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ABSTRACT

We use newly constructed state-specific data to explore the implications of common modeling
choices for measures of research returns. Our results indicate that state-to-state spillover effects
are important, that the R&D lag is longer than many studies have allowed, and that
misspecification can give rise to significant biases. Across states, the average of the own-state
benefit-cost ratios is 21:1; or 32:1 when the spillover benefits to other states are included. These
ratios correspond to real internal rates of return of 9 or 10 percent per annum, much smaller than
those typically reported in the literature, partly because we have corrected for a methodological
flaw in computing rates of return.

Key Words: Spatial technology spillovers; knowledge stocks; R&D lags; public agricultural
R&D; U.S. states



In the United States, public support for investments in agricultural R&D continues to wane in
spite of consistently high reported rates of return to agricultural R&D. This apparent paradox
could simply reflect government failure, but it might also reflect skepticism about the evidence.
Certainly some public policymakers and some economists—ourselves among them—are
skeptical about the very high rates of return reported by some studies, and “gilding the lily”
might have damaged the case for public support (Alston et al. 2000).

Data limitations require the imposition of restrictive assumptions that have unknown
implications for estimation bias, but upward biases may also have resulted from particular
modeling choices that were not made necessary by data constraints (Alston and Pardey 2001).
This paper reports the main results from a long-running project in which we set out to obtain new
and improved estimates of the returns to U.S. public agricultural R&D, to evaluate the role of
modeling choices versus fundamental factors in influencing the findings, and thus to provide a
clearer understanding of the confidence that could be placed in the estimates.

To explore the consequences of common modeling choices and their implications for
measures of research returns we make use of an uncommonly rich and detailed panel of state-
level data, which we developed for this purpose. It includes annual state-specific data on
agricultural productivity for each of the 48 contiguous U.S. states over the years 1949-2002, and
on investments in agricultural research and extension expenditure by the federal and state
governments over the years 1890-2002. The indexes of multifactor productivity (MFP) are
Fisher Ideal discrete approximations to Divisia indexes that reflect a careful effort to account for
variation over time and among states in the composition of the aggregates of inputs and outputs,
and thereby minimize the role of index number problems. In our econometric models we pay

particular attention to the specification of the research lag structure and models of spatial



spillovers but, to illustrate the role of fundamental factors, we compare the resulting estimates
with simple approximations that abstract from the detail of the spatial and temporal aspects.

A more complete description of the data, models, and many of the results discussed here
can be found in Alston, Andersen, James and Pardey (AAJP 2010). Beyond presenting a
succinct synthesis of the main results in AAJP (2010), we extend that work in two important
ways. First, we present new evidence on the time-series properties of the models, which
provides additional support regarding the robustness of the results. Second, we present
alternative measures of the rate of return to the investments, demonstrating why many of the

previous results in the literature should be treated with skepticism.

Modeling Agricultural Research and Productivity

At the center of our empirical work is a model of state-specific productivity growth as a function
of investments in agricultural research, built on foundations laid by Griliches (1964 and 1979)
and Evenson (1967) among others, as reviewed by Alston, Norton and Pardey (1998) and Alston
et al. (2010). Underlying the productivity patterns are changes in aggregate measures of inputs
and outputs. In 2002, U.S. agriculture produced 2.6 times the quantity of output produced in
1949. It did this with marginally less aggregate inputs such that MFP grew faster than output.
Our estimates indicate that output increased on average by 1.68 percent per year over the period
1949-2002, while inputs used in agriculture declined by 0.11 percent per year, so measured MFP
grew by 1.78 percent per year. These averages reflect patterns of input and output growth that
varied dramatically among the 48 contiguous states. Some states had both inputs and outputs
growing, some had both falling, but the majority had output growing against a declining input
quantity, and all had positive rates of MFP growth, which ranged from 0.84 percent per year in

Wyoming to 2.48 percent per year in North Carolina over the years 1949-2002.



Investments in agricultural research and extension also evolved dramatically over the
period of our analysis, with important changes both in the emphasis among federal, state, and
local government and private sources of funding, and in the balance of effort among performing
agencies. We use state-specific panel data on investments in publicly performed research since
1890, and in extension since 1915, to develop research and extension knowledge stocks to be
used in models of productivity over the years 1949-2002. Over that period total expenditure on
public research and extension grew dramatically in total but unevenly. The intensities of
investments in research and extension conducted by state government institutions have become
quite varied, reflecting differences among states in growth in agricultural production as well as in

their investments in the creation and diffusion of knowledge.

Model Structure

We begin with a model in which agricultural productivity in every U.S. state (excluding Alaska
and Hawaii) depends on past agricultural research and extension conducted by itself and every
other U.S. state (a total of 48 states) and intramural research conducted by the USDA." We can
express this model in general terms, mathematically, as

(1) MFF, =f,(R,,E))

where MFP;,is multifactor productivity in state i in year ¢, and R, is a 49x(Lg +1) matrix in
which the typical element, R, « is the investment in public agricultural R&D made by state j (for
j=1,...,48) or the USDA (forj=49) in year t—k; similarly, E, is a 48x(Lg +1) matrix in which

the typical element, Ej, 4 is the investment in public agricultural extension made by state j in year

! There are various ways to account for R&D activity, but with an eye to the policy implications of the results, our
intent here is to evaluate the impacts of agricultural R&D on a “by performer” basis (as distinct from research
measured on a “by funder” or other basis). OECD (2002) provides details on the internationally accepted standards
for measuring R&D spending and performance that we followed in compiling our R&D data.
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t—k; L denotes the maximum number of years over which a given investment can affect MFP;
and k varies between zero and Lg.

To implement this model we have to define the knowledge stock variables, which
requires jointly defining the spillover relationships (which allow for research conducted in one
state to affect productivity in another) and the research lag distributions (which summarize the
temporal relationship between spending and productivity). Even if the research and extension
lag lengths were modest they would imply an impossibly large number of research effects to
estimate, so some restrictions must be imposed, as has been long recognized in studies of returns
to R&D. Griliches (1979) suggested that

“... it is probably best fo assume a functional form for the lag distribution on the

basis of prior knowledge and general considerations and not to expect the data to

answer such fine questions. That is, a “solution” to the multicollinearity problem

is a moderation of our demands on the data—our desires have to be kept within

the bounds of our means.” (Griliches 1979, p. 106, emphasis in original).

In our particular setting, the potential problems of multicollinearity and identification are many
times greater than in the typical study using a single time series since we have allowed for 48
states with interstate spillovers in every direction.

Previous econometric studies of effects of agricultural research on productivity, or rates
of return to research, have almost invariably imposed some structure (often implicitly) to reduce
the number of lag weights to be estimated, and to impose other prior beliefs on the shape or
length of the lag (see Alston et al. 2000 for details). Like most previous studies, and as
advocated by Huffman and Evenson (2006b), we impose some restrictions on the lag

distribution, to reduce the number of parameters to be estimated. First, as a baseline model we



assume that agricultural research and extension expenditures (at least, at the margin) are fungible
and can be combined into a single aggregate R&E variable to which the same lag distribution
would apply.? Second, we assume that the same-shaped lag distribution applies to a state’s R&E,
regardless of who is adopting the results. Thus, productivity in each of the 48 states depends on
49 state-specific knowledge stocks (one own-state research stock, 47 other-state research stocks,
and one federal research stock). Third, we assume that same lag shape applies to all the states,
within a given model. However, we do estimate the parameters that define the shape and
effective length of the lag, and in that sense our approach is less restrictive than others that
simply imposed a specific distribution a priori (such as the trapezoidal lag that was introduced by
Huffman and Evenson 1993 and applied by many others since). In addition, we explore the
implications of relaxing several of the baseline modeling assumptions.

Consequently, in the baseline model, the relationship between spending on research and
extension and the knowledge stock produced within each state can be characterized using a
single lag distribution, defined in terms of (a) an overall lag length, (b) a gestation lag, (c) a
functional form (we used a gamma distribution), and (d) within the functional form, parameters

that determine the shape of the distribution, as follows:’

? This assumption may appear rather strong, but some aggregation assumptions are necessary and are always made
in work of this nature. The research and extension variables themselves represent aggregates over different types of
activities having different lagged impacts on productivity (ranging from relatively basic research to applied outreach
and advisory services, a significant share of which may have no relationship to production agriculture, and across
different fields of science that may have more or less relevance to production agriculture). We examine the
empirical implications of this assumption later in the paper when testing the robustness of our preferred model.

? Our analysis is not confined to this baseline model and its particular assumptions. Importantly, unlike previous
studies that simply impose assumptions about the research and extension lag, we examine the implications of
alternatives, including the arbitrary and untested imposition of a particular, short lag distribution shape for extension
combined with a specific trapezoidal lag distribution for research, as used by Huffman and Evenson (1993) and
others. The results, discussed in section 5, did not especially favor the option of separate lags for extension, while
serving to illustrate the implications of that choice for the estimated rates of return and the difficulty of
discriminating among such alternatives using the kinds of data that are available.
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LR
(2) SKi,t = kz:%)bk (Ri,t—k + Ei,t—k ):

where Ly is the total lag length, and the b, parameters are the lag weights that are defined by the

alternative lag distributions, and these weights sum to one:

LR
3 Y=L
k=0

Gamma Lag Distribution Model

The research lag weights (5, ) implied by the gamma distribution are:

(k -g +1)(%—a‘);t(k—g)

Lp

Z[(k g +1)(%—5)/1(k—g):|

k=0

(4) b, =

for Lg > k> g; otherwise b= 0;

where g is the gestation lag before research begins to affect productivity, and & and A are
parameters that define the shape of the distribution (0 <3 <1 and 0 <A <1). Here, we assume a
gestation lag of g = 0 years, but several distributions defined by combinations of 6 and A that we
use imply weights very close to zero for small values of &, resulting in a longer effective
gestation lag. In addition, based on our own previous experience with similar data and models
(see, for example, Pardey and Craig 1989) and some limited pretesting as a part of the present
study, as well as a predisposition to allow for “generously” long lags, we allow for Lz = 50 years.
The resulting lag distribution allows for positive contributions to the current stock from up to 50
years of past expenditures on research and extension, but particular values of A and d can
correspond to a pattern of very low by parameters, after a time, that imply a much shorter

effective maximum lag. Hence, the research knowledge stocks are defined as
LR

(%) SK,, = ibk (Rl.’l_k + Ei’l_k) = Z((k + 1)(%5)%@ (Ri,t—k n Ez‘,t—k) i[(k n 1)(%5);&)} j

k=0
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Spillover Weights Based on Similarity of Commodity Composition

Previous studies have imposed various (largely untested) assumptions to define the interstate
spillover impacts of agricultural research and extension investments. As discussed by Alston
(2002) and AAJP (2010), many studies simply ignored spatial spillovers, attributing all state-
specific impacts to own-state investments, while those studies that have allowed for interstate
spillovers have generally defined spillover potential based on physical proximity. Here, as a
departure from those previous approaches we use a measure of spillover potential based on the
similarity of the commodity composition of output between pairs of states, and we evaluate the
implications of this assumption for results, compared with the main alternatives.*

We assume a linear state-to-state spillover relationship, such that

49
6) SS,=Y0,5K,,

J#i

where @ 1s a spillover coefficient, a weight that measures the contribution of a unit of the
knowledge stock created in state j to the knowledge stock used in state i. To define the spillover
coefficients, which measure the state-to-state spillover potential of agricultural research and
extension, we borrow and adapt an approach introduced by Jaffe (1986) to measure inter-firm or
inter-industry spillover effects. The variant used by Jaffe (1989) is closest to what we use here.
Jaffe (1989) used characteristics of the patents obtained by firms to define a measure of
technological closeness among them. We use the output characteristics of agriculture in the

different states—representing both agroecological factors and other relevant economic

* The notion here is that research spillovers among states producing similar or identical commodity portfolios are
likely to be more pronounced than among states producing dissimilar or distinct sets of agricultural outputs. Thus,
two predominantly dairy production states are more likely to be doing research of relevance to each other than if one
state produced only milk and the other only oranges. To be sure, dairy (and other) production details vary from state
to state for a host of reasons, but it is unlikely that the dairy research in New York has no application to dairy
production in Minnesota or California, as would be implied by the geographical proximity restriction incorporated in
the approach used by Huffman and Evenson (1993 and 2006a), for example.
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factors—to define the technological “closeness” of states to one another. The vector of output
(value) shares f;= (fi, . . , fin) locates state i in M-dimensional technological space. The

corresponding measure of technological spillover potential is defined as:
M
Z flm f jm
m=1
M 5 1/2 M 5 1/2
m=1 m=1

where f;,, is the value of production of output m as a share of the total value of agricultural output

in state 7 such that these shares fall between zero and one and sum to one (i.e., there are a total of
M different outputs across the 48 states, and 0 < f;,, <1 and %, fin=1).” To define corresponding
“spillover coefficients” for measuring the state-specific impacts of USDA research stocks (i.e.,
0= a9, fori=1,.. ., 48), we apply equation (7) to index the similarity of each state’s vector
of output shares and the national vector of output shares.® Then, given this specification of the
state-to-state spillover relationships, in the regression model instead of 47 individual other-state
knowledge stocks and a federal knowledge stock, we include a single research spillover stock

tailored for each state, to represent the aggregation of those 48 spillin effects in that state.

> A referee raised several questions about the structure and interpretation of these coefficients related to whether
they may vary over time and, as a related point, the direction of causality (if agricultural R&D affects production
patterns then the weights are endogenous). The relevant issues are too many to deal with in the space available here,
but many of them are discussed in some detail in AAJP (2010). In the present application, we use the average value
of wj; for the sample period, which is simply a measure of the overall similarity of the agricultural output mix
between states, as a proxy for the state-to-state spillover potential of agricultural research and extension. We
compare the model using this specification with alternative specifications similar to those typically used in the
literature.

® Paraphrasing Jaffe (1989, p. 88), in a sense, o; measures the degree of overlap of f; and ;. The numerator will be
large when states i and j have very similar output mixes. The denominator normalizes the measure to be one when f;
and f; are identical. Hence, w; will be zero for pairs of states with no overlap in their output mix and one for pairs of
states with an identical output mix; and for the in-between cases, 0 < w; < 1. It is conceptually similar to a
correlation coefficient. Like a correlation coefficient, it is completely symmetric: o; = @;; and o; = 1.
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Econometric Estimation and Results

Assuming a logarithmic functional form and augmenting the model to include state-specific
fixed effects and a variable to reflect the effect of weather, the model becomes

(8) InMFP, = o, +0, InSK,, +ogInSS,, +y,In PRC,, +e,,.

The variables are defined as follows: (a) MFP;, is a Fisher ideal index (i.e., a discrete
approximation to a Divisia index) of multifactor agricultural productivity in state i in year ¢; (b)
SK;, is the own-state stock of knowledge in state i in year # from own-state spending on publicly
performed agricultural research and extension over the previous 50 years, in real terms; (¢) SS;;,
is the state-specific spillover stock of knowledge in state i in year ¢ from spending on agricultural
research and extension conducted by federal and other-state public institutions over the previous
50 years, in real terms, constructed using the same lag distribution parameters as for SK; ; (d)
PRC;, is a state-specific pasture and rangeland condition index, measured in September for each
year, and published by the Economics, Statistics, and Market Information System (ESMIS)
branch of the USDA; and (e) ¢;, is a residual, with an i.i.d. structure. Simple summary statistics
are presented in table 1.

[Table 1. Simple Summary Statistics, Data for the Productivity Model]

Notably, the specification in equation (8) does not include any variables to represent the
stocks of knowledge from private agricultural research conducted in the United States or
internationally, public agricultural research conducted in other countries, or nonagricultural
research. The reason for excluding these variables is that appropriate data in suitably long time
series simply are not available. The omission of these variables could lead to biases in the
estimated effects of the included knowledge stocks if the omitted stocks are correlated with the

included stocks. However, private research effects are largely embodied in inputs and, to the



extent that the benefits are captured through royalties or the equivalent, they might not have
much impact on measured productivity compared with an equivalent public research
achievement provided to farmers and others for free. In addition, our adjustments for changes in
input and output quality will have dealt with some of these impacts. This view is supported to
some extent by some recent work by Huffman and Evenson (2006b).” Even so, we are conscious
of the potentially biasing effects of omitting private agricultural R&D (as well as omitting U.S.
nonagricultural research and international research), and we explore this issue in later sections.
The models were estimated using various estimation procedures in STATA 10.0 with
version 4 of the InSTePP Production Accounts as described by Pardey, Andersen, Craig, and
Alston (2009).* We used a type of grid-search procedure, in which we assigned values for the
parameters of the gamma lag distribution (A and 9), then constructed the knowledge stock
variables using these parameters along with the expenditures on research and extension, and the
spillover coefficients (w;), and then estimated the model using these constructed stocks.” By
repeating this procedure using different values for A and 8, we were able to search for the values
of these parameters that, jointly with the estimated values for the other parameters, would best fit

the data. Combining the following eight possible values for both A and & (0.60, 0.65, 0.70, 0.75,

" Most studies of the effects of public agricultural research on productivity have not incorporated an explicit measure
of private research. In a significant and rare exception, Huffman and Evenson (2006b) attempted to account for
private research effects in an analysis using U.S. state-level data (see, also, Huffman and Evenson 1993, 2006a). In
the absence of suitably long time series of private research expenditures, they used state-specific production weights
applied to four classes of commodity-specific patent data, to define state-specific annual flows of private research
outputs, which they aggregated into state-specific stocks by applying trapezoidal timing weights over a 19-year
period and summing. The resulting measure of “private agricultural research capital” did not make a statistically
significant contribution to either of the productivity models that Huffman and Evenson (2006b) reported.

¥ Version 4 of the InSTePP Production Accounts represents a revised and updated version of the data used by
Acquaye, Alston, and Pardey (2003) and originally developed and used by Craig and Pardey (1996). Pardey,
Andersen, Craig, and Alston (2009) provide further details on the construction of these data, which are presented
and discussed in AAJP (2010).

? This approach of estimating productivity models with pre-constructed research knowledge stocks is standard in
much of the relevant previous work. Our important departure in this context from most of the previous work is to
search across the range of possibilities for the lag distribution used to construct that stock, and test amongst them,
rather than simply impose one.
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0.80, 0.85, 0.90, 0.95), a fixed maximum lag (50 years in most cases), and no gestation lag,
yields a total of 64 possible combinations. A very wide range of shapes and effective lag lengths
are encompassed by the range of parameter values tried. We initially thought we might conduct
a further search over a finer grid, but upon review of our econometric results with the 64 lag
distributions, we concluded that it would not be informative to do so because the top-ranked
models were nearly indistinguishable.

The base model treats state-specific research and extension symmetrically, such that the
same lag weights and spillover coefficients apply to both research and extension. This model
was estimated using ordinary least squares with state-specific intercepts, which is a “fixed
effects” (FE) panel data estimator, for each of the 64 lag distributions.'® Table 2 summarizes the
main results for the highest-ranked eight models, arranged in rank order according to goodness-
of-fit (SSE) criteria, highest to lowest from left to right. The best-fitting model was obtained
with values for A = 0.70 and 6 = 0.90 implying a peak lag weight at year 24, as seen in Figure
1.'" Among the models in this table, the shape of the lag distribution was fairly similar across
the top-ranked models compared with other models that did not fit as well. The peak lag varied
somewhat but the implied values for the elasticities of MFP with respect to the various
knowledge stocks were very similar across the eight models—about 0.32 for own-state research
and about 0.24 for spillins.

[Table 2. Summary of Results for the Base Model, Top-Ranked Models]

[Figure 1. Gamma and Trapezoidal lag distributions]

' We established that a fixed-effects estimator was preferred to a random-effects estimator using Hausman’s (1978)
specification test for fixed or random effects. The results are presented along with additional diagnostic tests in
AAIJP (2010, Table 10-4).

" Figure 1 also shows the trapezoidal lag structure used by Huffman and Evenson (1993) and many others, plus a
parameterization of our gamma distribution that closely approximates this specific trapezoidal form.
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Model Diagnostics
The analysis generally resulted in highly significant coefficient estimates; however, we also
sought to verify the consistency of the estimates after controlling for some additional
econometric issues. Specifically, we were concerned with autocorrelation of the residuals and
unit roots in the state-specific MFP series, which can result in spurious parameter estimates. To
address this concern, we re-estimated the models in first-difference form (i.e., with all of the
variables specified in logarithmic differences and absent an intercept term). In most cases first-
differencing resulted in similarly shaped preferred lag distributions, as well as similar estimates
of elasticities for a given lag distribution shape, compared with the base models.
Heteroskedasticity and contemporaneous correlation were not of primary concern given
the large sample size, the asymptotic properties of the estimators, and the statistical significance
of the coefficient estimates. However, we also estimated the full grid of lag distributions using a
Feasible Generalized Least Squares (FGLS) procedure that corrected for heteroskedasticity
within states, contemporaneous correlation among states, and first-order autocorrelation of the
residuals. The estimated elasticities from the FGLS estimation procedures were very similar to
those from the FE regressions presented in table 1. For example, in the base model with the
preferred lag distribution the elasticity of MFP with respect to the own-state knowledge stock
was 0.311 using a FGLS regression procedure and 0.322 using a FE regression procedure, while
the corresponding elasticities with respect to spillover knowledge stocks were 0.241 and 0.235
respectively. Given the pattern of similarities of the estimates in the FGLS models to those in

the base FE models, we were fairly certain that any autocorrelation of the residuals and issues of

12



unit roots related to the state-specific MFP series were not substantially affecting the consistency

of the FE estimates.'”

Time-Series Properties of the Data

We also performed a formal statistical analysis of the time-series properties of the variables and
a check of the consistency of the parameter estimates. A visual inspection of the data reveals
that the series appear to be highly nonstationary. However, if the variables in the analysis are
nonstationary, but share the same order of integration (e.g., /(1) behavior), then they might
approach the same stochastic trend. In this case a linear combination of the variables could form
a long-run equilibrium relationship that is stationary, and a linear regression of MFP on the
research stock variables would result in consistent parameter estimates. Indeed, if the series
were /(1) and cointegrated then the estimates would be superconsistent. Stock (1987) showed
that such estimates converge to their probability limits faster than least squares estimates in
stationary time series models.

To establish whether our models produce consistent parameter estimates we proceeded
by first examining the data for the presence of a unit root, and then establishing if a cointegrating
relationship exists between the variables. As a starting point we applied augmented Dickey-
Fuller (ADF) tests on a state-by-state basis for the three variables of interest, In MFP;, In SK;,
and In SS;,. Most of the state-specific data indicated the presence of a unit root, with the In MFP;,
series indicating a unit root in 41 of the 48 states, In SK; in 36, and In SS;; in all 481

Given the evidence of unit roots in these data, it is possible that a long-run equilibrium

relationship exists between the series; therefore, a test of a cointegrating relationship between the

12 Additional comparisons of alternative estimators and models, as well as detailed diagnostic testing of the
econometric models are provided in AAJP (2010, Chapter 10).

" In each ADF test we set a = 5 percent and included an intercept, trend, and three lags of the dependent variable.
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variables is warranted. Westerlund (2007) developed a test of cointegration in panel data that
produces four test statistics, G,,G.,P,, and P.."* Consider the following error-correction model

with one lag of the dependent variable and one covariate:
9) Ay, =0+ BNy, +8,A, +6,A%, , + [ (yzH — 0%, ) TU, .

The parameter, f; provides an estimate of the speed of adjustment towards the long-run
equilibrium, and if #; = 0 then there is no error correction, and thus no cointegrating relationship
between the variables. The G, and G, test statistics begin with a weighted average of the state-
specific f; parameters and their #-ratios, and test the null hypothesis that g; = 0 for all i versus the
alternative that §; < 0 for at least one i. The P, and P; test statistics pool the sample over all the
states, and test the null hypothesis that §; = 0 for all i versus the alternative that ;= <0 for all
i. If the observations are correlated across cross-sectional units (states), robust critical values can
be obtained through a bootstrapping procedure. Table 3 reproduces the panel data tests of
cointegration developed by Westerlund (2007, Table 7) including the group-mean, G, and G, as
well as the pooled, P, and P, test statistics. Panel (a) of table 3 shows the test results between In
MFP;; and In SK;;, and Panel (b) between In MFP;, and In SS;,.

[Table 3: Results from Panel Data Tests of Cointegration]

The null hypothesis of these tests is no cointegration between the variables. The results
of the Westerlund tests generally indicate that a cointegrating relationship exists between MFP
and the research stock variables. The only results indicating rejection of a cointegrating relation

are the bootstrapped versions of G, and P,, but these results are not as robust as the fau versions

' See also Persyn and Westerlund (2008) for additional details about this test and its implementation in STATA.
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of the tests, which indicate a cointegrating relationship does exist."> Furthermore, the 48-state

average value of the estimated speed-of-adjustment parameters (i.e., the £ parameters) is equal

to -0.71 in the Panel a results, and -0.83 in the Panel b results.'® The test results in table 3
provide convincing evidence that the models specified in logarithms produce superconsistent
parameter estimates. Finally, the formal statistical test results are supported by the empirical
observation that our models specified either in logarithmic or growth rate form produce similar

results in terms of the estimated elasticities.

Marginal Benefit-Cost Ratios—Base-Model Results
We used the estimated productivity model to compute the marginal benefit associated with
various hypothetical (counterfactual) changes in research investments. Specifically, we
computed the state-specific and national benefits from a small (one thousand dollar) change in
1950 in expenditures (a) on research by a particular state, (b) on extension by a particular state,
or (c¢) on USDA intramural research by the federal government. In computing the national
benefits, we took into account that both federal and state-specific research investments have
effects on all the states.'’

The gross annual research benefits (GARB) to state i in year ¢ were computed using the
following approximation:

' Based on Monte-Carlo simulations assuming cross-sectional dependence, Westerlund (2007, p. 730) reported that
“At one end of the scale, we have the G, and P, tests, which actually appear to be quite robust to the cross-sectional
correlation.”

'® These results pertain to the models that do not correct for contemporaneous correlation among the states.

' This explicit simulation approach is less prone to error or misinterpretation than using an analytically derived
approximation to a rate of return, as some studies have done.
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where V;; is the real (in year 2000 dollars) value of agricultural production in state i in year ¢, and
A In MFP;; is the proportional change in estimated agricultural productivity in state i in year ¢,
associated with the simulated one thousand dollar increase in spending in 1950."® Since the
variables are in logarithms, the simulated proportional change in MFP is simply equal to A In
MFP =1n MFP' —In MFP, where the superscript 0 denotes the predicted In MFP given the
actual research expenditure and the 1 denotes the predicted In MFP with the increased
(counterfactual) expenditure. Then, the present value in the year 2002 of benefits accruing to

state i (PVB;) was computed using a (correspondingly real) discount rate of » = 3 percent per

year.
2002 2002

(11)y PVB, = z GARBZ.J (1+r)2002_’ = Z Aln MFP.V,, (1+r)2002—t
1=1950 1=1950

The benefit-cost ratio for that one thousand dollar investment is given by dividing the present
value of benefits by the present value of the costs—PVC = $1,000 (1+7)> (= $4,650 for =3
percent). Hence, marginal benefit-cost ratios (or benefits per dollar of additional expenditure)
were computed as B / C!' = PVB!' / $4,650, where the superscript 4 denotes which of (a) one of
the 48 state-specific research expenditures, (b) one of the 48 state-specific extension

expenditures, or (¢) federal research expenditures, was increased by $1,000 in 1950 to generate

the stream of benefits being evaluated.

' This approximation is likely to be reasonably valid as a measure of the total benefits for a small research-induced
change in production, as a result of a comparatively small change in the research investment. However, to the extent
that these marginal changes in research spending induce price changes, the benefits will be distributed between
producers and consumers, depending on the elasticities of supply and demand, and this might imply differences in
the spatial distribution of benefits, compared with our analysis that implicitly presumes that all of the benefits are
enjoyed within the innovating state (i.e., accruing to producers or assuming an absence of interstate and international
trade). This “distortion” will itself be unevenly distributed. Some states produce commodities for which the United
States as a whole, let alone an individual state, does not appreciably influence the world price; but California, for
instance, significantly influences world prices for a substantial share of its production, and a sizable share of its
production is consumed in other states. This means there are greater spillouts of California’s research benefits than
for most other states, driven by price changes, which we have not accounted for here.
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We computed marginal benefit-cost ratios for increases in investments in research
conducted by any of the 48 State Agricultural Experiment Stations (SAESs) or by the USDA
itself."” Table 4 summarizes the benefit-cost ratios in terms of the regional averages
(representing the simple average of the entries for the states within each region), the minimum,
maximum, and simple average across the 48 states, and state-specific entries for some selected
states (California, Minnesota, and Wyoming) for the base model (the top-ranked model described
in column 1 of table 1). In table 4, for each state and for each region, the entries in columns 1
and 2 are measures of the benefits, per dollar of expenditure, accruing to that state (column 1, the
own-state benefits) and the nation as a whole (column 2, both the own-state benefits and the
spillover benefits to the other 47 states) from an increase in state-specific research spending;
column 3 shows the benefits accruing to each state, or region, or the country as a whole from an
increase in USDA intramural research expenditures.”® All of these figures are in common terms,
expressing real, marginal benefits per dollar invested (associated with a small change in
expenditure in 1950).

[Table 4. Marginal Benefit-Cost Ratios, Base Model Results]
Within a row in table 4, comparing columns 1 and 2 we can compare the own-state

payoff to that state from investing in research and extension versus the payoff to the nation as a

' Here SAES research is used as a short-hand for the funds (from all sources) spent on research undertaken by the
SAESs and selected other cooperating institutions in the same state. Thus, for each state we included research
spending by the SAESs (including the 1890 colleges) and the state-specific veterinary medicine schools. We
excluded research spending by the state-specific forestry schools (for symmetry with the coverage of our agricultural
productivity series) and, likewise, also omitted forestry-related research spending from our intramural USDA series.
The cooperating state institutions report their expenditures to USDA, CRIS on a voluntary basis, and so the readily
obtainable data are neither complete nor reported in a consistent fashion (from year to year and among states). We
did a considerable amount of work to clean up erroneous and sometimes large reporting problems with the CRIS
data for these state-specific cooperating institutions. The extension series is an estimate of total funding (from all
sources) for state cooperative extension work obtained from a variety of published and unpublished sources. See
Alston et al. (2010, pp. 229-236) for more details.

20 Because the base model treats state-specific research and extension symmetrically, the own-state benefit-cost ratio
for SAES research in any state is the same as the own-state benefit-cost ratio for extension; the same is true for the
national benefit-cost ratios for state government expenditures on research and extension.
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whole; the difference between these two is the spillover benefit per dollar. This comparison
indicates the magnitude of the distortion in incentives for a state to conduct the quantity and
mixture of agricultural research that will generate the greatest national payoff, if it attaches no
value to interstate spillouts of its research results. In California, for instance, the marginal own-
state payoff is $33.3 per dollar and the marginal national payoff is $43.4 per dollar; for
Minnesota, the corresponding figures are $40.6 and $55.4 per dollar; for Wyoming, $12.7 and
$23.6 per dollar.*'

The own-state and national benefit-cost ratios vary considerably among states. The own-
state benefit-cost ratio for state research and extension ranges from 2.4:1 to 57.8:1, around an
average of 21.0:1. Similarly, the national benefit cost-ratios range from 9.9:1 to 69.2:1, around
an average of 32.1:1. The spillover benefits are relatively constant across the states and thus
variation in the own-state benefits drives most of the inter-state differences in national benefits
from SAES research and extension. Hence, spillovers typically represent a smaller share of the
total benefits in those states where own-state benefits are comparatively large. Spillover benefits
to other states are worth $6—$16 per dollar spent on research; and in some states—especially
states having smaller agricultural sectors—the spillover benefits account for the majority of the
national benefits. USDA intramural research yielded a national benefit-cost ratio of 17.5:1,
generally lower than the national benefit-cost ratio for research and extension conducted by

states.

2! Rounding to the nearest whole dollar arguably conveys the appropriate degree of precision of these estimates, but
we report them here and elsewhere in the text to one decimal place to facilitate cross referencing with the relevant
table.
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Effects of Alternative Specification Choices

We tried a range of variations in the model specification, including: (a) different functional
forms for the model (linear rather than logarithmic, and estimated in first-differences or growth
rates rather than in levels), (b) differential treatment of the lag structure for extension compared
with research (including a four-year geometric lag for extension rather than the 50-year gamma
lag as used for research, with or without allowing interstate spillovers of extension effects), (c) a
different lag distribution shape (a 35-year trapezoidal lag model, as used by Huffman and
Evenson 1993 rather than a 50-year gamma lag model), (d) different specifications of the
spillover relationship (including models with no spillovers or spillovers based on proximity
according to USDA regions rather than our model based on the similarity of commodity
composition), and (e) alternative restrictions on the maximum lag length for research.
Combining all of these variations implied a large number of alternative specifications to be
estimated and compared. Based on an evaluation of the statistical performance of the models
and other implications, we generally favor the base model, in logarithms, over all the
alternatives. The specification choice that had the most profound implications for the estimates
was the choice of a linear versus logarithmic functional form, and our statistical tests clearly
favored the logarithmic specification, which has been the standard choice in published work.

In table 5 we present the results from a selection of alternative models, summarized in
terms of the own-state and national benefits from research and extension conducted by individual
states, and the national benefit from USDA intramural research. In each case, as appropriate, we
present the results using the best-fitting gamma distribution for the particular model
specification. Across all the models summarized in table 5, some consistent patterns emerge in

the estimates. First, the different models imply a range of estimates for the social benefit-cost
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ratio for USDA intramural research, but in every model the ratio is well greater than 1.0.
Second, in every case the national benefit-cost ratios for SAES research are well greater than 1.0
in every state, and the average values across the 48 states are quite large. Third, the national
benefit-cost ratios for SAES research are large relative to the own-state benefit-cost ratios. In all
but two of the models (the linear model in levels or in first-difference form), the marginal own-
state benefit cost ratio was greater than 1.0 in every state, and the average value across the 48
states was much greater than 1.0 in every model. The different models do imply very different
ranges of estimates of benefit-cost ratios for SAES research among the states, but the overall
range is much smaller when we leave out the clearly mis-specified models that were included for
illustrative purposes.
[Table 5. Effects of Specification Choice on Marginal Benefit-Cost Ratios

The implication of these results is that specification choices do influence the results, but
not in ways that change the primary messages: (a) the marginal social benefits from agricultural
research and extension are generally very large relative to the costs, though the benefit-cost
ratios vary among states systematically depending on the characteristics of the states, and (b) the
spillover benefits are an important component of the total benefits, such that the national benefits
are much greater than the own-state benefits from SAES research and extension, with the
implication that individual states can be expected to underinvest in these activities from a
national perspective. If accurate, these high own-state and even higher national benefit-cost
ratios represent evidence of past underinvestment by both the state and federal governments in

public agricultural research.
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Credibility of Results

Our measures of benefit-cost ratios are large, and it is natural to be skeptical. One way to
address that skepticism is to set aside the complex models and simply compute the value of the
growth in agricultural productivity and compare it with the cost of agricultural research. In this
section we present simple measures of this nature, which abstract from the issues of spatial

spillovers and R&D lags that were central to our econometric analysis.

The Value of Productivity Growth

Over the period 1949-2002, our index of MFP more than doubled, from 100 in 1949 to about
257 in 2002, and if aggregate input had been held constant at the 1949 quantities, output would
have increased by a factor of 2.6:1. Of the actual output in 2002, only 39 percent (i.e., 100/257 =
0.39) could be accounted for by conventional inputs using 1949 technology, holding productivity
constant. The remaining 61 percent is accounted for by economies of scale along with
improvements in infrastructure, inputs, and other technological changes. Hence, of the total
production value, worth $173.3 billion in 2002, only 39 percent or $67.3 billion could be
accounted for by conventional inputs using 1949 technology, and the remaining $106.0 billion is
attributable to the factors that gave rise to improved productivity. Among these factors is new
technology, developed and adopted as a result of agricultural research and extension.

The actual value of agricultural output (4V;) can be divided into two parts: (a) one
representing what the value of output would have been, given the actual input quantities, if
productivity had not grown since 1949—i.e., hypothetical value, HV; = AV, * (100 / MFP,); and
(b) the other, a residual representing the value of additional output that is attributable to
productivity growth—i.e., residual value, RV, = AV,— HV, = AV, * (MFP,— 100) / MFP,. As

productivity increases over time, the share of the value of production that is attributable to
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productivity growth increases. Among the 48 states, the share of the total value of agricultural
output in 2002 attributable to growth in productivity since 1949 averaged 58 percent but ranged
from as low as 36 percent (Wyoming) to as high as 79 percent (Mississippi).

To summarize the stream of values of agricultural output attributable to productivity
improvements, the yearly residual values, RV, (defined above) were expressed in constant (2000)
dollars. The deflated values were compounded at a real interest rate of 3 percent per annum and
evaluated in the year 2002. The resulting stream of values of agricultural output attributable to
productivity improvements is equivalent to a one-time payment of more than $7.4 trillion in
2002, an enormous benefit from improved agricultural productivity in the United States during

the post-WWII period.

Approximate Benefit-Cost Ratios

We compared the value of productivity gains since 1949 compounded forward over 54 years to
2002, against the expenditures on agricultural research and extension during 1929-1982,
compounded forward to 2002. Both costs and benefits were converted into real terms using the
GDP price deflator and accumulated forward to 2002 using a real discount rate of 3 percent per
annum.

The simple ratios of approximate benefits in 2002 to approximate costs in 2002 are
biased estimates of the true benefit-cost ratios for several reasons. First, the existence of long
R&D lags mean that we have left out some of the relevant costs (research expenditures prior to
1929 will have contributed to productivity growth between 1949 and 2002) and some of the
relevant benefits (research expenditures between 1949 and 1982 will generate benefits for many
years after 2002). Depending on the pattern of benefits and costs over time and the effects of

discounting, these two sources of bias could be offsetting. However, given the generally rising
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pattern of research expenditures and the annual flows of benefits from productivity gains, we
would expect the effect of the understatement of benefits to outweigh the effect of the
understatement of costs, biasing the benefit-cost ratios down on balance. Second, a significant
share, perhaps as much as half of the total benefits may be attributable to private and rest-of-
world research. Third, spillover effects mean that some of a state’s productivity growth will be
attributable to expenditures by other states and the federal government; conversely, some of the
national benefits from a state’s research expenditures will accrue as productivity gains in other
states. In estimates at the regional level, the distortions associated with omitting state-to-state
spillovers will be much smaller, and in estimates at the national level they will be absent.

In table 6 we compare estimates of approximate average benefit-cost ratios with the
preferred estimates of marginal social benefit-cost ratios derived from the econometric
estimation. Columns 1 and 2 show the estimates of marginal private and social benefit-cost
ratios from the econometric model (as in table 4), while columns 3 and 4 show the approximate
measures, comparing benefits over 1949-2002 with costs over 1929-1982, and allowing for
either 100 percent or only 50 percent of the total benefits to be attributed to the public
agricultural research and extension expenditures included in the measure of cost. The
approximate measure of the national benefit-cost ratio could be as high as 25.6 (the upper bound
with 100 percent attribution, in column 3) or as low as 12.8 (our lower bound with 50 percent
attribution, in column 4). In column 3, the corresponding upper-bound estimates of regional
benefit-cost ratios range from 18.1 to 63.6; the state-specific benefit-cost ratios range from 5.4 to
77.7, and the simple average of these 48 estimates is 30.4. In column 4, the corresponding
lower-bound estimates of regional benefit-cost ratios range from 9.0 to 31.8; the state-specific

benefit-cost ratios range from 2.7 to 38.8 and the simple average of these 48 estimates is 15.2.
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The estimates of marginal social benefit-cost ratios in column 2 are remarkably similar to the
estimates of approximate average benefit-cost ratios with 100 percent attribution in column 3,
while the estimates of state-specific (private) marginal benefit-cost ratios in column 1 are more
comparable to the approximate average benefit-cost ratios with 50 percent attribution in column
4.

[Table 6: Benefit-Cost Ratios — Approximations versus Econometric Estimates|

Recalibrating Rates of Return to Agricultural R&D
We prefer to use benefit-cost ratios but the preponderance of precedent literature reports internal
rates of returns. Having conducted a meta-analysis of 292 studies that reported estimates of
returns to agricultural R&D, Alston et al. (2000, p. 55, Table 12) reported an overall mean
internal rate of return for their sample of 1,852 estimates of 81.3 percent per annum, with a mode
of 40 percent, and a median of 44.3 percent. After dropping some outliers and incomplete
observations, they conducted regression analysis using a sample of 1,128 estimates with a mean
of 64.6 percent, a mode of 28 percent, and a median of 42.0 percent. The main mass of the
distribution of internal rates of return reported in the literature is between 20 and 80 percent per
annum.” Other reviews of the literature may not have covered the same studies or done so in the
same ways, but nevertheless reached similar general conclusions—for instance, Evenson (2002),
and Fuglie and Heisey (2007). In a recent report, distilling the evidence, CAST (2011, p. 6)
reiterated the typical finding but reported a point estimate as follows:

“Numerous in-depth studies at the University of Chicago, Yale University, lowa

State University, the University of Minnesota, and elsewhere have carefully

2 When characterizing the evidence from the literature, economists often use a range like this, but more often it is a
narrower one with a smaller mean (such as the 20-60 percent range reported by, Fuglie and Heisey 2007). As
discussed by Alston et al. (2000) such selective reporting of the literature may be misleading, giving a false
impression of both the average and the size of the range around it.
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calculated the rate of return to investing in public agricultural research. Focusing

on the contribution of productivity-oriented agricultural research undertaken by

the main U.S. public agricultural research institutions—SAESs, VMCs, ARS, and

ERS—to agricultural productivity in the 48 contiguous states, including spillover

effects to other states in the same geoclimatic region, during 1970-2004, the

marginal real rate of return is approximately 50% (Huffman 2010; Huffman and

Evenson 2006a,b).”

It is easy to show that a 50 percent rate of return is implausible for a long-term
investment yielding benefits that compound over 35 years (as in Huffman 2010 and Huffman and
Evenson 2006a, 2006b) let alone over 50 years, which we have found is more appropriate for
U.S. public agricultural R&D. Table 7 includes some sample calculations of the terminal values
of investments of one dollar over various time periods using alternative real rates of return to
illustrate this point. One dollar invested at 50 percent per annum would be worth more than
$3,000 at the end of 20 years, nearly $1.5 million at the end of 35 years, and a whopping $637
million at the end of 50 years. To provide some perspective, if the roughly $4 billion invested in
public agricultural R&D in 2005 earned a return of 50 percent per annum compounding over 35
years, by 2040 the accumulated benefits would be worth $5,824,000 billion (2000 prices)—more
than 100 times projected U.S. GDP in 2040 and more than 10 times projected global GDP in
2040.% Clearly, as these figures illustrate, a 50 percent rate of return compounding over a long
period of time is implausible. Perhaps this fact may help account for why the very large
estimates have been discounted and ignored by some policymakers. Even a 10 percent real rate

of return yields a large terminal value when compounded over 35 or 50 years.

 Fogel (2007) forecasted that U.S. GDP would reach $41,944 billion in 2040 and global GDP would reach
$307,857 billion (2000 PPP prices).
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[Table 7: Terminal Values Implied by Internal Rates of Return]

We computed conventional internal rates of return (IRR) using the same base-model
simulated streams of benefits and costs that we used to compute the benefit-cost ratios reported
in table 4. The IRR is by definition the discount rate that makes the present value of the benefits
equal to the present value of the costs. Summary results are reported in table 8, in columns (1)
and (2), while more-detailed results for all the states are presented in table 9. Relative to the
mainstream of the literature, our preferred logarithmic model yielded estimates at the lower end
of the range for both social and private annual rates of return to state and federal agricultural
R&D—around 20 percent. Specifically, our estimates of own-state rates of return ranged from
7.4 to 27.6 percent, with an average of 18.9 percent per annum across the states and the estimates
of national rates of return ranged from 15.3 to 29.1 percent, with an average of 22.7 percent per
annum across the states.

[Table 8: Conventional and Modified Internal Rates of Return]

[Table 9: Marginal Benefit-Cost Ratios and Internal Rates of Return]

Our estimates of conventional internal rates of return in columns 2 and 3 of table 8 are
much smaller than those reported typically—for instance the 50 percent annual rate of return as
reported by CAST (2011). Even so, we think our own measures are unrealistically high—for a
conceptual reason as well as because of their unrealistic implications as indicated in table 7.
Specifically, the conventional internal rate of return implicitly assumes that the flows of benefits
can be reinvested at the same rate as the investment being evaluated. It is suited for a situation
where those entities that would pay the cost would also reap the return, whereas in the present
context the government pays the cost but the benefits accrue to producers and consumers of farm

products. In our application, if a public research investment is to earn a rate of return of 50
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percent per annum, the conventional calculation will be correct only if the farmers and
consumers to whom the streams of benefits accrue can (and do) invest their net benefits at the
same 50 percent rate of return. Kierulff (2008) provides a recent discussion of conventional
measures of internal rates of return, their shortcomings, and why a ‘modified’ version is
preferred for financial analyses applied to investments that yield streams of revenue.**

Consider an investment of /, dollars in time ¢ that will yield a flow of benefits, B, over
the following N years. The conventional internal rate of return, 7, solves the equation:
(12) g:o Bipn(1+ DN = I, (1 + )Y =0,
Alternatively, suppose the stream of benefits would be reinvested by the beneficiaries (say,
farmers or food consumers) at some external rate of return, », which could be different from the
rate for the project being evaluated. Then we would want to solve for the modified internal rate
of return, m which solves the problem:
(13)  IN_gBrn(l + PV — (1 +m)V =0.
Intuitively, m is the rate at which one could afford to borrow the amount to be invested, /,, given
that it would generate the flow of benefits, B;:,, which would be reinvested at the external rate, r.
It can be seen that the conventional internal rate of return calculation is a special case of (13)
which assumes » = i (= m), which is implausible for public projects yielding flows of benefits
that imply very large conventional internal rates of return.

We computed the modified internal rates of return corresponding to the conventional
internal rates of return in table 8, assuming that benefits could be reinvested at a real rate of 3

percent per annum (the same rate we used to compute the benefit-cost ratios). Summary results

24 Biondi (2006) suggests that the modified internal rate of return concept was first proposed by Duvillard in the late
19" century, and “reinvented” in the late 1950s by the likes of Solomon (1956), Hirshleifer (1958) and Baldwin
(1959).
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are reported in table 8, in columns 3 and 4, while more-detailed results for all the states are
presented in table 9. Our estimates of the own-state modified internal rates of return ranged from
4.8 to 11.4 percent, with an average of 8.8 percent per annum across the states, while the
estimates of national rates of return (including interstate spillovers) ranged from 7.7 to 11.7
percent, with an average of 9.9 percent per annum across the states. We also computed the
conventional internal rate of return for USDA intramural research, which was 18.7 percent per
annum and the corresponding modified internal rate of return was 8.7 percent. All of these

modified rates of return are plausible yet consistent with very high benefit-cost ratios.

Conclusion
Measures of the payoff to public agricultural R&D are potentially useful for policy, and this
usefulness will be greater if the measures are transparent, well understood, and credible. The
overwhelming message from the extant literature on the returns to agricultural R&D is that it has
paid handsome dividends and has been underfunded, yet the underfunding pattern persists. In
the work reported in this paper we set out to develop new evidence on the returns to agricultural
research and extension and present it in a new light. While our estimates apply to both research
and extension, since they enter our model symmetrically, much of the previous literature has
emphasized returns to agricultural research per se, and that is the benchmark for comparison.
The work reported here entails several contributions. The analysis is based on entirely
new measures of both agricultural productivity and state and federal government investments in
agricultural research and extension that were developed specifically for this purpose. The
models used here are also new and different from those used previously in some ways that have
implications for findings. In particular we tested for lag length in a flexible gamma lag

distribution model and, compared with typically used models, our preferred model suggests a
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much longer lag length, which in turn has implications for measured rates of return. In addition,
we used a new approach to model spatial spillovers, based on the similarity of commodity
composition rather than spatial proximity, and evaluated the implications. Rather than simply
impose a set of modeling assumptions we evaluated the implications of our own modeling
choices versus alternatives typically reported for findings with respect to returns to research. We
found that some elements of specification choices had quite significant impacts on findings, but
that the main finding was consistent across models: a very high social payoff to the investment
with very significant state-to-state spillover effects compounding incentive problems and
justifying a significant federal role.

Nevertheless, the combination of specification choices in our preferred model resulted in
a much lower conventionally measured internal rate of return to research than has been reported
typically in previous studies. These comparatively low rates of return reflect our comparatively
long lags and our greater attention to reducing other sources of misattribution bias that have
contributed to very high rates of return found in some studies (as discussed by Alston and
Pardey, 2001, for instance), and the comparison lends credibility to our results. Moreover, we
show that the conventional internal rate of return measures are implausible. Our modified
internal rates of return are much lower than the very high rates that are still part of the
mainstream in the literature and being presented to policymakers. These new findings regarding
the prevalent use of a flawed metric provide some empirical justification for the skepticism
sometimes expressed about very high estimated rates of return to research, which may have
contributed in turn to skepticism about the value of the investment.

To address that skepticism, we developed simple, approximate measures of benefit-cost

ratios. These measures are based on comparing the value of productivity growth with the cost of
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investments in agricultural research, without specifically modeling the statistical relationship
between productivity and spending over space and time, and thereby avoid the problem of
specification bias. They generate similar measures to those coming from the econometric
analysis, illustrating the point that the econometric estimates reflect the same fundamental forces
at work. Specifically, agricultural productivity growth is worth many times more than the annual
spending on agricultural R&D (including extension). Even if only a fraction is attributed to
R&D, and even if the lags are very long, the implied benefit-cost ratio will be very large.

Our specific empirical results are interesting, but in this work we have sought to
emphasize the insights we can draw from the overall pattern and robustness of the evidence.
Throughout we have emphasized two elements: the spatial and temporal attribution problems
associated with modeling R&D lags and spatial spillovers. Our results show that R&D lags are
very long, much longer than most previous studies have allowed, which has potential
implications for problems for policy prescriptions, as well as econometric biases. Likewise,
spatial spillovers are empirically important, contributing to important differences between state-
specific and national benefits from SAES research. Studies that do not account appropriately for
spillovers may suffer from econometric biases and could yield inappropriate policy prescriptions.

The finding of substantial interstate technology spillovers suggests that states would
underinvest in agricultural R&D from a national perspective, even if they did not underinvest
from a narrower state-specific perspective. Federal support for SAES research can be justified
on these grounds. As well as providing a justification for federal support of SAES research,
spatial technology spillovers provide a justification for intramural research by the USDA. Our
results indicate that even with substantial support from the federal government, most states

substantially underinvest in agricultural R&D, in the sense that both the in-state and national
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returns well exceed the costs of additional investments in agricultural R&D; they also indicate
that these institutional failures continue to impose very large opportunity costs on individual

states and the nation as a whole.
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Table 1. Simple Summary Statistics, Data for the Productivity Model

Symbol Variable Name  Definition Value Description Value
MFP;; Multifactor Fisher ideal index agricultural Minimum across all years and states 74.74
Agricultural output in state i and year ¢ Maximum across all years and states 481.83
Productivity Average across years
All states 181.30
California 176.14
Minnesota 173.40
Wyoming 142.24
SK; Own-state stock  Constructed using 50 years of Preferred lag distribution (A = 0.70, 5 = 0.90)
of knowledge own-state government spending Minimum across all years and states $5.0 million
on agricultural research and Maximum across all years and states $104.8 million
extension (in real 2000 dollars) Average across all years and states $33.1 million
and specification of gamma lag
distribution
SSi: State-specific Constructed using federal and Preferred lag distribution (A = 0.70, & = 0.90)
spillin stock of other-state government spending Minimum across all years and states $548.2 million
knowledge on agricultural research and Maximum across all years and states $1,436.0 million
extension (in real 2000 dollars), Average across all years and states $1,050.9 million
specification of lag distribution,
and w;’s used as weights
PRC;, Pasture and Measured in September for each ~ Minimum across all years and states 8
rangeland year (published by the Maximum across all years and states 107
condition index Economics, Statistics, and Market Average across years
Information System (ESMIS) All states 74.33
branch of the USDA) California 73.27
Minnesota 73.39
Wyoming 78.02

Sources: Developed by the authors.
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Table 2. Summary of Results for the Base Model, Top-Ranked Models

Model Details Model Results

Model Rank by SSE 1 2 3 4 5 6 7 8

Lag Distribution Characteristics

A 0.70 0.65 0.80 0.75 0.85 0.90 0.60 0.80
d 0.90 0.90 0.85 0.85 0.80 0.75 0.90 0.80
Peak Lag Year 24 20 24 19 24 27 17 17

Elasticities with Respect to

Own-State SAES 0.15 0.13 0.15 0.13 0.15 0.16 0.12 0.14
Own-State Extension 0.18 0.15 0.18 0.16 0.18 0.19 0.13 0.15
All Own-State Combined 0.32 0.28 0.33 0.29 0.33 0.35 0.25 0.29
SAES Spillins 0.07 0.09 0.07 0.10 0.07 0.06 0.12 0.10
Intramural Spillins 0.07 0.10 0.07 0.10 0.07 0.06 0.11 0.10
Extension Spillins 0.09 0.11 0.08 0.11 0.08 0.07 0.13 0.12
All Spillins Combined 0.24 0.31 0.22 0.30 0.22 0.19 0.36 0.31

Sources: Developed by the authors.

Notes: SSE (sum of squared errors) indicates the goodness of fit of the model. The elasticities refer to elasticities of MFP with respect to the own and spillover
research knowledge stocks.
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Figure 1. Gamma and trapezoidal lag distributions
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Table 3. Results from Panel Data Tests of Cointegration

Robust
Statistic Value Z-value P-value P-value
Panel a: Tests between INMFP;; and InSK;; (average AIC selected lag length is 2.04 years)
G, -3.93 -16.64 0.00 0.00
G, -12.32 -6.55 0.00 0.00
P, -21.60 -11.24 0.00 0.00
P, -11.11 -10.20 0.00 0.00
Panel b: Tests between INMFP;; and InSS;; (average AIC selected lag length is 2.25 years)
G, -4.32 -19.67 0.00 0.00
G, -10.26 -3.91 0.00 0.26
P, -22.45 -12.08 0.00 0.00
P -8.85 -6.78 0.00 0.16

B

Sources: Developed by the authors.

Notes: All calculations were done using STATA and the ‘xtwest’ command. The null hypothesis is no cointegration. In each test we included an
intercept term and set the lag length according to the average Akaike information criterion (AIC). The robust P-values correct for cross-sectional
dependence among the states using a bootstrapping procedure. One hundred replications were used for the bootstrapping procedure and the lag
length was set to one.

38



Table 4. Marginal Benefit-Cost Ratios for Research and Extension

Benefit-Cost Ratios

. State R&E USDA
State or Region -
Own-State National Intramural
1) (2) 3)
Ratio
Total 17.5
48 States
Average 21.0 32.1 0.4
Minimum 2.4 9.9 0.0
Maximum 57.8 69.2 1.6
Selected States
California 333 434 1.4
Minnesota 40.6 554 0.8
Wyoming 12.7 23.6 0.1
Regions
Pacific 21.8 329 0.6
Mountain 20.0 31.6 0.1
N Plains 424 54.5 0.5
S Plains 20.2 31.0 0.5
Central 33.7 46.8 0.8
Southeast 15.1 26.7 0.3
Northeast 9.4 18.4 0.1

Sources: Developed by the authors based on model described in column 1 of table 1.
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Table 5. Effects of Specification Choices on Marginal Benefit-Cost Ratios

Own-State Benefit-Cost Ratio for SAES

National Benefit-Cost Ratio for

Model Research SAES Research Rgsse]z;th
Min. Max. Average Min. Max. Average Total
Ratio
Functional Form
Logarithmic 2.4 57.8 21.0 9.9 69.2 32.1 17.5
Growth (first-difference logarithmic) 1.4 29.4 10.7 159 52.1 32.2 33.7
Linear 0.2 43.9 10.0 14.2 74.4 39.7 47.0
First-difference linear 0.2 51.3 11.2 16.7 84.5 46.3 55.4
Extension Treatment
50 gamma lags with spillovers 2.4 57.8 21.0 9.9 69.2 32.1 17.5
50 gamma lags without spillovers 23 55.9 20.3 14.1 73.6 37.7 273
4 geometric lags with spillovers 1.3 27.8 9.3 16.2 50.5 314 34.7
4 geometric lags without spillovers 1.3 28.5 9.5 23.9 64.5 42.7 52.0
Lag Distribution for Research (R) and Extension (E)
50-year gamma, R&E 2.4 57.8 21.0 9.9 69.2 32.1 17.5
35-year trapezoid, R&E 34 535 19.8 18.0 75.4 41.2 33.6
50-year gamma, R; 4-year geometric, E 1.3 27.8 9.3 16.2 50.5 314 34.7
35-year trapezoid, R; 4-year geometric, E 2.2 34.0 11.8 20.2 61.0 38.2 41.3
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Table 5. Effects of Specification Choices on Marginal Benefit-Cost Ratios (continued)

Own-State Benefit-Cost Ratio for SAES National Benefit-Cost Ratio for

Model Research SAES Research USDA
Research
Min. Max. Average Min. Max. Average Total
Ratio
Spillovers
Based on output mix 24 57.8 21.0 9.9 69.2 32.1 17.5
Based on USDA Regions 23 48.5 17.6 6.6 62.4 24.8 60.5
No spillovers 4.5 90.0 33.7 4.5 90.0 33.7 n/a
Research Lag Length
50-year gamma, R&E 2.4 57.8 21.0 9.9 69.2 32.1 17.5
35-year gamma, R&E 2.4 56.7 20.4 11.7 71.0 20.4 219
20-year gamma, R&E 2.5 39.5 14.8 17.2 63.0 36.3 33.7
50-year gamma, R; 4-year geometric, E 1.3 27.8 93 16.2 50.5 314 34.7
35-year gamma, R; 4-year geometric, E 1.1 27.0 8.8 153 48.9 30.1 334
20-year gamma, R; 4-year geometric, E 1.7 294 10.4 17.6 55.0 33.7 36.6

Sources: Developed by the authors.
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Table 6. Benefit-Cost Ratios—Approximations versus Econometric Estimates

Econometric Model, Marginal Benefit-Cost Ratio

State or Region

Approximate Average
Benefit-Cost Ratio
Costs 1929-1982, Benefits 1949-2002

((S;j:s_gt‘i‘i) %?;fl i}‘i‘l‘? 100% Attribution 50% Attribution
€))
Ratio
48 States
Average 21.0 32.1 304 15.2
Minimum 24 9.9 54 2.7
Maximum 57.8 69.2 1.7 38.8
Selected States
California 333 434 48.5 242
Minnesota 40.6 554 55.6 27.8
Wyoming 12.7 23.6 17.0 8.5
Regions
Pacific 21.8 32.9 41.1 20.5
Mountain 20.0 31.6 30.5 15.3
N Plains 424 54.5 63.6 31.8
S Plains 20.2 31.0 27.3 13.6
Central 33.7 46.8 40.6 20.3
Southeast 15.1 26.7 28.6 14.3
Northeast 9.4 18.4 18.1 9.0
United States (includes USDA Intramural): 25.6 12.8
USDA Intramural 175

Sources: Developed by the authors.
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Table 7. Terminal Values Implied by Various Rates of Return

Number of Years Rate of Return, Percent per Annum
from Initial
Investment 10 20 50

Terminal Value, Dollars of Benefit per Dollar of Initial Investment

20 7 38 3,325
35 28 591 1,456,110
40 45 1,470 11,057,332
50 117 9,100 637,621,500

Sources: Developed by the authors.
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Table 8. Conventional and Modified Internal Rates of Return

Conventional Internal Modified Internal
Rate of Return Rate of Return
(IRR) (MIRR)
State R&E State R&E State R&E State R&E
(Own-State) (National) (Own-State) (National)
(1 (2) (3) 4)
Percent Per Year
48 States

Average 18.9 22.7 8.8 9.9

Minimum 7.4 15.3 4.8 7.7

Maximum 27.6 29.1 11.4 11.7

Selected States

California 24.1 26.1 10.2 10.7
Minnesota 24.7 27.3 10.6 11.3
Wyoming 16.8 20.9 8.2 9.5
Regions
Pacific 20.2 235 9.1 10.1
Mountain 19.0 22.7 8.9 10.0
N Plains 24.9 27.0 10.7 11.2
S Plains 19.5 22.7 9.0 10.0
Central 23.1 259 10.1 10.8
Southeast 17.6 22.0 8.3 9.7
Northeast 14.0 19.0 7.2 8.8

Sources: Developed by the authors. The figures in columns 3 and 4 are ‘modified’ internal rates-of-return (MIRRs)
assuming a 3 percent reinvestment rate.
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Table 9. Marginal Benefit-Cost Ratios and Internal Rates of Return

Benefit-Cost Ratio Internal Rate of Return MIRR

State or Region State R&E State R&E USDA State R&E State R&E State R&E State R&E

(Own-State) (National) Intramural (Own-State) (National) (Own-State) (National)
1) (2) 3) “4) (5) (6) ()

Ratio Percent Per Year

Pacific 21.8 32.9 0.6 20.2 235 9.1 10.1
California 333 43.4 1.4 24.1 26.1 10.2 10.7
Oregon 11.3 24.1 0.2 16.3 21.3 7.9 9.5
Washington 20.9 31.2 0.3 20.3 23.1 9.2 10.0
Mountain 20.0 31.6 0.1 19.0 22.7 8.9 10.0
Arizona 26.6 36.9 0.2 22.1 24.5 9.7 10.4
Colorado 31.1 43.8 0.3 22.5 25.2 10.0 10.8
Idaho 34.0 44.8 0.2 23.3 25.5 10.2 10.8
Montana 22.0 32.2 0.2 20.4 23.1 9.3 10.1
Nevada 7.3 19.2 0.0 13.0 19.1 7.0 9.0
New Mexico 15.6 28.2 0.1 18.1 22.2 8.6 9.8
Utah 11.0 24.5 0.1 16.0 21.3 7.9 9.5
Wyoming 12.7 23.6 0.1 16.8 20.9 8.2 9.5
N Plains 42.4 54.5 0.5 24.9 27.0 10.7 11.2
Kansas 33.6 453 0.7 23.3 25.6 10.2 10.8
Nebraska 51.3 64.9 0.8 26.3 28.4 11.1 11.6
North Dakota 37.3 46.0 0.3 23.8 25.5 10.4 10.9
South Dakota 47.4 61.7 0.4 26.3 28.4 10.9 11.5
S Plains 20.2 31.0 0.5 19.5 22.7 9.0 10.0
Arkansas 26.8 35.7 04 21.4 23.6 9.7 10.3
Louisiana 12.2 23.0 0.2 16.8 21.0 8.1 9.4
Mississippi 15.1 25.3 0.3 18.3 21.7 8.5 9.6
Oklahoma 19.0 314 0.3 19.1 22.8 9.0 10.1
Texas 28.2 394 1.1 21.9 24.5 9.8 10.5
Central 33.7 46.8 0.8 23.1 25.9 10.1 10.8
Illinois 43.0 53.8 1.3 25.1 27.0 10.7 11.2
Indiana 27.1 394 0.7 21.7 24.6 9.7 10.5
Towa 57.8 69.2 1.6 27.6 29.1 114 11.7
Michigan 17.1 31.5 0.3 19.1 234 8.8 10.1
Minnesota 40.6 55.4 0.8 24.7 27.3 10.6 11.3
Missouri 34.7 49.9 0.6 243 27.1 10.3 11.0
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Table 9. Marginal Benefit-Cost Ratios and Internal Rates of Return (continued)

Benefit-Cost Ratio Internal Rate of Return MIRR
State or Region State R&E State R&E USDA State R&E State R&E State R&E State R&E
(Own-State) (National) Intramural (Own-State) (National) (Own-State) (National)
1) (2) 3) “4) (5) (6) ()
Ratio Percent Per Year
Ohio 22.4 37.0 0.5 20.2 24.0 9.3 10.4
Wisconsin 26.7 38.3 0.6 22.1 24.8 9.7 10.5
Southeast 15.1 26.7 0.3 17.6 22.0 8.3 9.7
Alabama 13.4 24.8 0.3 17.1 21.3 83 9.6
Florida 21.6 28.2 04 20.5 224 9.3 9.8
Georgia 20.5 31.0 04 20.3 23.2 9.2 10.0
Kentucky 18.5 30.5 0.3 19.2 22.8 8.9 10.0
North Carolina 19.9 27.5 0.5 20.6 22.8 9.1 9.8
South Carolina 11.2 23.1 0.1 16.1 20.9 7.9 9.4
Tennessee 15.7 31.3 0.2 18.4 23.3 8.6 10.1
Virginia 11.8 26.3 0.2 16.7 22.0 8.0 9.7
West Virginia 3.8 17.6 0.0 9.7 18.9 5.7 8.8
Northeast 9.4 18.4 0.1 14.0 19.0 7.2 8.8
Connecticut 54 14.2 0.0 11.8 17.6 6.4 8.4
Delaware 15.8 21.5 0.0 17.9 20.0 8.6 9.3
Maine 13.5 20.1 0.1 17.5 20.1 83 9.1
Maryland 14.1 26.1 0.1 17.5 21.7 8.4 9.7
Massachusetts 4.7 13.3 0.0 10.8 17.0 6.1 8.2
New Hampshire 4.4 14.0 0.0 10.6 17.5 6.0 8.4
New Jersey 4.7 13.7 0.1 11.3 17.5 6.1 8.3
New York 8.3 18.1 0.3 14.2 19.1 7.3 8.9
Pennsylvania 18.0 30.3 0.3 19.1 22.8 8.9 10.0
Rhode Island 2.4 9.9 0.0 7.4 15.3 4.8 7.7
Vermont 12.4 21.5 0.0 16.2 20.0 8.1 9.3
U.S. Average® 21.0 32.1 0.4 18.9 22.7 8.8 9.9

Sources: Compiled by the authors.
Notes: The figures in columns 6 and 7 are ‘modified’ internal rates-of-return (MIRRs) assuming a 3 percent per annum reinvestment rate.

a. Average of 48 contiguous U.S. states.
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