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Abstract 

We compare three parametric techniques to approximate Hamilton-Jacobi-Bellman equations 
via unidimensional and multidimensional problems. The linear programming technique is 
very efficient for unidimensional problems and offers a balance of speed and accuracy for 
multidimensional problems. A comparable projection technique is shown to be slow, but has 
stable accuracy, whereas a perturbation technique has the least accuracy although its speed 
suffers least from the curse of dimensionality. The linear programming technique is also 
shown to be suitable for problems in resource management, including applications to 
biosecurity and marine reserve design.  
 
 
JEL Classification:  C61, C63, Q22 

Keywords:   stochastic dynamic programming, parametric approximation, perturbation, 

projection, linear programming, optimal fishing, marine reserves. 



I. Introduction 

Continuous-time stochastic optimal control problems are used intensively in economics and finance. 

There has been an increasing demand for quantitative solutions to these problems, especially in the 

fields of resource and environmental economics. However, solving these problems, using dynamic 

programming approaches and Hamilton-Jacobi-Bellman (HJB) equations generates analytical 

solutions in only very few cases. Solutions must instead rely on numerical approximation techniques. 

 

In general, some standard approximation techniques rigorously applicable to Bellman equations in 

discrete-time settings, including value function or policy function iterations, do not work well in a 

continuous time setting1. In addition, since HJB equations are partial differential equations with 

second derivatives and no clear boundary conditions, approximation techniques based on finite 

difference schemes are often complicated and inconvenient2. Therefore solving a HJB equation 

numerically often relies on parametric approximation techniques which try to produce analytical 

formulae in the form of a linear combination of some pre-determined basic functions. Two well-

known parametric techniques which have been applied to solve HJB equations are perturbation and 

projection methods. Applications of these techniques to dynamic programming can be found in 

various studies such as Judd (1996), Gaspar and Judd (1997) and Arruda and DoVal (2006). 

 

Parametric linear programming is another approximation approach to HJB equations. It tries to 

produce an approximation of the maximum value function in the form of a linear combination of 

some pre-determined basic functions with the coefficients being solved from a linear programming 

scheme. The idea of linear programming approach can be found early, for example in the work of 

Manne (1960) or Ross (1970), which proves why the technique works in discrete-time setting. 

However, parametric linear programming approaches to continuous-time HJB equations has just 

recently been  introduced by Han and Roy (2009), showing the technique is both efficient and simple. 

 

While there are at least two papers that develop and compare various numerical methods in discrete-

time dynamic programming, namely Taylor and Uhlig (1990) and Aruoba et al. (2006)3, no similar 

                                                 
1 Theoretically one can discretize the continuous time into small intervals for the use of value or policy function iterations. 
However, the discount factor then will be close to unity causing the solving process to converge very slowly. See Judd 
(1998) for more details. 
2 Finite difference (sometimes known as discretization) which aims at producing numerical values for various points over the 
solution's domain is a fundamental technique to PDE with clear boundary conditions. Hedlund (2003) uses a finite difference 
scheme to a deterministic continuous-time dynamic programming problem. The scheme is relatively compicated even 
without second order derivatives. 
3 Both papers use the classical growth model as a baseline case. Taylor and Uhlig (1990)compares ten then available 
techniques to highlight significant difference in the results. Aruoba et al. (2006)compare value function iterations to 
projection and perturbation and encourages the use of perturbation technique as a compromise of speed and accuracy. 
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work has been done for the continuous-time setting. This is perhaps because the parametric linear 

programming technique is relatively new. In this paper, we compare this new technique to the 

projection and perturbation techniques.  

However, our comparison differs from the two previous papers. First, the comparison of the 

techniques' performance is done through two numerical case studies in fishery economics. The first 

model is uni-dimensional, with one control and one state variable. The second model is 

multidimensional with one control and two state variables. Each problem will be solved with three 

techniques with the same workstation and coding platform, Matlab 7.04. The evaluation of their 

performance will be based on the approximation errors and computation time. This helps highlight 

how relative superiority changes with respect to the dimension of the problem being solved. 

 

Second, we are not solving a classical growth model where its qualitative properties are already 

known. Instead, both numerical case studies in this paper have highly generalized non-linear 

structures where return functions are dependent on both state and control variables and uncertainty 

components are state-dependent. These models are increasingly used in applications to biosecurity 

and fisheries economics where not only qualitative properties but numerical results are also important 

to researchers. 

 

Third, as a natural question arising from any comparisons that 'pick a winner', we compare taking into 

account not only the approximation quality and computation time, but other considerations that 

influence the choice of a technique in practice. For example, all three techniques have different 

approaches to HJB equations so their software package requirements vary. Another consideration is 

the fact that each technique may have variants that are more or less efficient in a particular problem. 

Although it is impossible to report all variants, we nevertheless hope to provide a general guide to the 

relative advantages and disadvantages of these three techniques. 

 

The remainder of the paper is organized as follows. In Section II, we formulate a generalized dynamic 

optimization problem and specify the corresponding HJB equation. The uncertainty components in 

our generalized formulation are not only driven by Brownian diffusions but also Poisson diffusions, a 

standard instrument to model randomly discontinuous jumps5. Poisson diffusions have been used to 

model events that generate key results in many studies, for example technological progress in Aghion 

                                                 
4 We use a Maple toolbox for Matlab for symbolic calculation. 
5 Though involving discontinuous jumps, Poisson processes are considered as continuous diffusions with respect 
to time as the probability of the discontinuous jump occrurring in a time interval converges to zero when the 
time interval approaches zero 

 6



 and Walde (1999), interest movements in Das (2002) and Piazzesi (2005), and 

negative shocks to fish stocks in Grafton et al. (2006). In this paper, both numerical case studies used 

to compare the performance of three techniques involve Poisson diffusions. 

 

In Section III, we briefly describe the three techniques to solve the HJB equation for readers' 

convenience. The description of projection and perturbation techniques are especially brief. Further 

details for these techniques can be found in Judd (1998). Parametric linear programming will be 

described, on the other hand, with more detail as it is relatively new. Here, we provide a theorem, 

extended from Han and Roy (2009), to include models with Poisson diffusions, which is the 

theoretical base for this new technique. 

 

Section IV and Section V are devoted to the two numerical case studies. Each problem is introduced 

and solved, with reports on approximation errors and computation time. With each technique, we 

solve the problems in the most plain manner, putting aside variants that can be applied to a particular 

situation. Section VI addresses the question 'which technique wins in practice' and Section VII 

concludes. 

 

II. A generalized stochastic optimal control problem in continuous-time setting 

We begin with a general optimal control problem in a continuous-time setting. The problem is to 

identify the maximum value function  and/or the optimal profile of the control variables  such 

that: 

   (1) 

subject to: 

 (2) 

 (3) 

 (4) 

where  is a standard Brownian diffusion and  is a Poisson jump diffusion process with an arrival 

rate . 

To simplify the notation, we define a functional operator: 

    
 (5) 
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Then the HJB equation for Problem (1) is: 

    (6) 

This HJB equation can be derived by applying the Principle of Optimality introduced by  Bellman 

(1957)  in a heuristic manner as in Appendix A1. The equation is confirmed in the following theorem: 

 

Theorem 1: Suppose (i)  evolves in accordance with equations (2), (3) and (4); (ii)  is a twice 

differentiable function which satisfies equation (6), then  is the maximum value function for 

Problem (1).   

 

A proof for Theorem 1 is provided in Appendix A2. 

 

III. Parametric approximation approaches to HJB equations 

1. Projection technique 

Projection is a natural technique for analytically approximating differential equations and hence 

applicable to dynamic programming problems (Judd, 1998). In fact, it solves the system of first order 

conditions and envelope results, and not directly the HJB equation. Specifically, if an interior solution 

is assumed, we can differentiate the HJB equation (6) and apply the Envelope theorem to obtain a 

system of differential equations. 

  (7) 

To approximate the system of differential equations (7), the projection technique needs to assume an 

approximation forms for the maximum value function  and the policy function . These are 

pre-determined combinations of selected basic functions with undetermined coefficients. The method 

then tries to determine the coefficients with which the right hand sides (RHS) have smallest distance 

to zero. Different definitions of “smallest distance” lead to different variants of the technique. 

However, the most common variant is to find the smallest sum square of the RHSs at pre-determined 

collocation points. 
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2. Perturbation technique 

Perturbation theory has a long history in numerical approximation but its application to dynamic 

programming is newer than the projection technique. The perturbation approach to HJB equations was 

first introduced by Judd and Guu (1993) with a unidimensional problem and more formally in Gaspar 

and Judd (1997). The technique starts with adding an auxiliary variable (say ) into the HJB equation 

such that if , the problem is deterministic and if , it is stochastic. Specifically, the HJB 

equation is converted to: 

  (8) 

The perturbation idea will be applied in two rounds. The first round is to solve for the deterministic 

version by setting . After determining the steady state, it successively differentiates and 

evaluates the first order condition and the envelope results of the HJB equation at the steady state to 

solve for the derivatives of the maximum value and the policy functions with respect to the state 

variables. The second round is to differentiate first order condition and the envelope results with 

respect to the auxiliary variable ε and solve for the corresponding derivatives. Once all the necessary 

derivatives with respect to the state variables and ε are identified, functions of state variables and ε 

can be constructed using Taylor expansions. The final step is to substitute  to obtain the 

approximation for the stochastic problem. 

 

3. Parametric linear programming technique 

3.1.  Theoretical basis of the technique 

The linear programming technique approaches the HJB equation (6) as a system of (weak) 

inequalities. The max operator in the equation implies two points. First, at any state and any feasible 

levels of the control variables, the term  is non-positive. Thus, the maximum value function 

can be identified from a class of functions which satisfy the system of the weak inequalities imposed 

by the HJB equation (6). 

 

Second, at a state there exists at least a feasible control such that the term  is zero. This is 

the optimal control for at the state in question. Feasible control levels other than optimal lead to a 

strictly negative value. This suggests a way to pin down the optimal policy function. More 

importantly, it guarantees that the maximum value function is the smallest among those satisfying the 

system of the weak inequalities imposed by the HJB equation (5). This is an important property we 

can confirm in the following theorem: 
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Theorem 2 : Suppose (i)  evolves in accordance with equations (2), (3) and (4); (ii)  is the 

maximum value function for Problem (1); (iii)  for all s, then  uniquely solves the 

optimization problem: 

  (9) 

subject to:   for all  and with each  for all . 

A proof for Theorem 2 is provided in Appendix A3. The idea of the theorem is simple. As the 

maximum value function is the smallest, the sum of its values over a domain with any positive 

weights is also the smallest. This is a non-linear minimization problem, but can be approximated via a 

linearization process. The technical properties of this approach can be found in Farias and Roy (2003). 

 

3.2.  Technical procedure for parametric linear programming technique 

First the maximum value function is conjectured to be a linear combination of some pre-selected basic 

functions with undetermined coefficients. Suppose the vector of the basic functions is 

 and the vector of the undetermined coefficients is  

where  is the number of coefficients to be estimated, then the maximum value function can be 

approximated in the form . 

 

In the second step, the domain of interest is discretized with a set (denoted as  hereafter) of state 

collocation points. Then with each state collocation point ( ), the associated action 

correspondence  is discretized with a set, denoted as , of action collocation points. These 

state and action collocation points are used as representatives for the whole state and correspondence 

spaces. Given the choice of the collocation points, the nonlinear minimization in Problem (9) can be 

approximated by the following linear programming scheme: 

  (10) 

subject to:  for all  and with each s for all . 

 

The size of this linear programming scheme depends on the dimension of the dynamic programming 

problem and the choice of the collocation points. Denote  as the number of state variables and  as 

the number of control variables, or in other words the dimension of the state space is  and the 

dimension of the action correspondence is . If we discretize each state variable with  and each 

action correspondence with  collocation points, the set of state collocation points  will contain  
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points. Associated with each point , there will be a set  containing  action collocation 

points. Hence the constraint system of Problem (10) has  weak inequalities. As the number of 

coefficients to be determined is K, the size of the linear programming scheme is . 

 

Problem (10) can be solved by any linear programming solver for the undetermined coefficients. Once 

the maximum value function is approximated, the optimal policy function can be calculated from the 

HJB equation (6). In many cases, the structure of the HJB equation allows one to directly solve for the 

optimal policy function analytically through the FOC. In other cases where this is not possible, a grid 

search for the maximizers over the action correspondence works well.  

 

3.3. Approximation errors and accuracy improvement 

Given the approximation of the maximum value and optimal policy functions, we can calculate the 

approximation errors following the procedure in Judd (1998). The two functions are substituted into 

the HJB equation (6). The errors are then calculated as the discrepancies between two sides of the 

equation as a percentage of the maximum value function. 

 

If the errors are not satisfactory, there are a number of ways to improve the approximation quality. 

First, the number of state collocation points can be increased. This enhances the representativeness of 

the state collocation set ( ) over the domain of interest. However, the linear programming scheme 

becomes larger due to the increased number of constraints. Hence, this solution is dependent on the 

capacity of the solver package. 

 

The second measure is to increase the effectiveness of the action collocation sets . A natural but 

costly way is to increase the number of action collocation points. Similar to the state collocation, this 

makes the linear programming scheme larger and more costly to be solved. 

 

 A more efficient way to increase the effectiveness of the action collocation set is to reduce the size of 

the discretized correspondence. At any states, the constraints in Problem (9) bind only at the optimal 

policy and are slack at all other levels. Thus if the optimal policy function was known, evaluating the 

constraints at the optimal level would suffice. Each state would need only one constraint and the 

number of constraints could be dramatically reduced to . However the optimal policy is not known 

before the approximation process begins. It can even never be perfectly approximated. But if we have 

some information about the optimal policy levels at any particular states and narrow the relevant 
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correspondence, we can make the discretization finer, given the same size of action collocation sets. 

This type of information can come from experience, insights of the problem in question or even a 

draft solution. 

 

The third measure is to use different weight functions, , as suggested by the authors of the 

technique, Han and Roy (2009). A higher relative weight attached to one state will lead to a more 

accurate approximation at that state. Hence this measure is useful if we need to increase the quality in 

a specific part of the domain. The trade off is that this may reduce the approximation quality in the 

rest of the domain. Farias and Roy (2004) provide a comprehensive analysis on the constraint 

sampling property of the parametric linear programming approach. 

 

Finally, we can enlarge or change the set of basic functions. If more functions are added, there will be 

more coefficients to be estimated, which results in a higher column dimension of the linear 

programming scheme. In some situations, choosing another set of basic functions may be helpful. The 

choice of basic functions can be flexible. While polynomials are the most common due to their 

simplicity and convenience, other functions can be chosen if they are believed to work better. This 

indeed is a useful direction for future research efforts. 

 

IV. Case study 1: Unidimensional standard fishery problem 

1. The model  

In this section, we present a numerical example in fisheries economics. The transition law of a fish 

population has deterministic and stochastic components. The deterministic component is the 

difference between a logistic fish growth function with an intrinsic rate  and harvest . The 

stochastic component consists of two types of diffusions: Brownian motion and Poisson diffusion 

with a negative magnitude. The Brownian diffusion represents neutral natural shocks while the 

Poisson diffusion represents negative shocks caused by harvest activities. The magnitudes of both 

shocks are stock dependent. 

 

Denote  as the fish population,  as 'maximum carrying capacity',  as the intrinsic biological 

parameter,  as harvest,   as a standard Brownian diffusion and  as a Poisson diffusion with an 

arrival rate , then the transition of the fish population is described  by the following stochastic 

differential equation: 
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   (11) 

for   and  the magnitudes of the Brownian and Poisson diffusions. 

The profit function for fishing activities is standard. Fishing revenue is   with   

where   is the sale price with price elasticity . Fishing unit cost is proportional to the fish density 

with a cost parameter . The return is the fishing profit: 

  (12) 

The problem of the regulator is to maximize the aggregate return (discounted at a rate ) defined in 

equation  (12) subject to the transition law defined in equation (11) given an initial fish stock and the 

sustainability condition. Specifically, the problem is to approximate the maximum value function 

 such that: 

  (13) 

subject to equation (11),  given  and . 

 

2. HJB equation and numerical values for the parameters 

Given the problem specification, the HJB equation for Problem (13) is: 

  (14) 

The numerical values for the biological, economic and uncertainty parameters are taken from Grafton 

et al. (2006) with the price and cost parameters scaled up for a graphical convenience. The standard 

error of the natural shock is assumed to be 5 per cent of the current fish population. Negative shocks 

which reduce the fish population by 13 per cent are assumed to occur every 10 years. All parameters 

are reported in Table 1. 

 

3. Technical choice for the approximation process 

Given , we approximate the maximum value function in a relatively wide domain . 

The function is conjectured to be a polynomial of order , . There are  

parameters to be approximated. We solve the problem in two cases:  and  . 
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The implementation of perturbation technique does not offer much flexibility during its 

approximation process. However, we may have different choices for the state collocation points with 

projection and linear programming techniques. To make the comparison fair, we discretize the domain 

into 100 evenly distributed intervals with a set   of 101 collocation points and use this for both 

techniques. 

 

For the projection technique, we choose the coefficients to minimize the sum square of the RHSs in 

the system of differential equations (7). The minimization algorithm is the quasi-Newton method. For 

the linear programming technique, we need action collocation points as well. Hence for each state  in 

the collocation set , the action correspondence   is discretized with a set  of  201 nodes. 

The weight is simply chosen to be the unit vector,  for all . Given the choice of the state and 

action collocation points, the constraint system of the linear programming scheme includes 

 states. Each state is associated with the  constraints corresponding to 201 

possible actions in the action collocation set. Thus the total number of constraints is 

. 

Implementing the algorithms of the three techniques, we have three different analytical 

approximations of the maximum value functions. Based on these we can calculate the approximation 

errors. 

 

4. Calculating the approximation errors 

To calculate the approximation errors, we have to calculate the optimal harvest function first. In this 

case, the structure of the HJB equation (14) allows us to calculate the optimal harvest function 

analytically, or from the first order condition: 

  (15) 

After the optimal harvest function is calculated from equation (15), we substitute it into the HJB 

equation (14) and divide the RHS by the maximum value function to obtain the approximation errors. 

The maximum value function, optimal harvest function and approximation errors produced by the 

linear programming approach are plotted in Figure 1, Figure 2 and Figure 3. 
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5. Performance of the three techniques in unidimensional case study 

To compare the performance of the three techniques, we calculate the average and the maximum of 

the absolute values of the approximation errors in 101 state collocation points and report them with 

the computation time measured in seconds in Table 2 and Table 3. 

 

Though the computation time will vary across work stations, the tables convey three clear messages 

about the performance of the techniques. First, the projection technique is accurate but slow in 

comparison to its competitors. Second, the perturbation technique is the least accurate. This is 

understandable because the domain of the approximation is wide and perturbation accuracy decays 

quickly away from the steady state. The third message is the superiority of linear programming 

technique. It is not as accurate as the projection technique when  but improves substantially 

when . The most striking feature is the small extra cost of improving accuracy with respect to 

computation time, that makes it faster than the perturbation technique when . 

 

The perturbation technique has been believed to be fast so its speed championship when  is not 

a surprise. However, the superior speed of the linear programming technique where  is a 

surprise, needing an explanation. The reason is behind the algorithms of the two techniques. In spite 

of the uni-dimension, the perturbation technique has to approximate a 2-dimensional polynomial (with 

respect to the state and the auxiliary variables). This 2-dimensional polynomial has 28 coefficients 

when   and 66 coefficients when . Therefore, an increase in the polynomial order from 

 to  requires an additional 38 coefficients6. With the linear programming technique, the 

increase in polynomial order involves solving a linear programming scheme with size 11×20,302 

instead of 7×20,302, an only additional four columns. In other words, the increase in the number of 

coefficients is quadratic with the perturbation technique while it is linear with the linear programming 

technique, which makes the latter faster when . 

 

V. Case study 2: Multidimensional marine reserve problem 

1. The model 

In this section, we solve the marine reserve problem introduced in Grafton et al. (2006). In this model, 

the authority sets a certain proportion (denoted by ) of a fish population as a reserve. This protected 

area is closed from harvesting activities. Firms can only catch fish (denoted as ) in the exploitable 

                                                 
6 If we count the coefficients in the optimal policy function approximated at the same time, the number will be 
higher. 
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area with size . The number of fish which transfer from the protected reserve to the exploitable 

area ( ) is proportional to the size of each part and the differential in fish densities. The fish stocks in 

both areas are also subject to a standard Brownian motion ω and Poisson diffusion  with an arrival 

rate , so the transition laws are: 

 

 

 (16) 

where . 

 

Fishing profit is similar to the standard fishery model. Revenue is identical and unit cost is 

proportional to the inverse of the fish density in the exploitable area: 

  (17) 

The problem of the regulator is to maximize the (discounted) aggregate return defined in equation 

(17) subject to the transition laws defined in equation (16) given initial fish stocks and the 

sustainability condition. In particular, the problem is to approximate the maximum value function 

 such that: 

  (18) 

subject to the transition laws in  equation (16), given  and  and . 

 

2. Multidimensional HJB equation and numerical values for the parameters 

Given the problem specification, the HJB equation for Problem (18) becomes: 

  (19) 
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Similar to the unidimensional case study, the numerical values for the biological and economic 

parameters are taken from Grafton et al. (2006) as reported in Table 1. The reserve size is assumed to 

be , around the optimal value reported in Grafton et al. (2006). 

 

3. Technical choice for the approximation process 

As the reserve size , the maximum carrying capacity in the protected area is 

 and in the exploitable area is . We approximate the 

maximum value function in the domain . The maximum value function is 

conjectured to be a polynomial of order four, . There are 15 

coefficients to be approximated. 

 

We discretize the domain and action correspondence into evenly distributed grids. The two-

dimensional domain is discretized with a set  consisting of 51×51=2601 state collocation points and 

use this for both the projection and linear programming techniques. Similar to the unidimensional 

case, the linear programming technique needs action collocation points as well. Hence with each state 

collocation point , the action correspondence  is discretized with a set  

of 51 nodes. The weight is simply chosen to be the unit vector,  for all . Given 

the choice of the state and action collocation points, the constraint system of the linear programming 

scheme includes  states. Each state is associated with  constraints 

corresponding to 51 possible actions in the action collocation set. Thus the total number of constraints 

is . 

 

4. Calculating approximation errors 

The structure of the multidimensional HJB equation (19) again allows us to calculate the optimal 

harvest function analytically. The first order condition implies: 

  (20) 

The optimal harvest function is calculated using equation (20). Both maximum value and optimal 

harvest functions are substituted into the HJB equation (19) to calculate the approximation errors. The 

maximum value, optimal harvest functions and approximation errors produced by the linear 

programming approach are plotted in Figure 4, Figure 5 and Figure 6. 
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5. Performance of the three techniques in the multidimensional case study 

Similar to what have been done with the unidimensional problem, we calculate the average and the 

maximum of the absolute values of the approximation errors in the 2601 state collocation points and 

report them together with the computation time in Table 4. Two points can be concluded, similar to 

the unidimensional case. First, both the projection and linear programming techniques are good in 

terms of quality, while the perturbation is still the least accurate. Second, projection technique is again 

relatively slow. 

 

However, the difference from the unidimensional case study is that perturbation technique is now 

fastest. The linear programming computation time is still quite good but relatively slower. What 

explains this is the curse of dimensionality, which influences the techniques in different ways. A 

higher dimensional problem requires more coefficients to be approximated in all techniques, implying 

more derivatives in perturbation and more column dimension in the linear programming method. 

However, the row dimension of the linear programming scheme has risen significantly. In the 

unidimensional problem, where the state contains 101 collocation points and the correspondence 

contains 201 points, the row dimension is only 101×201=20,302. In the multidimensional problem 

with an additional state variable, though each state and the action correspondence contains only 51 

points, the row dimension is 51× 51×51=132,651, more than six times larger. If we have another state 

or control variable and discretize it with 51 collocation points, the size of the linear programming will 

be 51 times larger and the computation time will increase very quickly. 

 

VI. Practical choice over on the three techniques 

In this section, we discuss some practical considerations on the choice of the three techniques. 

Obviously, their performance (approximation quality and computation time) is an important indicator. 

However, the choice of the techniques in practice also depends on its flexibility, applicability, 

software requirement and problem-specific factors. Instead of naming the best technique in general, 

we try to address the question 'which win in what situation' or equivalently 'what a technique can do 

best and what it does worst'. 

 

1. Perturbation technique 

The numerical case studies provide evidence that the perturbation technique is not efficient in 

unidimensional problems where it loses its speed advantage to the linear programming technique, and 

remains the least accurate technique. For the purpose of accuracy improvement, the perturbation 

technique also has a very limited variant. The only technique available so far is to use rational 
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functional form (Pade approximation) instead of polynomials but this can only be applied to 

deterministic unidimensional HJB equations  (see Judd and Guu, 1993). In addition, perturbation is 

the least flexible technique in controlling the distribution of approximation errors, which always takes 

the shape of an increasing deterioration away from the steady state. It is hardly possible to increase 

quality in a certain part of the domain even if we are willing to scarify the quality in others. 

 

With respect to the scope of application, the perturbation technique is also the most restrictive. As its 

algorithm relies on differentiating and evaluating the derivatives at a steady state, it works better in 

problems with a unique steady state. In problems without a steady state (or one that is impossible to 

calculate), the use of perturbation technique is ruled out. The perturbation technique cannot work 

where there exists a corner solution or a non-differentiable HJB equation. This also requires a strong 

symbolic toolbox for successive symbolic differentiation and evaluation, which is relatively expensive 

in comparison to the software required by the other two techniques. 

 

However, the perturbation technique still retains some attractions. First, this is only technique that 

produces the steady state during the approximation process. With the projection and linear 

programming methods, the calculation of the steady state (if necessary) often needs be done with 

another simulation step after the approximation of value and optimal policy  functions. The 

perturbation technique is thus convenient in economic problems where the steady state and the 

dynamic behavior around that are the main focus of the analysis. 

 

Second, the perturbation technique is still superior for comparative static analysis on the effects of 

various parameters. For example, it produces the optimal harvest as a function of both fish stock and 

fish price and make the analysis of the fish price effect on the optimal path to MEY very tractable. 

This is impossible or extremely difficult with the projection and linear programming techniques. 

 

Third, the perturbation technique suffers least from the curse of dimensionality, hence it is more 

appropriate in multidimensional problems. In addition, it is the only technique that allows to increase 

the approximation quality by adding more terms to existing ones. For example in the unidimensional 

problem, in order to improve the accuracy by increasing from  to , the perturbation 

technique does not need to recalculate the coefficients for the first to the sixth order terms. It only has 

to further calculate the seventh to tenth order terms to generate a longer Taylor expansion. The 

projection and linear programming techniques do not have this feature as all terms need recalculating 
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when the polynomial order is changed. Therefore, improving approximation quality in the 

perturbation method involves a trivial programming burden compared to the other two techniques. 

 

2. Projection technique 

Projection technique is slow but its accuracy is stable. Practical experience shows that this technique 

offers the clearest opportunity for a trade off between speed and accuracy in most problems, i.e. the 

approximation quality can improve significantly in most situations when more time is devoted to 

computation. A higher number of state collocation points or basic functions will lead to significantly 

more accurate results. In some situations with the other two techniques, a large attempt leads to only 

an insignificant improvement. 

 

In addition, this technique has a wide range of variants that can be applied flexibly to a particular 

problem. For example, one may use Chebychev polynomials or other functional forms to improve the 

quality. The variants of the projection technique allow a highest degree of flexibility to control the 

distribution of the approximation errors. For example, a higher weight attached to a particular 

collocation point in defining the distance function leads to a smaller error in that state. Even if a 

researcher needs the errors at some particular points to be zero, the task of finding coefficients, which 

minimizes the distance function can be converted to solving a system of equations with which the 

distance is zero in the desired collocation points. 

 

However, due to its very slow speed, the projection technique is not appropriate in many practical 

situations. Economic parameters are usually estimated from econometrics with a confidence interval, 

therefore sensitivity analyses with different scenarios are often required. Projection technique may be 

too slow to be used in such a sensitivity analysis. Suppose we calculate the maximum value function 

of the multidimensional case study with different possible levels of five parameters, namely the price 

coefficient ( ), the cost coefficient ( ), the intrinsic rate ( ), the reserve size ( ) and the likelihood of 

a negative shock ( ). If the size of the sensitivity analysis  (each parameter has  possible alternative 

values), then the total number of parameter combinations is . Based on the computation time for 

one set of parameter values reported in Table 5, we calculate the computation time required by the 

three techniques to implement this sensitivity analysis in Table 6. If the analysis size is , the 

perturbation technique can finish in less than an hour, the linear programming technique needs around 

four hours while the projection technique needs about 38 days. If the size , the perturbation and 

linear programming techniques can be completed within hours while the projection technique needs 

three months. 
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In addition, as projection technique uses non-linear optimization, the computation time will increase 

quickly with respect to the number of coefficients. This is especially true when the distance function 

is very complicated as it is the sum of a large number of nonlinear terms, taking time to be evaluated 

numerically. Perhaps, increasing the number of coefficients to be approximated in projection 

technique is most costly though a significant quality improvement is assured. 

 

The application of projection technique is wider than perturbation technique as it does not need a 

steady state. However it is still restricted to solving the FOC and envelope results of HJB equations. 

Thus it cannot solve for a corner solution or approximate non-differentiable HJB equations. 

 

3. Linear programming technique 

The performance of the linear programming technique in the two case studies provides evidence that 

this is a combination of being fast and accurate. It strongly competes with the perturbation technique 

in speed and with the projection technique in approximation quality. It requires the most available 

software with a linear programming package. 

 

Though the linear programming technique does not have as many variants to improve the accuracy as 

projection technique, the choice of collocation points and functional form can be still be very flexible 

as discussed in Section III. The distribution of approximation errors can also be controlled somewhat 

by choosing different weight vectors. More importantly, this technique allows for the use of prior 

information to improve approximation quality. For example in the unidimensional case study, an 

experienced researcher in fisheries economics may guess that the optimal harvest level is certainly 

less than half of the fish stock. Then it is not necessary to discretize the whole action correspondence 

 into 201 collocation points. Instead, the researcher can discretize the suspected action 

correspondence  into 101 points and obtains the same result with the row dimensional of the 

linear programming scheme reduced by 50%. 

 

The applicability of linear programming technique is widest. It relies on neither the existence of a 

steady state nor differentiating HJB equations. Therefore, this is the only technique that can be used in 

case of a corner solution or non-differentiable HJB equations.  

 

Beside these strengths, the parametric linear programming technique has some weaknesses. First, it is 

the only technique which approximates the maximum value function only, the optimal policy function 
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may not be available in analytical form as with the two other methods. When the optimal policy 

function cannot be solved from the FOC of the HJB equation, it has to be approximated numerically 

from a grid search. Then it is usually costly to obtain the optimal policy function if one needs it, say to 

simulate the steady state. 

 

Second, the linear programming problem is most affected by the curse of dimensionality. Adding one 

variable into the problem, regardless of whether it is a state or control variable, will enlarge the size of 

the linear programming scheme by several dozen times. Assuming each state or control variable has 

only 51 collocation points and the value function is conjectured to be a fourth order polynomial as in 

the multidimensional case studies, we calculate the sizes of the linear programming schemes with 

different dimensions and report in Table 6 where  is the dimension of the state space and  is the 

dimension of the action correspondence. It is clear that the column size depends on the number of the 

state variables but the row size increases exponentially with respect to both variables. For the case 

 and , we need at least 4720 GB memory to store the matrix, let alone solving the linear 

programming scheme. Therefore if there are more than three state or control variables, the linear 

programming technique is not practical unless we accept an inaccurate approximation by reducing the 

number of collocation points to a trivial level. 

 

Finally, the linear programming technique needs to have a bounded action correspondence. Without 

boundedness, the action correspondence cannot be discretized into action collocation points. 

Fortunately in economics where a decision maker always faces scarcity constraints, most optimal 

control problems satisfy or can be converted to satisfy the boundedness requirement. Hence this is a 

theoretical rather than a practical issue. 

 

VII. Concluding Remarks 

In this paper, we extend the parametric linear programming approach to include problems with 

Poisson jump diffusions and compare it to the projection and perturbation techniques. The 

performances of the three techniques in two case studies show that the linear programming technique 

is a combination of speed and accuracy. It is a strong competitor with the perturbation technique in 

speed and with projection technique in approximation quality. This new technique also has a widest 

applicability when it works even if HJB equations are not differentiable and requires most simple 

software package. 
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However, the linear programming technique is most affected by the curse of dimensionality hence it 

may not be suitable for large dimension problems. In this aspect, the perturbation technique is still the 

most attractive as it can significantly soften the curse and produce approximations with a reasonable 

computation time. The perturbation technique is also ideal for analyzing the effect of exogenous 

parameters in a comparative static analysis. The weakness of perturbation technique is the accuracy 

which decays very quickly away from the steady state of the dynamic system. 

The projection technique is too slow and hence it is not appropriate to solve practical problems in 

economics. However, it has a wide range of variants that may be applied to a particular problem to 

meet specific demands of researcher with stable approximation qualities. It is also fairly intuitive, 

easy to code and requires only a non-linear optimizer which is widely available with many coding 

platforms. 
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Appendices 

A.1 Heuristic derivation of the HJB equation (6) 

Denote  the aggregate return from time  onward contingent on the choice of a feasible policy 

plan  or . The expectation of this return depends on the value of 

the state variables at the initial time t, so we can write:  

  (21) 

where  is the value function associated with the policy plan . 

To keep in line with the Optimality Principle, we add a small  to define 'the next period'. Consider 

an infinitesimal time interval  where the state variables are fixed without uncertainty at  

and the control variables are fixed at . Then the expected aggregate return from time  onward can 

be decomposed into the return obtained in  and the (discounted) aggregate return from time 

 onward. 

 

 (22) 

where we use . 

Applying Maclaurin's expansion  and using the fact that  for all  , 

we have . Substituting these into equation (22) and using the definition of the 

value function in equation (21)  gives: 

  (23) 

At this stage, we can apply the Optimality Principle to derive the dynamic programming equation for 

the maximum value function : 

  (24) 

 

Denote . Rearranging equation (24), and taking the limit as 

, give: 
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  (25) 

Invoking the Ito lemma to expand the term , we have: 

  (26) 

Substituting equation (26) into equation (25) and simplifying the terms give the HJB equation (6). 
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A.2 A proof of Theorem 1 

In the first part of the proof, we prove that if the function  satisfies the HJB equation (6), then it 

will not be smaller than any aggregate return obtained by any feasible policy profile. In the second 

part, we pin down the optimal policy function which results in the aggregate return equal . 

First, consider an arbitrary policy , by the Ito lemma: 

  (27) 

Integrating both sides of equation (27), evaluating the stochastic integration in the time interval 

 and taking the expectation given the information set at time zero, give: 

  (28) 

Invoking the no-Ponzi condition in expression (4) which implies that  and 

the HJB equation (6) which implies that the RHS of equation (28) is non-positive, all yield: 

  (29) 

Second, we define the optimal policy function: 

  (30) 

Comparing equations (6) and (30) implies that if the policy applied is , the RHS of equation (28) 

is zero. Put it in another way, the equal sign in expression (29) is feasible. Combining the results of 

two parts, we have: 

  (31) 
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A.3 A proof of Theorem 2 

We prove that the maximum value function  is the smallest among those satisfying the 

constraints in Problem (9) In other words, any function  satisfying the constraints will not be 

smaller than . 

Consider an arbitrary function  that satisfies the constraints in Problem (9) and an arbitrary policy 

. By the Ito lemma: 

  (32) 

Integrating both sides of equation (32), evaluating the stochastic integration in the time interval  

 and taking the expectation given the information set at time zero, give: 

  (33) 

Invoking the no-Ponzi condition in expression (4) which implies that  and 

the constraints in Problem (9)  which implies that the RHS of equation (33) is non-positive, give: 

  (34) 

Since expression (34) holds with all policy plans, it holds with the optimal policy profile. Evaluating 

the RHS of expression (34) at the optimal policy profile which leads to the maximum value function, 

we have: 

  (35) 

The weak inequality in expression (35) simply implies that the maximum value function is the 

smallest among those satisfying the constraints in Problem (9) and uniquely solves the minimization 

problem with any positive weights . 
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Tables 

Paramters Notation Values 

Fish price coefficient  700 

Fishing cost coefficient  17 

Price elasticity  0.81 

Biological intrinsic rate  0.2985 

Discount rate  0.05 

Maximum Carrying Capacity  1 (million tons) 

Standard error of the natural shock  0.05s 

Likelihood of the negative shock  0.1 

Magnitude of the negative shock  -0.13s 

Table 1. Numerical values for the paramters in the unidimensional problem 

 
 Linear  programming Perturbation Projection 

Maximum error 8.6323e-4 3.3214e-3 1.36e-4 

Average error 4.6487e-5 3.4357e-4 2.0467e-5 

Computation time (s) 1 0.8 140 

Table 2. Performance of the parametric techniques in the unidimensional case with polynomial order 

 

 
 Linear  programming Perturbation Projection 

Maximum error 6.5833e-5 1.1836e-3 8.905e-5 

Average error 9.2673e-6 8.4807e-5 1.5723e-5 

Computation time (s) 1.2 3 380 

Table 3. Performance of the parametric techniques in the unidimensional case with polynomial order 
 

 
 Linear  programming Perturbation Projection 

Maximum error 2.6869e-3 5.10e-3 1.2769e-3 

Average error 1.1195e-4 7.1e-4 1.3096e-4 

Computation time 5 1 1050 

Table 4. Performance  of the parametric techniques in the multidimensional problem 
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Size of the 

sensitivity ( ) 

Number of parameter 

combinations ( ) 

Linear programming 

technique 

Perturbation Projection 

3 243 0:21 hour 0:04 hour 3.0 days 

4 1,024 1:26 hour 0:17 hour 12.5 days 

5 3,125 4:20 hour 0:52 hour 40.0 days 

6 7,776 10:48 hour 2:09 hour 94.5 days 

Table 5. Computation time and the size of the sensivity analysis 

 
    

 2601×5 132,651×5 6,765,201×5 

 132,651×15 6,765,201×15 345,025,251×15 

 6,765,201×35 345,025,251×35 17,596,287,801×35 

Table 6. Sizes of the linear programming scheme with various dimensions 
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Figures 

 

Figure 1: Unidimensional maximum value function 
 

 

Figure 2: Unidimensional optimal harvest function 

 
Figure 3: Undimensional approximation errors 
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Figure 4: Multidimensional maximum value function 

 
Figure 5: Multidimensional optimal harvest function 

 
Figure 6: Multidimensional approximation errors 
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