinguish six types of optimi
zation models as summarized in the following outline. 

Optimization Models by Type of Choice Space 

1. Finite-dimensional optimization 
1.1 Continuous or real variables 
1.2 Discrete or integer variables (integer programming) 
1.3 Continuous and discrete variables (mixed integer 

programming) 
2. Infinite-dimensional optimization 

2.1 Continuous variables 
2.2 Discrete variables 
2.3 Continuous and discrete variables 
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6 0 RICHARD H. DAY 

The linear and quadratic programming problems and the neoclassical optimiz
ing fall in category 1.1. The transportation problem is an example of category 
1.2. Models including increasing returns to scale utilize category 1.3. Optimal 
control and dynamic programming models are often defined for an infinite 
future and provide examples of category 2.1. Categories 2.2 or 2.3 would 
arise if "lumpy" or discrete capital goods were incorporated into the infinite 
optimization, though to date this does not appear to have been done. 

The objective (criterion, utility, payoff) function. In mathematical op
timization alternatives are compared by means of their real value as given by 
some real valued function. This function defines a preference ordering on the 
alternatives in the choice space. Objective functions may be classified accord
ing to their mathematical properties: smoothness or continuity properties, 
concavity or convexity properties, separability or interdependence properties, 
and special forms. Thus we have the following outline which gives some of 
the relevant distinctions. 

Function Characteristics 

1. Continuity properties 
1.1 Semicontinuous, upper or 

lower (allows for step func
tions) 

1.2 Continuous functions 
1.3 Differentiable functions 
1.4 Twice-differentiable func

tions 
Etc. 

2. Concavity properties 
2.1 Concave (convex) 
2.2 Strictly concave (convex) 
2.3 Pseudo concave (convex) 
2.4 Quasi concave (convex) 

2.5 Strictly quasi concave 
(convex) 
Etc. 

Separability properties 
3.1 Partially separable 
3.2 Completely separable 
Special functional forms 
4.1 Linear 
4.2 Quadratic 
4.3 Power 

Etc. 
Monotonicity properties 
5.1 Nondecreasing (increasing) 
5.2 Strictly increasing (decreasing) 

In discrete or mixed optimization problems the objective function is usually 
defined on the continuous space within which the choice space is imbedded. 
The preference ordering is then defined for all continuous choices even though 
only discrete ones are allowed. 

The feasible region. If the choice is unrestricted in the choice space, the 
optimization model is called "unconstrained." In this case the feasible region 
is the entire choice space. Otherwise, when the feasible region is a proper sub
set of the choice space, it is called "constrained." Feasible regions are classi
fied according to various criteria: closedness (containing limit points), bound-
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edness, or more generally by their compactness or noncompactness; convexi
ty properties; and special functional forms. If the feasible region is defined by 
an equation, or a set of equations, then we have an "equality-constrained op
timization model." If it is defined by inequalities, it is called an "inequality-
constrained problem." Because an equation can be expressed by two inequali
ties, the latter contains the former as a special case. Nonetheless, because 
mathematical techniques employed in each differ markedly, equality and in
equality cases should be regarded as separate categories. In either event it is 
necessary to define constraint functions. For each type of constraint function 
we get a specific type of optimization problem. Thus the classes of functions 
enumerated above are relevant from this point of view too. The following 
outline summarizes the most important criteria for determining types of feasi
ble regions. 

Feasible Region Characteristics 

1. Unconstrained optimization: The feasible region is the entire space. 
2. Equality-constrained optimization: The feasible region is defined by equa

tions. See the table of function characteristics above. 
3. Inequality-constrained optimization 

3.1 Compactness or noncompactness 
3.2 Geometric properties 

(1) nonconvexity 
(2) convexity 
(3) strictly convexity 
(4) polyhedral form (as in linear programming) 

3.3 Constraint function types. See the table of function characteristics 
given earlier. 

The basic questions of optimization theory must be posed for each optimi
zation model or class of models: (1) Do solutions exist? (2) How many are 
there? (3) How can solutions be characterized? (4) How can solutions be 
found? The answers and the methods used to obtain them depend of course 
on the characteristics of each model type. The neoclassical economists rarely 
concerned themselves with the possibility of multiple optima, indeed, they 
used the calculus of smooth functions to structure models which possessed 
unique solutions although they were characteristically vague about, or even 
ignored, the exact model characteristics to justify their results. The implica
tions of these mathematical issues for economic theory are of greater impor
tance than is usually recognized. Indeed, with the appreciation of function 
characteristics in optimization theory (especially convexity properties) has 
come the significant realization that what was once assumed to be true of all 
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private or public ownership economies could in fact be proven true only for 
economies with very special and not too realistic constraint and preference 
structures. 

Modern optimization theory addresses itself very often to situations in 
which many "best" solutions exist such as in linear programming. In this ex
ample the set of solutions forms a simplex, a "polyhedral face" generated by 
its extreme points. The location of such extreme points was found by Dantzig 
to involve sequences of straightforward algebraic calculations. This shows 
how theoretical characteristics yield insights leading to answers to the ques
tion: How can solutions be found? Another example, brilliantly expounded 
in Samuelson's classic "Market Mechanisms and Maximization" [1949] shows 
how the duality properties of constrained optimization can be used to guide a 
sequence of relatively simple adjustments to the constrained optimum thus, 
in effect, mimicking the market process. We shall return to these issues later. 
However, at this point we illustrate a few of the most important optimization 
models in a way that brings out some of their distinctive features. 

In figure 1 the isoquants of an objective function are illustrated by more 
or less concentric, somewhat irregular curves. The arrows normal to these iso
quants indicate the direction of locally steepest ascent of the objective func
tion. Point A is the optimizer of the unconstrained problem. The curve in the 

CM 

UJ 
_ l 
m 
< 
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Figure 1. Unconstrained and equation-constrained optima 
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upper right part of the diagram illustrates an equation constraint to which the 
choice would be confined for an equality-constrained problem, in which case 
the optimizer is the point B, as point A is no longer feasible. Figure 2 shows 
how the mathematical programming model varies in its structure according to 
changes in the choice space and in the type of objective and constraint func-
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• » i 
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/ " ^ 
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i \ 
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(k) (1) 

Figure 2. Some types of mathematical programming models 
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tion. Diagram (a) is the linear programming model, (b) the mixed integer, and 
(c) the integer linear programming model. In the first column the choice vari
ables can vary continuously; the feasible region is the shaded area on the dia
gram. In the middle column variable 2 must be an integer while variable 1 can 
be continuous; the feasible region consists of the parallel lines. In the last col
umn only integer variables are allowed; the feasible region is represented by 
the dots. The rows show how problems in these three categories change as ob
jective functions and/or constraint functions change from linear to concave or 
convex or to nonconcave or nonconvex functions. Diagram (I), for example, 
illustrates integer programming with quasi concave objectives and nonconvex 
constraints. 

Representing choices as integer variables introduces mathematical difficul
ties of a most formidable nature. There is some intellectual irony in this fact 
for in the pure integer case the number of feasible alternatives, if the feasible 
region is bounded, is finite; an exhaustive search is possible. In the continuous 
case the number of contenders for choice is nondenumerably infinite, even in 
a problem with only one dimension, and exhaustive search is impossible. Yet 
it is usually easier to solve continuous models at least approximately than it is 
to solve discrete ones. In the linear programming model where objective and 
constraint functions are linear, an unfortunate consequence of this fact is 

Figure 3. Continuous (A) and integer (B) solutions; 
suboptimal integer solutions (C, D) 
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easily illustrated. Figure 3 shows the true feasible region consisting of integer 
valued variables (dots) inside the shaded convex feasible region where the 
variables are assumed to be continuous. The continuous variable optimum is 
A, a point very far removed from the ("true") integer optimum B. If we 
round the continuous solution A to its nearest integer value, we get C or D, 
points also far removed from the optimum. 

Infinite-dimensional programming. Optimizing over an infinite horizon 
arises in economic theories of capital and growth. When formalized, these 
theories lead to programming models in which the choice space is infinite-
dimensional. (We shall take up this class of models later.) What is scarcely ap
preciated by economists, though fundamental in mathematics, is the extreme
ly close relationship between infinite-dimensional and finite, continuous prob
lems. We touch on this point next because it affords an opportunity to show 
how concepts from mathematical optimization theory can be exploited to re
veal the underlying unity of various schools of economic thought to which we 
referred in the first section of this chapter. 

Let us consider the purely competitive optizimizing problem of the price-
taking firm that produces an output in amount y, using an input in amount x 
according to a production function illustrated by the smooth curve in figure 
4. If the profit isoquants are parallel to the straight line marked n = Py — Qx , 
then the optimum is point E. If instead of the smooth neoclassical curve f(x) 
we used the linear approximation OBD, we would obtain an approximation 
to the neoclassical problem which we could represent using linear program
ming. The solution of this problem is point B in figure 4. By choosing a better 
linear approximation of the production function —say, OABCD —point A, 
which is closer to the neoclassical solution, is chosen. By making finer and 
finer linear approximations we could in this way come as close to the smooth 
optimum solution E as we pleased, just as a circle can be approximated as 
closely as we like by a polygon. As we do so, the dimension of the approxi
mating linear programming problem increases, going in the limit to infinity 
where the approximation is perfect. In this way we see a type of duality be
tween infinite-dimensional linear programming and finite-dimensional non
linear programming. 

The mathematical duality just illustrated is analogously reflected in the 
history of economic thought. It is well known (we recall our earlier references 
to Samuelson) that the classical theory of production, most clearly expound
ed by Ricardo in his exegesis of the Malthus-West theory of rent, involves a 
linear programming problem like that illustrated by the piece-wise linear pro
duction function in which the input variable is interpreted to be the amount 
of land with different qualities and in which the yield declines as more land is 
brought into cultivation. By increasing the number of qualities of land we see 
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Figure 4. Linear programming as an approximation 
of neoclassical optimizing 

the convergences of the classical linear programming to the neoclassical smooth 
production function point of view developed many decades later. 

The logical duality of the classical-neoclassical points of view should now 
alert us to a need for care in how we interpret the term "approximation." 
Whether we regard the classical linear programming model as an approxima
tion of the neoclassical smooth optimization model or vice versa is a matter 
not of logic but of relevance, convenience, or interpretation in a particular ap
plication. Either may be used as an approximation to some real optimization 
problem, and one may be preferred to the other on empirical or computation
al grounds, depending on the nature of the problem at hand. A few econo
mists still seem to think that neoclassical economics is economics whereas 
other forms of optimization theory are methods of operations research of no 
intrinsic economic interest and useful only in computation settings. Nothing 
could be further from the truth, as the above exercise demonstrates. Indeed, 
the neoclassical framework is of no more or less interest or relevance than its 
classical predecessor, and the very much more general formulation of modern 
optimization theory encompasses both and establishes their underlying unity. 
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It is also important to distinguish between model and problem optima. For 
example, we often use models involving continuous variables when, clearly, 
many economic variables are discrete in nature (machines, factories, farm 
buildings). Actual choice situations therefore must often distinguish among 
"lumpy" alternatives. The continuous optimization model must then be 
thought of as an approximation to an underlying discrete optimization prob
lem. That the approximation may not be close is a possibility we have already 
illustrated in figure 3. 

The interested reader should become acquainted with the following texts, 
which among them cover all of the major optimization model types. We list 
them in (roughly) ascending order of difficulty: Heady and Candler [1958] , 
Hadley [1962], and Gale [1960] cover linear programming; Hu [1969] is 
concerned with integer and mixed-integer models; Hadley [1964] , Intriligator 
[1971] , Mangasarian [1969] , and Karlin [1959] among them cover nonlin
ear programming, dynamic programming, and optimal control; Canon, Cul-
lum, and Polak [1970] and Leuenberger [1969] give a unified treatment of 
programming, programming in infinite spaces, and optimal control. Aubin 
[n.d.] provides an advanced synthesis of optimization and game theory em
phasizing duality relationships. There are also several excellent expository 
pieces by Dorfman [1953] on linear programming, Dorfman [1969] on op
timal control, and Baumol [1958] . 

Parametric Programming and Comparative Static Analysis 

In both theoretical and applied economics the study of how optima change 
in response to changes in the situation of the decision maker is of extreme 
interest. In optimization theory this study is called parametric programming 
or perturbation analysis. In economic theory it is called comparative statics. 
By means of it economists have constructed special theories of consumer de
mand, of producer supply, and of derived producer demand. Moreover, the 
careful mathematical study of optimizing behavior plays a central role in 
modern general equilibrium theory. This is because the theoretical analysis 
of the existence and properties of general equilibria depend on how well-
behaved or smooth optimal sets are in their response to market situations. 

In neoclassical models in which unconstrained or equality-constrained op
timizations are specified, functions are assumed to be sufficiently smooth to 
make possible application of ordinary calculus. Equations are defined by set
ting the gradient of the objective function, or of the Lagrangian (in the equali
ty-constrained case), equal to zero. Any optimum must satisfy these equa
tions. These so-called first-order conditions are then interpreted as implicit 
functions which can be solved to give the decision variables as functions of 
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the parameters and exogenous variables of the problem. Even if this explicit 
functional dependence cannot be derived practically, it is often possible to 
infer its qualitative character such as "an increase in price will cause a fall in 
demand" and so forth. Econometricians are especially interested in those 
models for which the equations can be solved, for then the parameters of the 
optimization model may be estimated in reduced form. 

As we have already noted, the classical models did not have sufficient regu
larity to make possible the application of calculus, and no doubt largely for 
that reason interest in them waned until the modern era, when the tools for 
inequality-constrained optimizations were perfected. Efficient algorithms for 
parametric programming made possible a reconsideration of step supply and 
demand functions and the kinked total cost functions of the classical produc
tion theory. They also made it possible to conduct traditional comparative 
static analysis for a vastly expanded range of economic problems. 

The achievement was not without cost, however, for the neoclassical equi
librium and welfare theory completed by Hicks, Lange, and Samuelson did 
not cover the more general optimizations used in practical decision making. 
The methods for studying the modern optimization models in the genera] 
equilibrium setting, however, were not long in coming. Arrow and Debreu 
[1954] and McKenzie [1955] showed how topological methods and convex 
analysis could be used to extend the results on existence and efficiency of 
competitive equilibria to an economy made of modern (and classical) mathe
matical programmers. 

The supply and demand functions that emerge from the modern point of 
view include, in addition to the traditional smooth neoclassical variety of 
Marshall's principles as shown in figure 5 (b), the classical step functions and 
the modern multivalued mappings or correspondences of the kind illustrated 
in figure 5 (a), (b), and (c). In (a) we find several prices at which the underly
ing optimizing behavior can take on any one of several possible supplies or de
mands. In (c) this indeterminance is continuous. In (d) optimizing behavior of 
a consumer also becomes indeterminant after some income level is reached. 
Any quantity within a given range inside the shaded area might be picked. 
The incorporation of the integer and mixed integer cases into the main stream 
of economic theory was given an impressive beginning by Charles Frank 
[1969] . But a complete comparative static treatment of it as needed for gen
eral equilibrium theory remains a task for future contributors. The kinky 
step function and correspondences that derive from modern parametric pro
gramming often have more complex qualitative appearances than their neo
classical counterparts and can indeed seldom be expressed in mathematically 
closed form. Instead they must be derived computationally and except for 
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Figure 5. Comparative statics 

the smallest problems computers mus t be used. The trouble and expense of 

these computa t ions and the corresponding lack of hard, general results in 

such si tuations no d o u b t explain in part the cont inued vitality of the simpler, 

bet ter behaved, and less realistic neoclassical models. 

The classical work on comparat ive statics is Samuelson's Foundations of 

Economic Analysis [1948] . He gave the definitive form of the neoclassical 

parametric opt imizat ion and, through the copious exploration of discrete 

(not infinitesimal) changes and inequalities, anticipated much of the quali

tative character of the modern economic structures. Early t rea tments of 

parametric linear programming are presented by Simon [1951] , Hildreth 

[1957] , and Manne [1956] . Much less has been done in comparative statics 

for nonlinear and infinite programming, although the very recent work of 

Araujo, Chichilnisky, and Kalman [1973] promises to provide a break

through in this area. 
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Duality 

Our classical predecessors emphasized the fact that use-value was a necessary 
but not sufficient property for a thing to possess value in exchange. It had al
so to be scarce or costly to acquire. The neoclassical economists began to un
ravel the logical mysteries connected with this simple insight. But they failed 
to unravel them all. It was not until the Kuhn-Tucker theorem for nonlinear 
programming and the duality theory of linear programming appeared that the 
essential classical insights on value theory were fully mathematized. The full 
duality of optimization became evident: as values determine choice, so choice 
imputes values. Moreover, a resource has economic value only when more of 
it would allow preferred choices to be made, or when less of it would force 
acceptance of less preferred alternatives. 

In the latter form we see an application of perturbation or comparative 
static analysis, for one way in which to formalize the duality concepts of val
ue is to study how the value of the best choices varies when one resource at a 
time is varied slightly. One arrives in this way at the generalized marginal val
ues, shadow prices, Lagrangian or dual variables of general optimization theo
ry, and various versions of the Kuhn-Tucker theorem. Figure 6 (a) illustrates 
this comparative static view. When constraint one (denoted CI) is perturbed 
so that the feasible region expands, the best choice shifts from A to B with an 
increase in the value of the program. Hence, CI has an imputed value which 

(a) Constraint 
perturbation 

° g= yih i+ y2^2 

^Tangent cone at A 

(b) Tangent and 
normal cones 

Figure 6. Two views of duality 
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is roughly the increment of value divided by the increment by which the con
straint is augmented. In contrast, when C2 is shifted, the optimum does not 
change. Hence, no value is imputed to constraint C2. These imputed values, 
either positive or zero as the case may be, are, roughly speaking, the partial 
derivative of the optimal value of the paragram with respect to changes in the 
limitations or "right-hand-side" coefficients. 

An alternative, essentially geometric view of duality is illustrated in figure 
6 (b). Here we show an optimum A at which both constraints are binding. At 
this point each constraint possesses a plane of support which is the tangent 
plane at the optimum point A. The two planes of support are denoted HI and 
H2 and are determined by the normal vectors h-i and l^ . These in turn deter
mine a supporting cone called the tangent cone. It is the intersection of all 
the half spaces determined by the planes of support containing the feasible re
gion. The gradient g of the objective function., which points in the direction 
of steepest ascent, can be expressed as a linear combination of the normal 
vectors that define the supporting cone with weights, say, y-y and y£. That is 
6 = y i n l + v 2 n 2 - These y's are the dual variables or economic imputations 
implied by the optimum choice at A. 

This geometric point of view brings out in stark relief the relationship be
tween imputed values and the convex shape of the constraints and objective 
functions of the optimizing problem. Indeed imputed value is difficult to de
termine or even to interpret in some of the less regular optimization models. 
In these latter cases little can be said about the possibility or efficacy of de
centralized market mechanisms. On the other hand the computation of op
tima is likewise difficult so that central planning may still be difficult or im
possible to carry out in such cases. Procedures more or less the same as trial 
and error must be invoked. 

The references given at the end of the section on optimization models all 
have good discussions of duality. Much of the contemporary work in duality 
theory stems from Rockafellar's Convex Analysis [1970] . Balinsky and Bau-
mol [1968] supply an elaborate economic exegesis of duality in nonlinear 
programming, and Leuenberger [1969] gives a good advanced treatment. Au-
bin [n.d.] provides an extremely general abstract development. 

Algorithms 

It is often said that modern optimization concepts were given their great im
petus by the electronic computer and George Dantzig's simplex method, for 
it is one thing to know that an optimum exists and quite another to know 
how to find one economically. The simplex method for linear programming 
was extended to various quadratic programming models, to mixed integer 
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programming, and to other examples. Very quickly thereafter various gradi
ent methods appeared for nonlinear programming when the functions were 
convex or concave. Gradient methods (or methods of steepest ascent) of vari
ous kinds were suggested, some of which were built directly on the Kuhn-
Tucker theorem and some of which were geometrically motivated. 

Implicit in every optimization model whose numerical solution is sought, 
is the question, "What is the optimum way to find the optimum?" That is, 
"How can the cost of using a given optimizing model be minimized?" One of 
the very early discoveries connected with the new simplex algorithm was its 
astonishing efficiency for general classes of problems. Yet, no one has ever 
shown it to be the best algorithm for general linear programming problems. 
Indeed, new modifications and improvements continue to appear, and better 
ways of finding optima for special types of linear programming models are 
found in a seemingly unending progression. 

The technical issues involved can be illustrated by a smooth, unconstrained 
minimization model that has a geometric analog, the finding of a lowest point, 
A, in a valley. Now imagine that the diagrams in figure 7 are the contour 
maps of this valley. A ball could be released at point 0. If it were propelled 
solely by gravity, it would presumably follow the path of most rapid descent, 
a smooth curve as shown emanating from the initial point and minimizing its 
elapsed time of arrival to the optimum point A. This would be an optimum 
way of finding the minimum if we evaluate cost as time elapsed. But this path 
involves a continuous adjustment to the local gradient as the latter varies con
tinuously. And it assumes away inertia. Because of the latter-the ball would 
wander off the optimum path, then veer back and forth across it as shown by 
the dotted line. The ball would not in fact follow the path of steepest descent 
but a more or less suboptimal one. Practical numerical methods are somewhat 
similar to the latter kind of path. Indeed, computation algorithms must be 
blind to the situation as a whole. They proceed for a time in a given direction 
generally downward, mistakenly move up, then correct the error and deter
mine a new locally best (but globally suboptimal) direction of descent. The 
path for such an algorithm is illustrated in figure 7 (b). 

It can be stated categorically that optimal algorithms are rare and experi
ence must be used to infer how good a given procedure is and under what 
conditions a given algorithm works well. This is partly because algorithms 
for digital computers always involve sequences of relatively simple compu
tations based on purely local information. They begin at some initial, perhaps 
arbitrary starting point, compute some purely local information that indicates 
a direction in which a new guess may be chosen to improve on the initial 
guess, and calculate how far to go in that direction. A new guess is chosen and 
new local information about neighboring alternatives is computed and the 
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VARIABLE I 
(a) 

VARIABLE I 
(b) 

Figure 7. (a) The "optimal" path to A in the absence of friction and 
inertia is indicated by the solid line, with inertia it is indicated by the dashed 

line; (b) the path of a typical computer or learning algorithm 

process continues. In this way a sequence of suboptimizations is generated 
which under favorable conditions converges to a final best solution. The read
er familiar with the behavioral economics of Simon [1957] and Cyert and 
March [1963] should note here the striking similarity between optimizing al
gorithms and behavioral economics. 

Early computational experience with Dantzig's simplex method [1949] is 
discussed in an interesting manner by Orchard-Hays [1956] . The concept of 
an optimum algorithm and many examples involving unconstrained problems 
with one or only a few variables will be found in Wilde [1968] . The sequences 
of suboptimizations involved in most algorithms would appear to be analo
gous to the behavior of decision makers in complex organizations and in mar
ket economies. This suggests that the study of such algorithms should have 
considerable interest for economists. The formal mathematical study of algo
rithms was initiated by Zangwill [1969] . A recent contribution is by Fiacco 
[1974] . The relationship between otpimizing algorithms and behavioral eco
nomics was pointed out in Day [1964] and developed in the context of the 
theory of the firm in Day and Tinney [1968] . Related articles were prepared 
by Baumol and Quandt [1964] and Alchian [1950] . The reader interested in 
computational algorithms for various of the optimization models should find 
the following references of interest. A complete exegesis of the simplex meth
od is given in Orchard-Hays [1961] . Important early nonlinear programming 
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algorithms are those of Frank and Wolfe [1956] for the quadratic program
ming case, the "methods of feasible directions" in Zoutendijk [1960] , and 
Rosen's gradient projection methods [1960, 1961] for convex (concave) pro
gramming. Algorithms based on differential equations that converge to the 
Kuhn-Tucker conditions and mimic the market process stem from Samuelson 
[1949] and include Arrow and Hurwicz [1960] and articles in Arrow, Hur-
wicz, and Uzawa [1958] . 

Efficiency and Games 

The classical notion that many agents simultaneously pursue their several in
dividual advantages in an economy and that the outcome for each depends on 
the actions of all possessed formidable analytical difficulties that were not 
fully resolved until Von Neumann's theory of games was developed into a 
fundamental working tool for economists by Von Neumann and Morgenstern 
[1944] in their famous book and applied by Debreu [1952] in his paper. 

In this theory not just one but many utility or objective functions guide 
choices so that the optimizing theory as we have reviewed it so far is inade
quate. Indeed, the notion of "optimum" must be expanded. This has been 
done in various ways, but the one central to most work in economics rests on 
Pareto's concept of an "efficient" or "Pareto optimal" set of actions in which 
no one agent can choose a preferred action without forcing another player in 
the game to choose a less preferred alternative. 

The theory of games made possible a deeper understanding of many forms 
of market competition, as developed, for example, in Shubik's Strategy and 
Market Competition [1959] . It also became a basic tool in studying the theo
ry of risky decisions. Games against nature were constructed to formalize the 
problem facing a single agent when he could only guess what state his envi
ronment might take. The application to statistical inference, the scientific 
counterpart of this theory, was developed very early by Wald [1945] . 

But in spite of the extension of optimizing concepts involved in the theo
ry of games, the close relationship to conventional optimizing theory became 
increasingly evident. For example, it was seen that every two-person, zero-
sum game was equivalent to a linear programming model. Kuhn and Tucker 
[1951] showed that Pareto optimal solutions to a class of multiobjective op
timization problems could be characterized by the optimum of a linear com
bination of those objectives. This quite general duality is at the heart of wel
fare economics which shows the efficiency properties of competitive equilib
ria. 

The basic idea in this relationship between Pareto optima and conventional 
optimization is captured in the diagram shown in figure 8 (a) already familiar 
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g=(g,.g2) 

(a) The "neoclassical" case (b) The "modern" case 

Figure 8. Efficient choices 

to generations of economists. If more of U^ or Vj is better than less, then all 
vectors in the cone emanating from the point A are "Pareto better" or more 
efficient than the point A itself. But no point in the cone emanating from the 
point B is feasible except B. Hence B is a Pareto optimum or efficient point 
with respect to the variables Uj and U2. 

The set of attainable utility combinations is supported at B by the plane H 
represented by the vector g= (gi,g2)- Hence B optimizes a linear combina
tion gjUj + g2U2- Now if U1 and U2 are considered to be the satisfaction 
levels for agents one and two, respectively, then we see how the Pareto opti
mum B is represented or "supported" by an ordinary optimum. One may also 
interpret g as the gradient of a social welfare function \p (U^L^) , which is op
timized at point B. 

In figure 8 (b) the situation is shown where the set of attainable ( U j , ^ ) 
combinations is convex as in (a) but not smooth. This "modern" case is anal
ogous with the duality diagram for nonlinear programming shown in figure 
6 (b). Here the normal cone at point B gives a set of weights (gj,g2) so that 
maximizing g^Uj + g2U2 will give back point B as a solution to the implied 
convex programming problem. 

A good discussion of modern optimization and welfare economics is of
fered in Dorfman, Samuelson, and Solow [1958, chapter 14]. They bring 
out the point suggested in figure 8 that the efficient or Pareto optimal solu
tions to the "game" or multioptimization problem can be obtained by means 
of parametric programming. An early application of this technique is Manne's 
study [1956] of the United States petroleum refining industry. The concept 
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of efficient production used by Manne, so closely related to that of the Pare-
to optimal solutions of a game, was developed by Koopmans [1951] . Stan
dard works on the theory of games in addition to Von Neumann and Morgen-
stern's classic are the studies by Blackwell and Girshick [1954] .Savage [1954] , 
and Karlin [1959] . Elementary expositions are contained in Hurwicz [1945] 
and Marschak [1946] . 

Decomposition and Coordination 

In the theory of the market economy the relationship between group and in
dividual optima is brought out by showing that a price system exists in such a 
way that when all agents optimize independently with respect to it then the 
resulting actions are Pareto optimal and compatible with those prices, i.e., the 
markets are cleared and all firms and households survive. Koopmans [1957, 
part I] provides a classic modern nontechnical discussion. The problem of 
finding the "best" social choice might then be viewed as finding a price ad
justment process that will guide a sequence of suboptimizations to an effi
cient or Pareto optimal point. Such adjustment processes are called tatonne-
ment processes and represent one general means by which the problem of de
composition of social choice and coordination of individual choices is stud
ied. To be compatible with the requirement of leading to Pareto better solu
tions, such a process would have to lead to a choice lying in the cone emanat
ing from the initial starting point. Arrow and Hahn [1971] discuss tatonne-
ment-type models of market processes and Arrow and Hahn [1971] cite earli
er work in bibliographical notes. 

A second setting in which the relationship between group and individual 
optima is studied is illustrated by Robinson Crusoe, subject of the most fa
mous parable of the centrally planned economy. A Robinson (or a socialist 
state) is decomposable into Robinson the consumer and Robinson the pro
ducer by means of a price system so that Robinson the consumer can achieve 
the highest feasible utility at minimum cost and Robinson the producer can 
maximize his profit of production. This analogy, fully developed by Koop
mans [1957] , shows that with sufficiently convex technology and preference 
both the competitive market economy and the socialist economy share the 
same social equilibria. From this point of view the market is seen to be a de
vice for decomposing the economy's overwhelmingly complex problem of re
source allocation into a host of relatively simple, individual suboptimizations 
which are coordinated by the price system to achieve allocations that are effi
cient. The idea that marketlike computational procedures could be developed 
for carrying out central planning was developed by Arrow and Hurwicz [ I960] . 

With this background it is hardly surprising that some of the computer al-
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gorithms for solving large-scale complex optimization problems have charac
teristics similar to those of market tatonnement or socialist planning process
es. In these algorithms the master problem is decomposed into a set of much 
simpler optimization submodels, one of which plays the role of the coordina
tor, helmsman, planning bureau, or whatever. Each is solved and the solutions 
are passed back and forth between them. On the basis of the new information 
the submodels are reoptimized, and so a sequence of suboptimizations with 
feedback is generated which, when well conceived, will converge to the solu
tion of the master problem. An early example of such a decomposition proce
dure was proposed by Dantzig and Wolfe [1961] and applied by Kornai and 
Liptak [1965] . Kornai [1967] discussed it thoroughly in the national plan
ning setting. Malinvaud [1967] prepared an excellent general discussion of 
several alternative planning procedures. Lasdon [1970] developed a quite 
comprehensive text from the computational point of view. 

Two fundamental problems complicate the theory and impede progress in 
its development. One is the formalization of data processing, decision making, 
and administrative costs and the determination thereby of the optimal level 
of decentralization. The second is the problem of incentives. Decentralized 
procedures must be coordinated by an appropriate system of incentives and/ 
or constraints to bring about a compatibility between decentralized optima 
and the central optimum. Some progress in the former has been made by the 
developers of team theory, J. Marschak and Radner [1972] , who exploit con
cepts from decision and game theory to formalize the problem of determining 
optimal decisions and information networks in organizations. This work 
stems from Marschak's early concern with developing an economic organiza
tion theory. Attention to some of the dynamic aspects of such theory is 
found in T. Marschak [1959, 1968] . The incentive problem has been tackled 
by Groves [1973] . 

Multiple Goals 

Increasing attention is being paid to the decision problem in which many 
goals or objectives are pursued. Formally, the problem is much like the n-
person game theory in which many objective functions are simultaneously op
timized. Not unexpectedly, then, one way of approaching the problem is by 
means of the efficiency or Pareto optimality concept with which we have al
ready been concerned in several different settings. In particular, the Kuhn-
Tucker efficiency theorem mentioned in the section on efficiency and games 
serves as the basis for an interactive planning procedure involving a planner 
who has several measurable goals. In this procedure, developed by Geoffrion, 
Dyer, and Feinberg [1972] , a decision maker is asked to specify an initial set 
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of "weights" gi and g2- An efficient point is found if his goal functions are 
concave. He is then asked to choose new weights and a new efficient point is 
found. If the decision maker has a sufficiently regular utility function com
bining the separate goals or objective functions into a single overall goal, then 
this iterative sequence will lead to the optimal fulfillment of all the goals. If 
not, he is left with a number of efficient or Pareto optimal possibilities. 

Another approach, suggested by Georgescu-Roegen [1954] , is that of lexi
cographic orderings in which the several goals or objective functions are ar
ranged in a hierarchy. Each is maximized or satiated one after the other until 
no further scope remains for choice. The relationship of such a procedure to 
rational choice axioms was investigated by Chipman [ I960] , Encarnacion 
proposed various applications (for example, see Encarnacion [1964] ). Day 
and Robinson [1973] established sufficient conditions for such choice mod
els to be compatible with the requirements of general equilibrium theory. A 
comprehensive collection involving these and other approaches was assembled 
by Cochrane and Zeleny [1973] . 

Risk and Uncertainty 

Although the formal study of risk began during the classical era of economics 
with Bernoulli and Laplace, and though its importance was recognized and ac
counted for in the neoclassical period by Marshall and Walras and later by 
Knight [1921] and Hart [1942] , its formal treatment by means of optimi
zation theory is of modern origin, at least so far as economic theory is con
cerned. Early attempts to study the problem mathematically in an economic 
setting were made by Makower and J. Marschak [1938] and by Tintner 
[1941] . But it is in Von Neumann and Morgenstern's seminal game theory 
book and in Savage's fundamental work on decision theory [1954] that the 
decision-theoretic foundations were definitively established. The Von Neu-
mann-Morgenstern approach is that of expected utility and makes it possible 
to study the "best choice" which accounts for risk using conventional opti
mization theory. 

In brief, probabilities (assumed usually to be subjective in nature) are as
signed to states of the world. The utility is then conceived to be a random 
variable whose expected value is to be maximized by choosing an appropriate 
act or decision, subject to the constraints of the problem. Risk-averting, risk-
preferring, and risk-neutral individuals can be represented in this way and the 
propensity to hedge, to carry portfolios, or to gamble can be explained. Ap
plication in economics are by now widespread and, depending on the specific 
form of the underlying spaces, the risky decision problem is converted into a 
linear, quadratic, or more general nonlinear optimization problem. Arrow 
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[1951] prepared a very comprehensive early survey, and Van Moeseke 
[1965] published an excellent discussion using modern nonlinear program
ming theory. Markowitz [1958] took as his subject the analysis of "port
folio" type behavior using quadratic programming. Dillon [1971] wrote a 
comprehensive review of various approaches. 

Bayesian decision theory represents an extension of the Von Neumann-
Morgenstern approach to the dynamic setting in which the decision maker 
faces a sequence of choices. At each stage he may modify his subjective prob
abilities on the basis of current information. An optimal choice can then be 
made. This approach represents a true formalization of Knight's concept of 
uncertainty as opposed to risk, for it explicitly treats the probabilities as un
known. The dynamic nature of the Bayesian point of view is brought out lu
cidly in J. Marschak's "On Adaptive Programming" [1963] . Various applica
tions to problems in econometrics are developed in Zellner [1971] . Cyert and 
De Groot [1975] examine its application to the theory of the household. 

So far the approaches summarized involve properly accounting for the pos
sibility of doing better or worse than one expects by incorporating into the 
objective function terms that account for risk and uncertainty. A different 
component that deserves equal attention is the feasible region, for one out
come of a risky or uncertain decision is the impossibility of carrying out the 
desired choice. At worst this situation spells disaster, at best it forces a new 
choice. Again, the specific ways in which this problem has been formalized 
are numerous, but one must mention all of the "safety-first" and risk-pro
gramming procedures —for example, those developed by Charnes and Cooper 
[1959] and Roy [1952] and reviewed by Sengupta [1969] . Day, Aigner, and 
Smith [1971] provided an exposition of this approach in the setting of the 
elementary theory of the firm; in their paper three variants of the approach 
are discussed —one which minimizes the probability of disaster or maximizes 
the safety margin (safety), one which maximizes expected utility given a 
fixed probability of disaster (safety-fixed), and one which maximizes expect
ed utility given that a minimum level of safety (probability of survival) has 
been reached (safety first). The last approach leads to a lexicographic order
ing of survival probabilities and expected utility. 

Another approach to the study of decision making under uncertainty is 
that of game theory where the agent is characterized by a game against na
ture or where two or more agents, represented by two or more persons in the 
game, account for the most damaging strategy against them. This approach, 
founded by Von Neumann [1928], was developed by Von Neumann and 
Morgenstern [1944] . More recent texts include those by Blackwell and Gir
shick [1954] , Savage [1954] , and Karlin [1959] . Elementary expositions are 
provided by Hurwicz [1945] and J. Marschak [1946] . 
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In all of the above approaches probabilities are explicitly involved. A gen
eral principle that need not make explicit use of probability is the "principle 
of cautious optimizing" outlined elsewhere by Day [1970] . In this approach 
the decision maker being modeled optimizes in the usual way except that he 
limits his choices to alternatives "close enough" to a safety zone. The region 
of "safe enough" solutions can be based directly on a safety metric or "dan
ger distance" instead of a probability of disaster. It therefore generalizes and 
places on a behavioral footing the idea of safety-first decision making. An al
ternative but closely related way of modifying the feasible region to account 
for uncertainty is Shackle's idea of focus loss [1949]. In the form developed 
by Boussard and Petit [1967] for a firm with a linear programming choice 
structure, the agent has a focus on loss or disaster level associated with each 
activity. In addition, the firm has an allowable level of loss usually associated 
with some minimal survival income. Each activity has an allowable proportion 
of the total allowable loss, and each activity adds to the allowable loss by in
creasing the total expected income. 

Dynam ic Op tim iza tio n 

The role of foresight in decision making can be illustrated by means of a dia
gram which incorporates several of the fundamental ingredients of dynamic 
optimization theory. This is done in figure 9. "States of the world" are repre
sented by axis s and acts or decisions (we do not distinguish between the two 
here) are represented by axis a. Associated with each state is a feasible inter
val of choices. The interval is determined by a correspondence (see figure 5) 
in the upper right quadrant. For example, the set of feasible choices associat
ed with the initial state SQ is that part of the vertical line through the point SQ 
that lies in the shaded graph representing the feasibility correspondence. To 
each act on the upper vertical axis is associated a payoff or outcome as deter
mined by the concave payoff function in the upper left quadrant. For exam
ple, TTQ is the payoff associated with the act ag. The environmental transition 
is represented in the lower left quadrant and shows how the state changes in 
response to each act. Thus, if the agent chooses ag, the succeeding state will 
be s^. By measuring the act on the same scale as the payoff we can project 
the act chosen onto the left horizontal axis, in this way generating a dynamic 
process. 

Now suppose we begin with a rational but myopic decision maker. He 
knows the feasible region given the state s, and he knows the payoff function. 
But suppose that he does not know or try to estimate the environmental tran
sition function. Given that he does the best he can in the given situation be
ginning at SQ, he chooses ag, which leads to s-\, at which point he picks a i . 
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Pay off Function 

The interval of 
feasible choices 
depends upon the 
state. 

Act 

Environmental 
Transition 
Function 

Figure 9. "Short-sighted" and "far-sighted" optimizing 

This leads (coincidentally!) back to SQ and to choice ag again. Subsequently 
an oscillation between ag and aj occurs. The sequence of payoffs is [77g, ir-\, 

Now consider a not-so-myopic individual who knows and takes account of 
the environmental impact of his actions. Beginning at sg he chooses ag as be
fore but instead of a^ at s^ he picks a*, realizing that if he picks a^ as his my
opic counterpart did, he will be prevented, because of the environmental feed
back, from achieving such a good gain in the next period. His "far-sighted" 
choice yields a payoff level n* that can be maintained in perpetuity. Because 
7T* lies above the chord connecting 77g and n-^ the average payoff yielded by 
this far-sighted strategy is better than the myopic strategy. 

Of course intertemporal optimization theory encompasses much more 
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complicated situations than the simple one illustrated, but the basic idea is 
the same: by taking account of the future consequences of present acts one is 
led to make choices which, though possibly sacrificing some present payoff, 
will lead to a preferred sequence of events. To complete the basic ingredients 
of the theory, a utility function or preference ordering must be specified 
which will rank feasible alternative time paths such as the two alternative 
paths just illustrated and determine how much present payoff should be sacri
ficed for the sake of future enjoyment. 

The importance of foresight in economic decisions was noted by our classi
cal predecessors, but widespread application of it by the common man was a 
possibility about which Smith, Malthus, and Ricardo were hardly sanguine. 
Later economists, however, realized that the concept of foresight was essen
tial for obtaining a deeper understanding of capital accumulation than they 
had inherited in classical doctrine. An early breakthrough was Bohm-Bawerk's 
analysis of time preference [1884], a concept formalized by Fisher [1906] 
using the newly forged neoclassical theory of preference and utility. The rede
velopment of these concepts using modern control theory —for example, as 
exposited by Arrow [1968] —has led to a huge literature on optimal econom
ic growth, a product of the last two decades. At its basis is an intertemporal 
utility function of a very restricted nature, the existence of which has been 
investigated by Koopmans [1960] and Koopmans, Diamond, and Williamson 
[1964]. 

When this point of view is extended to the multioptimization problem in
herent in general equilibrium theory, one must look for the existence of inter-
temporally efficient (Pareto optimal) choices and the existence of prices that 
would permit individual intertemporal optimizations, using these prices to 
achieve the efficient solutions. The role of such intertemporal efficiency 
prices has been investigated by Malinvaud [1953] . The neoclassical version of 
general equilibrium theory from the point of view of intertemporally optimiz
ing firms and households was worked out by Hicks [1939] , but his focus was 
that of temporary rather than dynamic equilibrium. A contemporary line of 
development that extends the optimal control point of view to the game situ
ation is the work on differential games. A recent collection of studies of this 
kind (Kuhn and Szego [1971]) includes papers by Berkovitz, Blaquiere, 
Friedman, Rockafellar, and Varaiya. An example is by Simaan and Takayama 
[1974]. 

The utility aspects of decision making are omitted altogether in on impor
tant line of optimal growth theory, namely, the line emanating from Von 
Neumann's general equilibrium model [1945]. In this theory only the tech
nology of the economy is specified. No time preferences enter the argument. 
Instead, a technologically maximal rate of growth is defined and its existence 
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is determined. The existence of "prices" that would support such a rate of 
growth by profit-maximizing individuals is also established so that a behavior
al analog exists in part. Indeed, the possibility that a real economy could fol
low such an optimal balanced growth path has been investigated by Tsukui 
[1968], Dorfman, Samuelson, and Solow [1958] and Koopmans [1964] 
provide an excellent exegesis of this theory. 

Much contemporary work has concentrated on generalizing the individual 
optimization model to account for information costs, uncertainty and the 
joint estimation, and control or dual control problems. This line of work had 
led to a fusion of Bayesian statistical decision theory as developed, for exam
ple, by Zellner [1971] and stochastic control theory as described by Aoki 
[1967] . An influential control theoretic study dealing with the dual control 
problem of simultaneously deciding and obtaining improved information is 
Fel'dbaum [1965]. The Bayesian approach involves dynamic programming 
techniques as developed by Karlin [1955], Bellman [1957], Bellman and 
Dreyfus [1962] , and Blackwell [1967] . A good review of control theory, dy
namic programming, and the closely related calculus of variations is given by 
Intriligator [1971] . 

Recursive Optimization 

The existence of optimal intertemporal strategies and the implications on in
dividuals or economies whose behavior satisfies the conditions of intertempo
ral optimality have been the focus of most dynamic optimization theory ap
plied to economics in recent years. The question of whether or not individu
als of less than heroic stature could in their daily enterprise discover such be
havior has only recently begun to receive attention. One way to approach the 
problem is to break the complex intertemporal optimization problem down 
into a sequence of much simpler, possibly myopic or relatively short-sighted 
suboptimizations with feedback. The decision maker does not know the en
vironmental transition equations but merely approximates them, or more sim
ply he forecasts relevant information on the basis of past observations with
out trying to estimate the structure of the system as a whole. Then, protect
ing himself from blunders of short-run overcommitment by rules of caution 
or uncertainty or risky decision making, he optimizes the current situation. 
When new observations are available, he reestimates and forecasts the relevant 
information variables and optimizes anew. Thus a sequence of optimizations 
with feedback is generated which explains actual behavior and which, if the 
true environment is well behaved, may converge to a path that is intertempo-
rally optimal in some sense, just as a sequence of tatonnementlike adjust
ments may lead to a general equilibrium that is efficient or Pareto optimal. 
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On the other hand, such a convergence may not occur, as in the example with 
which we introduced the idea of dynamic optimization in the preceding sec
tion. It is probably not hard to convince oneself that such convergence does 
not always occur and perhaps only rarely occurs in the real world. 

Sequences of optimizations with feedback are called recursive programs. 
We have seen that such systems arise not only in the attempt to develop a for
mal theory of adaptive behavior as just outlined but also in a variety of seem
ingly quite different settings. We have, for example, observed that mathemati
cal programming algorithms have this structure. We have observed that taton-
nement and decentralized decision processes have this character also. The ex
plicit mathematical representation of economic behavior using recursive opti
mization originated with Cournot, who used it to investigate the behavior of 
competing duopolies. Later variants of duopoly theory that preceded the 
theory of games and Chamberlin's monopolistic competition theory [1948] 
used an essentially similar type of model. A growth model based on such a 
principle was stated by Leontief [1958] , and a general class of recursive pro
grams was developed by Day and Kennedy [1970] and Day [1970]. Various 
applications to quantitative modeling of industrial sectors and agricultural re
gions have been undertaken by Day and others, some of which have been col
lected in Takayama and Judge [1973] and a number of others in Day and 
Cigno [in preparation] . Applications to general equilibrium theory are sup
plied by Cigno [in preparation] and Allingham [1974]. These applications 
are based on the premise that economic agents' decisions are best character
ized by local suboptimizations of partial models of the economy as a whole 
which are updated and re-solved period after period in response to new infor
mation about what other agents have done and what the economy as a whole 
has done. Like their counterparts in the field of optimization algorithms the 
recursive optimization models usually cannot be shown to be the best way for 
the agents to suboptimize. However, some progress has been made in showing 
that recursive programs based on plausible behavioral hypotheses may con
verge to the results obtained from the optimal control point of view. 

A special and very limited class of recursive programs arises when an opti
mal strategy can be derived from the dynamic programming point of view 
which shows how, on the basis of current information and past choices, the 
next decision can be decided on in the best way. A special group of models 
falling in this category that have been widely applied in econometrics is the 
linear decision rules of Holt, Modigliani, Muth, and Simon [1960] and Theil 
[1964]. 

On the Normative Content of Optimizing 

In reviewing the theory and application of optimization concepts one is 
struck by the contrasting interpretations given to mathematical programming 
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and game theory models. On the one hand, an optimization model is formu
lated to find the "best" solution of some problem. On the other hand, it may 
be used to characterize the behavior of a real world decision maker. The falli
bility of the latter, however, is all too evident to each of us. Moreover, what is 
"best" clearly rests on a subjective basis —namely, what the agent thinks he 
likes and wants and what he thinks he can do at the time. These subjective 
constituents of optimal choice may change whenever something new is learned. 
How to learn in the optimal way is a problem shrouded in mystery, despite 
progress in decision theory. What is true of the agents in an economy in gen
eral is also true of the model builder and theorist in particular: a solution to 
an optimizing model is contingent on the structure of the model, something 
that ultimately rests on the subjective perceptions of mind and on current sci
entific theories and models which must always be approximations to the real 
world itself. We thus come to the conclusion that optimality is essentially a 
logical property of model solutions. Any normative content attributed to op
timal solutions must be subjective in character. 

Indeed, if one takes into account one's mortal existence and the problem 
of accommodating the unknown and unknowable preferences of generations 
yet unborn, one wonders what meaning, if any, the notion of intertemporal 
optimality has. As the problems associated with global economic develop
ment become better known, and as the very-long-run implications of pres
ent industrial activity receive increasing attention, this question too is bound 
to receive more and more attention. 

Concluding Remarks 

If we were to model our world system microeconomically using optimization 
theory, we should have to conceive of a game with some three or four billion 
players, a number growing at a rate of some five thousand per hour. More
over, the collection of players and its organization into groups of various 
kinds such as families and firms are variables determined in a complex way by 
the evolution of the process as a whole. We know also that nature —man's en
vironment—consisting of our nonhuman neighbors, who likewise are evolving 
in complex living systems, and the physical world must be considered as a 
player in this game. But what a player! With an uncountable number of strate
gies at his disposal. 

The fact is that none of us takes into account the actions of very many 
players in this ultimate game. Even if we should like not to do so, we ignore, 
because we must, all but a few chosen friends and enemies and acquaintances 
about whom we care or become aware. We account for tiny facets of the uni
verse in our specialized thoughts. And when we turn inward to explore our 
preferences, we find opening up before us a mystery as infinitely varied and 
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as unfathomable as interstellar space. We make simplified models of ourselves, 

solve them, and act. But we throw these models away and start over, or we 

modify them over and over again. If we fail to do so, our humanity withers 

and we become like automata in our consistency. 

Thus, optimization theories can never yield a complete theory of being or 

becoming. The man who finds his only poetry in mathematical programs, 

games, and marginal calculations, who fails to listen to his hunches and feel 

his senses to the full, who ignores the pleadings of the spirit as it cries out 

from the works of poets and prophets and painters and from dreams, is less 

a man. 

Still optimization models help us in our battle to create order. The simple 

clarity of their insights is poetry! Possibly even, their concepts belong to the 

a priori properties of mind by which, according to Kant, thought's content is 

defined, by which thought's possibilities and limits are demarcated like fiery 

poles fixing emblazoned zones in the night. In this case it would be futile for 

some new doctrine of economy to try to get along without them, just as it 

would be futile for man to try to get along without science and art in general. 
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