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Abstract 

 

The numerical certainty scale (NCS) and polychotomous choice (PC) methods are two widely 

used techniques for measuring preference uncertainty in contingent valuation (CV) studies. The 

NCS follows a numerical scale and the PC is based on a verbal scale. This paper presents results 

of two experiments that use these preference uncertainty measurement techniques. The first 

experiment was designed to compare and contrast the uncertainty scores obtained from the NCS 

and the PC method. The second experiment was conducted to test a preference uncertainty 

measurement scale which combines verbal expressions with numerical and graphical 

interpretations: a composite certainty scale (CCS). The construct validity of the certainty scores 

obtained from these three techniques was tested by estimating three separate ordered probit 

regression models. The results of the study can be summarized in three key findings. First, the 

PC method generates a higher proportion of ‘Yes’ responses than the conventional dichotomous 

choice elicitation format. Second, the CCS method generates a significantly higher proportion of 

certain responses than the NCS and the PC methods. Finally, the NCS method performs poorly 

in terms of construct validity. We conclude that, overall, the verbal measures perform better than 

the numerical measure. Furthermore, the CCS method is promising in measuring preference 

uncertainty in CV studies. However, further empirical applications are required to develop a 

better understanding of its strengths and the weaknesses.  

 

Keywords: Preference uncertainty, contingent valuation, numerical certainty scale, 

polychotomous choice method, composite certainty scale, climate change, Australia 

 

JEL CODE: Q51, Q54,  
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1. Introduction 
 

The NOAA Blue Ribbon Panel on contingent valuation (CV) advocated the use of response 

formats that allow for expressions of uncertainty in respondents’ preferences (NOAA, 1993). In 

general terms, ‘preference’ denotes an individual’s taste for a specific good and ‘uncertainty’ 

denotes a lack of knowledge about the probability of an outcome (Knight, 1921). ‘Preference 

Uncertainty’ in the context of market transactions, therefore, refers to an individual’s lack of 

knowledge about their choices of purchases given the price and other attributes of the good in 

question. Hanemann et al. (1995) first proposed a welfare model that incorporated an element of 

uncertainty about individual preferences in the context of stated preference (SP) studies. They 

argued that individuals do not necessarily know their true valuations (a) of a good with certainty. 

Rather they perceive the value of the good to lie within an interval {a-h, a+h}, where ‘h’ refers to 

the amount of unknown component in preference (h>0).  

 

Subsequent to the NOAA Panel report and the Hanemann et al. (1995) study, researchers have 

developed and applied a variety of methods to address preference uncertainty in CV studies. The 

numerical certainty scale (NCS) method and the polychotomous choice (PC) method are two 

widely used techniques to measure the extent of preference uncertainty. Li and Mattson (1995) 

first devised the NCS method in which the standard ‘Yes/No’ dichotomous choice (DC) 

valuation question is followed by a numerical certainty scale ranging from 1 to 10. Ready et al. 

(1995) introduced and applied the PC format in which respondents express their uncertainty by 

choosing from a set of responses: ‘Definitely Yes’, ‘Probably Yes’, ‘Maybe Yes’, ‘Maybe No’, 

‘Probably No’, ‘Definitely No’.  
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Empirical findings in the psychology literature suggest that there can be important consequences 

of measuring psychological uncertainty with verbal versus numerical measures. In general, 

numerical measures are considered less appropriate for measuring psychological uncertainty 

especially in situations that involve probabilistic information (Gigerenzer, 2003). A large body of 

research dealing with peoples' statistical competency demonstrates that information about 

probabilistic events tends to be difficult to understand, even for highly educated people (Burkell, 

2004). Furthermore, psychologists argue that most people in every day life use words rather than 

numbers when describing their own uncertainty (Windschitl and Wells, 1996; Renooij and 

Witteman, 1999). For example, a question like “Are you going to the gym today?” will 

commonly generate answers like ‘Definitely’, ‘Probably’, ‘Maybe Not’.  

 

However, numerical measures have some advantages over verbal measures. Numbers are 

precise, allow calculations and have a fixed rank-order (Renooij and Witteman, 1999). Verbal 

measures are imprecise, cannot be used in calculations and more subjectively interpretable 

(Weber and Hilton, 1990). For decision making situations that require precise information of 

psychological uncertainty, verbal measures are less informative and useful than numerical 

measures (Budescu and Wallesten, 1990). Yet, the numerical measure adds complexity as it 

requires the respondents to think about their uncertainty in a deliberate, controlled and rule-based 

manner (Windschitl and Wells, 1996). Numerical measure, therefore, may lead to incorrect 

assessments of psychological uncertainty in situations where people’s decisions and behaviours 

are products of intuitive and associative processing. In a series of experiments, Windschitl and 

Wells (1996) showed that verbal measure is more advantageous than numerical measure to 

assess psychological uncertainty that people experience in their everyday life.  
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Debate persists in the CV literature about whether the NCS or the PC method provides the better 

uncertainty measure (Akter et al., 2008). However, to the best of our knowledge, no study has 

been conducted to date to compare the performance of these two methods. The choice of a 

preference uncertainty measurement technique in CV studies is subjective and ad-hoc. Some 

empirical studies have compared the treatment effects of certainty calibrated WTP against the 

conventional DC CV WTP estimates in terms of accuracy and efficiency (see Samnaliev et al., 

2006; Chang et al., 2007).  These studies provide no conclusion regarding the superiority of one 

technique over the other. In this paper, we applied the NCS and the PC methods and one other 

that we develop: the composite certainty scale (CCS), using split sample treatments. The self-

reported certainty scores obtained from these sample splits were compared and contrasted. The 

scores, furthermore, were modelled using ordered probit regression model to test if their 

variations could be explained by theoretically and intuitively expected explanatory variables. 

 

The rest of the paper is organized as follows. Section 2 presents a discussion of the NCS, PC and 

CCS method followed by a description of the survey and case study in Section 3. In Section 4, 

the distribution of the self-reported uncertainty scores are compared across the different certainty 

measurement techniques. Section 5 presents the statistical model and regression results followed 

by the results of a calibration exercise in Section 6. Section 7 presents discussion of the results 

and concludes.  

 

2. The NCS, PC and CCS method 
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Proponents of the NCS method argue that it provides more precise information about the level of 

certainty as the respondent is able to specify a numerical certainty value in a 1 to 10 point scale. 

However, the NCS method is based on two assumptions (Loomis and Ekstrand, 1998). First, it 

assumes that respondents are able to assess accurately their own degree of certainty when 

answering the willingness to pay (WTP) question. Second, it is assumed that all respondents 

interpret the certainty scale equivalently. The main argument for measuring preference 

uncertainty in CV studies is that respondents are uncertain about their valuation of the good. 

Hence, the first assumption, by implying that respondents are certain about their levels of 

confidence in their WTP choice, appears to be contradictory (Akter et al., 2008). Furthermore, 

the second assumption of comparable rating responses across individuals is dubious as it has 

been observed that respondents show ‘scale preference’ in which some individuals tend to be low 

raters or high raters (Roe et al., 1996).  

 

The performance of the PC scale has also been debated. The incentive compatibility property of 

a CV study is considered to be diminished when this format is used to elicit preference 

uncertainty. Carson and Groves (2007) argue that questions that contain more than two 

alternatives are not incentive compatible as they provide opportunities for respondents to respond 

strategically. Accordingly, Ready et al. (1995) found that the PC format generates higher rates of 

‘Yes’ responses than the standard DC question because it allows the respondent to give an 

affirmative response, without making a strong commitment. Alberini et al. (2003) argued that PC 

format may cause false uncertainty to arise in the SP framework because it provides respondents 

with an inducement to leave unresolved their lack of confidence in answering the valuation 

question. One other pitfall of the PC format is the subjectivity of the words that are generally 
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used to elicit respondent uncertainty (Hanley et al., 2009). For example, when a respondent is 

given the choice between ‘Probably Yes’, and ‘Maybe Yes’, unless the distinction between the 

terms ‘Probably’ and ‘Maybe’ are explicitly demonstrated, the interpretation of these two 

responses could be highly subjective and may lead to a potential measurement bias.  

 

The CCS method was designed to overcome the shortcomings of the PC method. The method is 

based on the word-graphic rating scale, first developed by Tesler et al. (1991). The method uses 

verbal expression of uncertainty which is similar to the PC method but the scale is introduced 

followed by a DC WTP question. Thus, it allows the incentive compatibility property of the CV 

study to be maintained. Furthermore, the method includes two steps. In the first step, respondents 

are asked whether they are certain about their answers to the WTP question. Only respondents 

who were not fully certain about their decisions are shown the CCS and asked to indicate their 

levels of certainty. This decomposition exercise is based on the domain-range questionnaire 

structure suggested by Beatty et al. (1999). They suggest decomposing questions into major 

components so that the first component serves as the domain (which tells the respondent what 

the question is about) and the second component serves as the range (which tells the respondent 

what they are expected to give back).  

 

In the CCS method, the domain is whether or not respondents are uncertain about their decisions. 

Having identified the presence of any level of uncertainty, the range is a list of different certainty 

levels. Five categories of responses are added to the scale, namely ‘Extremely Unsure’, ‘Highly 

Unsure’, ‘Fairly Unsure’, ‘Highly Sure’, and ‘Extremely Sure’. To overcome any subjective 

interpretation of the verbal scale (the second pitfall of the PC method), each of these response 
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categories is associated with a numerical interpretation and a graphical expression (see Figure 

1)1. A pie diagram was added to help respondents visualise the information. The literature in 

health risk communication indicates that pictures accompanied by clear text help communication 

through higher attention, comprehension, recall, and adherence by respondents (Houts et al., 

2006). The psychology literature suggests that graphical representation of data may improve 

judgment and decision-making because it can facilitate information processing and analogue 

reasoning by providing a holistic view of the information (Stone et al., 1997; Lipkus and 

Hollands, 1999; Larkin and Simon, 1987). In addition, it can minimise mental effort and be used 

either as an alternative to numbers or in addition to them in order to aid further understanding of 

numerical risks.  

 

INSERT FIGURE 1 HERE 

 

3. Survey and data collection 

3.1. Set-up of the survey 

The context of these experiments was Australian households’ preferences towards the occurrence 

and mitigation of anthropocentric climate change. As part of fulfillment of its Kyoto Protocol 

obligations, the Australian Government has recently proposed a national emissions trading 

scheme known as the Carbon Pollution Reduction Scheme (CPRS). The aims of the CPRS are to 

reduce emissions by 60 per cent of the 2000 level by 2050 and to encourage the development and 

use of reduced emission technologies (Department of Climate Change, 2008). The 

                                                 
1 One limitation of attaching numerical percentage points to the five point verbal scale was that the whole continuum 
between 0 and 100 could not be included in the scale.  
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implementation of the CPRS will affect Australian households as the prices of a wide range of 

emission-intensive goods and services are expected to rise. The case study aimed to explore 

Australian households’ willingness to bear extra expenses to support the CPRS.  

A web-based CV survey was conducted with about 300 respondents in each of three split 

samples in Sydney from the third week of November 2008 until the first week of December 

2008. Respondents were asked if their household would be willing to bear specified extra 

expenses per month resulting from the CPRS. Eight different extra expenses “bids” ranging from 

AUD 20 to AUD 400 per month per household were randomly assigned across the respondents. 

These amounts were based on responses obtained from an open-ended WTP question asked 

during the first focus group. The bid amounts were tested in the second focus groups and the 

pilot survey.  

 

In the first split sample (SNCS), respondents were shown a ten point numerical certainty scale 

followed by a DC WTP question. Respondents in the second split sample (SPC) answered the PC 

question that included six response categories (‘Definitely Yes/No’, ‘Probably Yes/No’ and 

“Maybe Yes/No’). In the third split sample (SCCS), respondents answered the CCS questions. The 

development process of the CCS method involved peer discussions and two focus group 

sessions. Five university staffs and graduate students were invited to participate in the testing of 

the first version of the CCS method. Based on their feedback, the scale was revised and tested in 

a focus group discussion session with 12 members of the general public. Participants were asked 

to provide feedback on the level of comprehensibility and appropriateness of the word choices of 

the CCS. The design of the scale was then revised further and tested again in a second focus 
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group. Before the final survey, a small-scale pilot test was conducted where twenty respondents 

participated. 

 

In addition to the valuation question and question(s) related to preference uncertainty, the survey 

questionnaire included a number of questions regarding respondents’ perceptions of the extent of 

climate change and effectiveness of climate change policy. Respondents were asked to indicate 

their best guess of temperature change in 2100 relative to the current year. They were 

subsequently asked to indicate a range around their best guess of average change in temperature 

in the form of high and low guesses. A numerical probability scale was used to elicit 

respondents’ perceptions of their ‘best guess’ of policy effectiveness followed by their ‘high 

guess’ and ‘low guess’ of the policy being effective in slowing down climate change. The high 

guess and low guess of expected temperature change and climate policy effectiveness provide a 

measure of respondents’ perceptions of uncertainty of the future scenario and policy in question.  

 

These two factors (uncertainty in scenario and policy) are expected to be of particular interest as 

psychology theory suggests that environmental factors are important source of psychological 

uncertainty (Downey et al., 1975). The term ‘environment’ does not refer natural environment. 

Instead it refers to the basic conditioning of the decision making framework within which the 

individual decision maker operates from. More specifically, environmental uncertainty occurs 

whenever the outcome of an event in future and/or the probability of an outcome to occur cannot 

be precisely determined (Downey et al., 1975; Duncan, 1972).  In a situation like this, decision 

maker try to rate the outcome and/or probability of the external events as a prominent coping 

strategy (Kahneman and Tversky, 1982). According to Downey et al. (1975), these external 
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factors or decision making environment provides direct input into individual’s cognitive 

mapping process and thus determines the level of psychological uncertainty.  

 

Respondents were asked a set of socio-demographic (e.g. sex, age, education, occupation, 

income) and attitudinal questions (level of concern regarding climate change, relative importance 

of a climate change mitigation policy, belief if climate change is caused by human action). 

Finally, a set of questions that measured respondent’s knowledge and level of familiarity with 

the scenario and policy context (respondents’ awareness of the CPRS, Kyoto protocol, 

Intergovernmental Panel of Climate Change (IPCC)) was included in the questionnaire.  

 

2.2. General survey results 

Table 1 compares the socio-economic characteristics of the sampled households with the 

regional and national population statistics. A chi-square test of proportions revealed that the 

differences in the three sample splits with respect to sex ratio, age, education and household 

income are not statistically significant at the ten percent level. When each of the split sample 

statistics were compared with the Sydney population and the Australian population, the 

differences in sex ratio are not found to be statistically significant. However, although the 

educational attainments of the sample were not found to be significantly different than the 

Sydney population, they were significantly different than the educational attainments of the 

Australian population. Finally, Z tests revealed that the sample respondents’ age and weekly 

household income are not significantly different than the median age and weekly average income 

of the Sydney population and the national population. These test results demonstrate that the 
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sample is representative of the Sydney population as well as the Australian population at least 

with respect to sex ratio, age and household income.        

 

Although over eighty percent of the respondents had heard of the Kyoto Protocol and one third 

of them knew the Protocol’s objectives, a majority (82 percent) of the respondents had not heard 

of the IPCC. While more than half of the respondents (57 percent) had heard of the CPRS prior 

to the survey, a majority (83 percent) did not know when the CPRS would be implemented. 

Around two thirds of those who claimed to know when the CPRS would be implemented (five 

percent of the total sample) could correctly indicate the proposed implementation year of the 

CPRS. Respondents’ knowledge of the Kyoto Protocol and the CPRS were positively correlated 

(r=0.221, p<0.001) implying that respondents who were informed about the Kyoto Protocol were 

also aware of the CPRS. Likewise, a low but statistically significant positive correlation was 

observed between respondents’ knowledge of the CPRS and carbon offset programs (r=0.118, 

p<0.001). This implies that respondents who were familiar with carbon offsets were also familiar 

with the CPRS.  

 

Respondents’ mean best guess about the change in average temperature in 2100 relative to the 

current year was 3.75 degrees centigrade. The median was three degrees centigrade with a 

maximum of 10.5 degrees and minimum of minus 4.5 degrees. The average range (the difference 

between high guess and low guess) around stated best guess temperature change was about three 

degrees centigrade. The range of expected temperature change varied within the range of 15.5 

degrees and zero degrees centigrade. The mean of respondents’ best guess of the CPRS being 
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effective in slowing down climate change was 25 percent. The average range around this best 

guess was also 25 percent.  

 

4. Results concerning preference uncertainty 

In this section the self-reported certainty scores obtained from the three sample splits are 

compared and contrasted. First, we examine if the PC method generates a higher proportion of 

‘Yes’ responses compared to the DC WTP elicitation format. Second, the distributions of the 

stated certainty scores across the three measurement techniques are determined. Finally, the 

distributions of certainty scores across ‘Yes/No’ WTP responses are displayed for all three 

sample splits.  

 

Recoding ‘Definitely Yes’, ‘Probably Yes’ and ‘Maybe Yes’ responses to ‘Yes’, and ‘Definitely 

No’, ‘Probably No’ and ‘Maybe No’ responses to ‘No’, 54 percent of ‘Yes’ responses and 46 

percent ‘No’ responses were observed in the SPC. In Table 2, we compared this distribution of 

‘Yes/No’ responses with the DC WTP responses obtained from the SNCS and the SCCS. In both the 

SNCS and SCCS, about two thirds of the respondents replied ‘No’ to the WTP question and the rest 

said ‘Yes’. The proportions of ‘Yes’ responses in the SNCS and the SCCS were about 63 percent 

lower than that of the SPC. No statistically significant difference was observed between the 

‘Yes/No’ WTP responses across the SNCS and the SCCS (Chi square=0.155, p<0.7). The difference 

in distribution of ‘Yes/No’ responses in the SPC from the other two samples was found to be 

statistically significant (SPC & SNCS: chi square=7.053, p<0.01; SPC & SCCS: chi square=9.692, 

p<0.01). These results imply that the PC method, as previously claimed by Ready et al. (1995) 
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and Alberini et al. (2003), generates a higher proportion of ‘Yes’ responses than the conventional 

DC WTP question.   

 

INSERT TABLE 2 HERE 

 

Figure 2 presents the distribution of the highest and the lowest certainty scores across the 

measurement methods. A third of the respondents in the SPC indicated the highest level of 

certainty (Definitely Yes/No) about their preferences of paying (or not paying) for the CPRS 

while over a third of the respondents indicated the lowest level of certainty (Maybe Yes/No). 

Likewise, about a third of respondents in the SNCS indicated the highest level of certainty 

(certainty score of 10) about their ‘Yes/No’ responses to the DC WTP question whereas less than 

three percent of the respondents indicated the lowest level of certainty about their decisions 

(certainty score of 1). In the SCCS, an overwhelming majority of 87 percent respondents indicated 

the highest level of certainty (that they were completely certain) about their voting decisions 

while only less than a percent of the respondents indicated that they were extremely unsure2. The 

differences in the proportion of the highest and the lowest level of certainty score between the 

SCCS and other two sample splits were statistically significant (SCCS and SNCS: Chi square=177.59, 

p<0.001; SCCS and SPC: Chi square=182.52, p<0.001). These results imply that the SCCS method 

generates the highest level of certain responses compared to the two other methods.  

 

INSERT FIGURE 2 HERE 

 

                                                 
2 Note that none of the respondents selected the ‘Extremely Sure’ response and only one respondent selected the 
‘Extremely Unsure’ response.  
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The distribution of the self-reported certainty scores in three sample splits were examined for 

differences across ‘Yes/No’ WTP responses. In the SPC , only six percent of the ‘Yes’ 

respondents indicated the highest level of certainty (‘Definitely Yes’) whereas over a quarter of 

the total respondents reported the highest level of certainty about their decisions of not to pay  

(‘Definitely No’). The difference in distribution of the highest certainty scores between ‘Yes’ 

and ‘No’ responses was statistically significant at the one percent level (chi square= 54.102, 

p<0.001). Over 40 percent of the SNCS respondents, who said ‘No’ to the WTP question, were 

very certain (certainty score = 10) about their decisions as opposed to less than 20 percent of the 

‘Yes’ respondents who were very certain. Hence, the respondents who replied ‘No’ to the WTP 

question stated significantly (Chi square=28.64, p<0.001) higher certainty scores than the 

respondents who replied ‘Yes’. In SCCS, 91 percent of all ‘No’ respondents said that they were 

absolutely sure about their decisions whereas 78 percent of all ‘Yes’ responses were absolutely 

sure about their decisions. This difference between certainty scores associated with ‘Yes’ and 

‘No’ answers was statistically significant (Chi square=17.28, p<0.001). These results imply that, 

the ‘No’ responses tend to be held with greater certainty scores than ‘Yes’ responses regardless 

of the measurement method. Therefore, it could be argued that the level of self-reported certainty 

score is, in part, determined by the responses to the WTP question.   

 

5. Construct validity of preference uncertainty scores 

5.1. Statistical model of preference uncertainty 

Construct validity refers to how well the estimated coefficient signs and values of the 

explanatory variables used to explain the variation in the dependent variable fit the theoretical 
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expectation on which the model is based (Mitchell and Carson, 1989). Although no explicit 

theoretical model to explain variations in preference uncertainty scores has yet been developed, 

there is a general agreement about some explanatory hypotheses that have emerged after Loomis 

and Ekstrand (1998). Three other studies (Champ and Bishop, 2001; Samneliev et al., 2006; 

Akter et al., 2009) have estimated preference uncertainty models. The explanatory variables used 

in those models are more ‘intuitive’ than ‘theoretical’. We use the results of these studies and 

psychology theories as a foundation on which to test the construct validity of the certainty scores.  

Loomis and Ekstrand (1998) estimated an ordinary least square regression model on pooled 

(both ‘Yes' and ‘No' responses) data. Champ and Bishop (2001) and Akter et al. (2009) estimated 

ordered probit regression models on certainty scores for ‘Yes’ responses whereas Samneliev et 

al. (2006) estimated separate logistic regression models for ‘Yes’ and ‘No’ responses. Loomis 

and Ekstrand (1998) used a follow-up DC certainty scale varying between 1 (=very uncertain) 

and 10 (=very certain) to elicit respondents’ levels of certainty regarding their responses to the 

DC WTP question. They found a quadratic relationship between the self-reported certainty levels 

and bid levels. This implies that respondents experience the highest level of uncertainty at the 

middle bid and relatively lower levels of uncertainty at the high and low bids. Furthermore, the 

relationships between certainty scores and respondents’ prior knowledge about the particular 

endangered species and their visiting the area proposed for protection, were positive and 

statistically significant.  

Like Loomis and Ekstrand (1998), Champ and Bishop (2001) and Samnaliev et al. (2006) 

applied a follow-up DC certainty scale. Champ and Bishop (2001) estimated an ordered logit 

regression model of the ‘Yes’ certainty scores. Respondents’ perceptions of and attitudes 
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towards the proposed program were found to be responsible for the observed variation in the 

self-reported ‘Yes’ certainty scores. Respondents in favour of the program and willing to pay the 

extra cost expressed higher certainty levels than other respondents. Samnaliev et al. (2006) found 

similar results to those of Champ and Bishop (2001). Respondents who objected to the imposed 

user fees in principle were more certain in rejecting the bid than others. This reflects 

respondents’ general attitudes to the hypothetical market, usually referred to as protest responses 

in CV.  

Akter et al. (2009) used a five category PC question format (Extremely Unlikely, Fairly 

Unlikely, Not Sure, Fairly Likely, Extremely Likely) to ask respondents if they would pay the 

stated WTP value under a voluntary payment provision. The authors found a significant negative 

relationship between start bid and the stated likelihood of making a voluntary payment. The 

study also provides evidence that supports the relationship between respondent attitudes, 

perceptions and stated likelihood of paying, consistent with the findings of Champ and Bishop 

(2001) and Samnaliev et al. (2006). A respondent’s perceived individual responsibility for 

contributing to climate change, attitude towards paying to protect the environment and belief in 

the effectiveness of the proposed tree plantation program on climate change mitigation were 

found to be the main sources of stated uncertainty.   

 

We used Loomis and Ekstrand (1998) s’ model as the basis of our statistical model. This model 

is the most relevant because it is the only study where a pooled regression model on both ‘Yes’ 

and ‘No’ certainty scores has been estimated. Loomis and Ekstrand (1998) suggest that the self-

reported certainty score (C) is a quadratic function of bid level (BID and BIDSQ) and prior 

knowledge and familiarity with the good in question (KNOW). In addition to these variables, we 
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hypothesize that an affirmative or negative response to the WTP question (A_WTP) influences 

the self-reported certainty score, i.e. respondents who say ‘Yes’ to the WTP question tend to 

state a lower certainty score and vice versa. Furthermore, as psychology theory predicts, 

uncertainty associated with the decision making context may contribute to psychological 

uncertainty. We identify two different forms of uncertainty in the current context, namely, 

scenario uncertainty (S_UNCERT) and policy uncertainty (P_UNCERT). S_UNCERT is related 

to respondents’ uncertainty regarding the extent of future climate change measured through 

respondents’ perception about the range of temperature rise in future. P_UNCERT refers to the 

perceived uncertainty associated with the proposed CPRS being effective in slowing down 

climate change. This variable was measured by asking respondents to indicate their high guess 

and low guess probability that the CPRS will be successful. The higher the perceived scenario 

and policy uncertainty, the lower would be the self-reported certainty score.  

 

Finally, the certainty scores are expected to vary across respondents’ age (AGE). The 

psychology literature presents evidence of negative effects of aging on performance in cognitive 

tasks mainly due to slower information processing capacity (Salthouse, 1996; Hartley 2006). 

However, others argue that relatively older people bring knowledge and experience which may 

partially or completely offset any decrease in cognitive functioning that may have occurred with 

age (Park, 1998; Marsiske and Margrett, 2006). Therefore, the net effect of age on psychological 

uncertainty can be either positive or negative depending on the relative magnitude of the decline 

of cognitive processing effect and the wisdom effect due to higher level of knowledge and 

experience.  

The statistical model to be tested takes the following form:  

 20 



Ci = β1BIDi + β2BIDSQi + β3KNOWi + β4 A_WTP + β5 S_UNCERT + β6 P_UNCERT + β7  

AGE +εi 

5.2. Results 

Three ordered probit regression models were estimated using the certainty scores of both ‘Yes’ 

and ‘No’ responses. In the SNCS, the stated certainty scores within the range of 1 (absolutely 

uncertain) to 10 (absolutely certain) were used as the dependent variable. In the SPC, ‘Definitely 

Yes/No’ responses were recoded as three, ‘Probably Yes/No’ responses were recoded as two and 

‘Maybe Yes/No’ responses were recoded as one. Finally, in the SCCS, certainty scores of the 

respondents who were absolutely certain about their decisions were recoded to six. The rest of 

the five categories (Extremely Sure, Highly Sure, Fairly Sure, Highly Unsure and Extremely 

Unsure) were recoded from five (Extremely Sure) to one (Extremely Unsure).  

Tables 3 presents the regression results. Model 1 is the regression result obtained from the NCS 

certainty scores. No statistically significant effect could be detected for any of the explanatory 

variables used in Model 1.  

INSERT TABLE 3 HERE 

Model 2 presents the results obtained by regressing certainty scores of the PC responses. . The 

coefficient of the variable A_WTP (answer to the WTP question) is statistically significant in 

this model. The coefficient of A_WTP is negative which implies that, other things remaining the 

same, respondents who said ‘No’ to the WTP question stated higher certainty score than 

respondents who said ‘Yes’ . The coefficient of the variable ‘CPRS’ (if respondents have heard 

about the CPRS before the survey) is positive and statistically significant at the ten percent level. 

This implies that, respondents who had heard of the CPRS were more certain about their 
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‘Yes/No’ WTP decisions. The coefficient of the variable AGE was found to be positive and 

statistically significant which means that the self-reported certainty levels were higher for 

respondents who belonged to a higher age group. Finally, scenario uncertainty (S_UNCERT) 

was negative and statistically significant at the five percent level. The negative sign of the 

coefficient of S_UNCERT implies that more uncertain the respondents were about the future 

increase of temperature, the less certain they were about their decisions to support or not to 

support the policy. The coefficients of the variables BID, BIDSQ, and P_UNCERT were not 

statistically significant in Model 2. 

In Model 3, the coefficients of the variables BID and BIDSQ were statistically significant at the 

one percent level. The signs of the coefficients of BID and BIDSQ are negative and positive 

respectively. This implies that the self-reported certainty scores are convex in bid level. In other 

words, at extremely low and high bids respondents were more certain of their decisions and less 

certain at intermediate bid levels. These results correspond to the theory and empirical evidence 

provided by Loomis and Ekstrand (1998). The coefficient of the variable P_UNCERT is negative 

and significant at one percent level. The negative sign of the coefficient was expected. This 

implies that respondents, who were more uncertain about the proposed CPRS to be effective in 

slowing down climate change, stated lower certainty scores about their decisions of paying or not 

paying for the CPRS. As in Model 2, respondents’ age is found to have a positive influence on 

self-reported certainty score. The coefficients of the variables S_UNCERT and CPRS were not 

statistically significant in Model 3.  

6.  Results of certainty calibration 

Table 4 presents mean WTP and their ninety five percent confidence interval estimated from the 

SNCS and the SCCS (hereafter WTPNCS and WTPCCS). Krinsky and Robb confidence intervals for 

 22 



the point estimates of mean WTP were estimated (Cooper 1999). Note that the WTPCCS is 

estimated from a truncated WTP distribution. This is because a ‘fat-tail’ pattern was observed in 

the probability distribution function (PDF) of the stated WTP in the SCCS. A common and 

relatively simple statistical approach to mitigate the fat-tail problem is to truncate the distribution 

of WTP at some upper limit, usually the second largest bid (Bishop and Heberlein 1979). 

Although the truncated WTPCCS is ten percent lower than the WTPNCS, their 95 percent 

confidence intervals overlap with each other. This implies that there is no statistical significance 

between WTPCCS and WTPNCS. The efficiency3 score of the WTPNCS is higher (0.37) than the 

WTPCCS (0.56). Note that respondents answered a DC WTP question in both of these sample 

splits. Therefore, the difference in the PDF of the WTP and their respective efficiency scores are 

independent of the certainty measurement techniques.  

INSERT TABLE 4 HERE 

In Table 5, we present the results of certainty calibration in each split samples. Certainty 

calibration refers to the exercise of recoding original ‘Yes’ responses to ‘No’ responses based on 

some certainty scale cut-off points. The certainty calibrated mean WTP estimates were compared 

with the original DC WTP estimates to test for accuracy and loss (or gain) in efficiency. Note 

that for the SPC, a DC WTP estimate was not available4. The average of the SNCS and the SCCS 

WTP estimates and the average of the upper bounds and lower bounds of their 95 percent 

confidence intervals were used as the baseline to compare the certainty calibrated mean WTP 

estimates for the SPC.  

                                                 
3 Efficiency scores of the WTP estimates were calculated using the following formula: Efficiency = Difference 
between upper and lower confidence intervals over the mean WTP (Loomis and Ekstrand, 1998). The lower the 
efficiency score, the higher the efficiency of the estimator.  
4 In a PC method, respondents express their uncertainty directly through their WTP answers. This method does not 
include a DC WTP question.  
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INSERT TABLE 5 HERE 

The calibration rules of the certainty scores are subjective and ad-hoc in CV studies (Akter et al., 

2008). The most commonly used technique of incorporating the NCS measure is to recode the 

original ‘Yes’ DC responses to ‘No’ based on certainty scale cut-off points varying from seven 

to ten (Champ et al., 1997; Loomis and Ekstrand, 1998; Champ and Bishop, 2001; Samnaliev et 

al., 2006). In a multiple choice PC format, recoding is applied in a variety of combinations, e.g. 

calibrating all ‘Yes’ responses (‘Definitely Yes’, ‘Probably Yes’, ‘Maybe Yes’) as 1 and the rest 

as 0, or calibrating only ‘Definitely Yes’ responses as 1 and the rest as 0 (Johannesson et al., 

1998; Blumenschein et al., 1998; Whitehead et al., 1998; Blumenschein et al., 2001; Chang et 

al., 2007).  

In the SNCS , the original ‘Yes’ responses were recoded based on four different certainty scale 

cut-off points (original ‘Yes’ responses were recoded to ‘No’ if certainty scores were 7, 8, 9 and 

10), a calibration technique first used by Champ et al. (1997). Three different certainty 

calibration techniques were applied in the SPC  (Maybe Yes, Probably Yes and Definitely Yes = 

Yes; Probably Yes and Definitely Yes = Yes; Definitely Yes=Yes) following the calibration 

techniques applied by Chang et al. (2007). Finally, in the SCCS, two calibration techniques were 

applies (Fairly sure, Highly Sure and Absolutely Sure Yes= Yes; Absolutely Sure = Yes). The 

reason for applying only two calibration treatments in the SCCS was that there were no uncertain 

‘Yes’ responses below  or above ‘Fairly Sure’.  

 

A calibration exercise reduces the probability of ‘Yes’ responses to each bid level as ‘Yes’ 

responses are recoded to ‘No’ responses. Therefore, it is expected that the certainty calibrated 
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mean WTP values would be lower than the original DC WTP estimates. Accordingly, results 

presented in Table 5 show that all calibrated mean WTP values are lower than the mean WTP 

without certainty calibration except in one case. In the SPC , the certainty calibrated mean WTP 

estimate is 117 percent higher than the DC WTP estimate when ‘Maybe Yes’, ‘Probably Yes’ 

and ‘Definitely Yes’ responses were recoded as ‘Yes’ responses. This result is expected. A 

recoding of ‘Maybe Yes’ responses to ‘Yes’ responses increased the proportion of ‘Yes’ 

responses by 40 percent in the SPC than the proportion of ‘Yes’ responses in the DC elicitation 

format. Except for this one case, inclusion of the different certainty scale cut-off points yields 

mean WTP values that are 3 percent to 83 percent lower than the original DC mean WTP 

estimate. Comparing the value changes of calibrated mean WTP estimates across certainty 

measurement techniques, it appears that the lowest change of mean WTP value occurred in the 

SCCS (3 to 32 percent). The reason for this small value change in the SCCS was that the scale of 

calibration was relatively small in the SCCS compared to the two other sample splits. Only 21 of 

the all ‘Yes’ responses were recoded to ‘No’ responses at the first stage (Fairly Sure=19 and 

Extremely Sure=2) and only one ‘Yes’ response was recoded to ‘No’ response (Highly 

Unsure=1) at the second stage of the calibration exercise.  

 

In all the cases presented in Table 5, the certainty calibrated mean WTP were less efficient than 

the DC WTP estimate. The range of efficiency losses as a consequence of certainty calibration (7 

percent to 276 percent) was larger than the range observed in existing empirical studies (22 

percent to 149 percent) (Akter et al., 2008). Comparing the range of efficiency losses across 

different measurement techniques, the highest level of efficiency loss occurred in the SNCS (100 

percent to 276 percent). The range of efficiency loss was the lowest in the SCCS (10 percent to 7 
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percent). The efficiency loss range in the SPC lies between the ranges between of 65 percent and 

100 percent which clearly implies that the calibrated WTPPC is relatively less efficient than the 

calibrated WTPCCS.  

 

7. Discussions and conclusions 

The main aim of the study was to test the construct validity of the self-reported certainty scores 

obtained from three preference uncertainty measurement techniques. We applied the NCS and 

PC methods using split sample treatments. The CCS method, a new method for measuring 

preference uncertainty, was applied in a third split sample.  

 

The distribution of the certainty scores varied across the measurement techniques. In general, 

‘No’ responses were found to be accompanied by relatively higher level of certainty scores than 

‘Yes’ responses. However, this pattern was consistent across all the sample splits. The relative 

proportion of the highest certainty score for both ‘Yes/No’ responses was the lowest in the PC 

method whereas the CCS method generated the highest proportion of absolute certain responses. 

This systematic and significant variation in the distribution of the certainty scores in different 

sample split raise the question if preference uncertainty is an outcome of the technique used to 

measure them. Put simply, a specific preference uncertainty measurement technique may be one 

of the sources of uncertainty in respondents’ preferences.  

 

The regression results of the study provide new information about the sources of variation in the 

certainty scores. The ‘Yes/No’ response to the WTP question was found to be a significant 

determinant of the certainty level in two of the certainty measurement techniques. This implies 
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that respondents who said ‘No’ to the WTP question consistently expressed significantly higher 

levels of certainty than those who said ‘Yes’. In addition, respondents’ perceived uncertainty 

about the future scenario and effectiveness of the proposed policy were found to be influencing 

their expressed certainty scores in two of the sample splits. As theoretically expected, the stated 

certainty scores were negatively affected by these attributes of environmental uncertainty. These 

results imply that the level of preference uncertainty in CV studies can be reduced if the 

environmental uncertainties associated with the valuation framework are resolved. Finally, 

respondents’ age group was found to be a significant, positive determinant of the certainty sores 

in two of the sample splits. In other words, older respondents were more certain about their 

responses to the valuation question than younger respondents. This result implies that part of the 

experienced uncertainty in preferences is purely exogenous and, therefore, can never be 

completely eliminated.  

 

Respondents’ familiarity to the good being valued was found to have statistically significant 

positive impact on experienced certainty in the SPC. The variable was not significant in the SCCS. 

This result may be plausible because our questionnaire included an information section 

containing key descriptions of the good being valued and the policy measures under 

consideration. As a result, respondents may be equally informed about the good and the policy 

when they answer the WTP question. It is important to note that none of the other CV studies 

except Loomis and Ekstrand (1998) found prior knowledge or experience to have statistically 

significant impacts on the self-reported certainty scores. 
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While testing the construct validity of the self-reported certainty scores, verbal expression based 

techniques were found to be more appropriate than purely numerical scale based techniques. This 

result is consistent with the empirical evidence of the psychology literature that suggest verbal 

measure is more appropriate to measure psychological uncertainty that lay people experience in 

their everyday decision making. The NCS method showed poor construct validity. The variation 

of the self-reported numerical certainty scores could not be explained by the variations of any of 

the explanatory variables added in the model. This finding corresponds to the conclusion drawn 

by Windschitl and Wells (1996) in their paper. They asserted that researchers who use numerical 

measures may either underestimate or even fail to identify the effect of relevant variables on the 

psychological uncertainty experienced by the decision maker (Windschitl and Wells, 1996 pp 

360).    

Between the two verbal expression based techniques, both the PC and CCS performed equally 

well on the grounds of construct validity. Therefore, no conclusion can be drawn regarding the 

superiority of one technique over the other based on the validity criteria. However, the PC 

method generated significantly higher numbers of ‘Yes’ responses than the other two sample 

splits. From this perspective, the CCS method offers an improvement over the PC method as it 

allows the researcher to keep the conventional DC valuation question format unchanged. Also, 

the CCS method outperformed the PC method on efficiency grounds. However, there are some 

caveats to the CCS method. About 90 percent of the SCCS respondents indicated complete 

certainty about their responses to the valuation question. Such a high proportion of complete 

confidence in WTP responses is unprecedented in the CV literature. This finding raises more 

questions than it answers. One plausible explanation of this result could be respondents’ attempts 

to avoid or deny self-contradiction as pointed out by Samneliev et al. (2006). One might argue 
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that this attempt should have been equally reflected in the two other sample splits. Note that 

unlike the SNCS and the SPC, a question decomposition exercise was undertaken in the SCCS. 

Before introducing the certainty scale, respondents were first asked if they were completely 

certain about their responses to the WTP question (the domain question). It might be the case 

that this domain question had sparked respondents’ urges to stand by their choices at an 

extraordinary level compared to the NCS and PC method. This explanation is a speculation than 

conclusion. However, this is a hypothesis which can be tested in future research.    

Finally, this study is one of the first attempts to compare the performance of the existing 

certainty measurement methods and to develop a new method that overcomes the deficiencies in 

existing measures. The results of our experiments provide two clear messages. First, the 

suitability of the numerical scale based method in capturing preference uncertainty in CV studies 

is questionable. Second, the CCS method holds promise as a useful measure of preference 

uncertainty. It helps to overcome some problems associated with the PC method. However, the 

method can be improved further particularly by adding more response options such as very 

(un)sure, quite (un)sure, somewhat (un)sure and so on. Furthermore, the pie diagrams could be 

replaced by facial expressions that reflect uncertainty. It might be challenging to develop such 

pictograms that explicitly distinguish the level of uncertainty through facial expressions. The 

‘Pain Rating Scales’ developed by medical researchers could be a useful starting point. 
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Figure 1: The composite certainty scale 

19. Are you sure about your answer in the previous question?  

 

       Yes  

          No   

 

20. How do you feel about your answer to the question no 18? (TICK ONE BOX) 

 

 
 
 
 

I am 99% unsure 

 Highly unsure 

 Fairly unsure 

 Highly sure 

I am 75% unsure 

I am 50% unsure 

I am 25% unsure 

 Extremely unsure 

I am 1% unsure 

 

 

Shaded area 
represents 
how unsure 
you are 

 Extremely sure 
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Figure 2: Distribution of the highest and the lowest certainty scores across measurement 

methods.  
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Table 1 Summary statistics of respondents’ socio-economic characteristics. 
 
Respondent 
characteristic 

 aSNCS  bSPC  cSCCS  dSydney 
average 

dNational 
average  

Sex ratio 
(male/female) 

 0.93 1.07 0.84 1.16 0.99 

Respondent mean 
age (years) 

 35 35 34 35 37 

Highest level of 
education (%) 

Year 12 or 
below 

31 33 33 36 51 

 Certificate 29 35 31 21 16 

 Bachelor’s 
degree or 
above 

40 32 36 44 22 

Gross average 
household income 
(AUS$/week)  

 1384 1372 1395 1360 1305 

 

Note: 
aSample split: Numerical certainty scale. 
bSample split: Polychotomous choice method. 
cSample split: Composite-certainty scale.  
dSource: Australian Bureau of Statistics (2008) 
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Table 2 Comparison of ‘Yes’ and ‘No’ responses across different sample splits. 

 Yes No 

aSNCS (%) 33 67 
bSCCS (%) 32 68 
cSPC (%) 54 46 

Note: 
aSample split: Numerical certainty scale. 
bSample split: Polychotomous choice method. 
cSample split: Composite-certainty scale.  
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Table 3 Ordered probit regression results for stated certainty scores of  both ‘Yes’ and 

‘No’ responses. 

Variable Description 

(Value range) 

SNCS : 

Model 1 

 

SPC : 

Model 2 

 

SCCS : 

Model 3 

BID Bid level 

(20, 50, 100, 150, 200, 250, 300, 

400AUS$/month) 

0.002 

(0.002) 

-0.098 

(0.134) 

-0.008*** 
(0.003) 

BIDSQ Square of bid level -2.85e-06 

(4.48e-06) 

0.004 

(0.15) 

1.95E-05***
(7.50E-06) 

A_WTP Answer of the WTP question 

(Yes=1, No=0) 

-0.199* 

(0.141) 

-1.01*** 

(0.140) 

-0.628*** 

(0.204) 

CPRS Respondents have heard of the 

CPRS (Yes=1, No=0) 

0.044  

(0.121) 

0.256* 

(0.133) 

0.103 

(0.198) 

S_UNCERT Uncertainty about climate change 

(0 to 14.5) 

-0.031 

(0.022) 

-0.067*** 

(0.025) 

 

0.008 

(0.040) 

P_UNCERT Policy uncertainty 

(0 to 100) 

-0.002 

(0.003) 

-0.002 

(0.004) 

 

-0.010** 

(0.005) 

AGE Respondents’ age group 

(1=18 to 24 years and 6= 65 years 

and above) 

-0.008 

(0.048) 

0.091* 

(0.054) 

 

0.272*** 

(0.079) 

Model fit statistics 

Log likelihood -595.76 -308.89 -136.01 

LR chi square 9.43 

(df=7, 

p<0.22) 

78.73 

(df=7, 

p<0.01) 

33.05 

(df=7, 

p<0.01) 

Pseudo R2 0.01 0.11 0.11 

N 306 319 308 
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Explanatory notes: 
Standard errors of the parameter estimates between brackets. 
***: p<0.01; **: p<0.05; *: p<0.10. 
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Table 4 Mean WTP for the CPRS and 95% confidence interval (Krinsky and Robb 5000 

repetitions). 

Sub-sample Mean WTP (AUS$) 

 

95% confidence 

interval 

SNCS 133 

 

112 – 162 

SCCS 119 92 – 159 
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Table 5 Mean WTP for the CPRS and 95% confidence interval (Krinsky and Robb 1000 

repetitions). 

Calibration Technique % change in WTP estimate 

relative to Baseline 

% change in efficiency5 score of 

the WTP estimate relative to 

baseline 

SNCS   

YES7 

(WTP Yes=Yes only 
for certainty ≥ 7) 

-41 -100 

YES8 

(WTP Yes=Yes only 
for certainty ≥ 8) 

-61 

 

-284 

YES9 

(WTP Yes=Yes only 
for certainty ≥ 9) 

-78 -216 

YES10 

(WTP Yes=Yes only 
for certainty ≥ 10) 

-83 

 

-276 

SPC   

MBYES 

 (Maybe, Probably and 

Definitely Yes= Yes) 

117 

 

-145 

PRYES 

(Probably and Definitely Yes 

=Yes) 

-38 

 

-33 

DFYES 

(Definitely Yes =Yes) 

-77 -115 

SCCS   

FSYES 

(Fairly Sure, Highly Sure and 

-3 

 

-10 

                                                 
5 Efficiency score was calculated using the following formula: Efficiency =Difference between upper and lower CI 
over the Mean WTP.  
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Absolutely Sure Yes =Yes) 

ASYES 

(Absolutely Sure Yes=Yes) 

-32 -7 

 43 



 

 44 


	Between the two verbal expression based techniques, both the PC and CCS performed equally well on the grounds of construct validity. Therefore, no conclusion can be drawn regarding the superiority of one technique over the other based on the validity criteria. However, the PC method generated significantly higher numbers of ‘Yes’ responses than the other two sample splits. From this perspective, the CCS method offers an improvement over the PC method as it allows the researcher to keep the conventional DC valuation question format unchanged. Also, the CCS method outperformed the PC method on efficiency grounds. However, there are some caveats to the CCS method. About 90 percent of the SCCS respondents indicated complete certainty about their responses to the valuation question. Such a high proportion of complete confidence in WTP responses is unprecedented in the CV literature. This finding raises more questions than it answers. One plausible explanation of this result could be respondents’ attempts to avoid or deny self-contradiction as pointed out by Samneliev et al. (2006). One might argue that this attempt should have been equally reflected in the two other sample splits. Note that unlike the SNCS and the SPC, a question decomposition exercise was undertaken in the SCCS. Before introducing the certainty scale, respondents were first asked if they were completely certain about their responses to the WTP question (the domain question). It might be the case that this domain question had sparked respondents’ urges to stand by their choices at an extraordinary level compared to the NCS and PC method. This explanation is a speculation than conclusion. However, this is a hypothesis which can be tested in future research.   
	Finally, this study is one of the first attempts to compare the performance of the existing certainty measurement methods and to develop a new method that overcomes the deficiencies in existing measures. The results of our experiments provide two clear messages. First, the suitability of the numerical scale based method in capturing preference uncertainty in CV studies is questionable. Second, the CCS method holds promise as a useful measure of preference uncertainty. It helps to overcome some problems associated with the PC method. However, the method can be improved further particularly by adding more response options such as very (un)sure, quite (un)sure, somewhat (un)sure and so on. Furthermore, the pie diagrams could be replaced by facial expressions that reflect uncertainty. It might be challenging to develop such pictograms that explicitly distinguish the level of uncertainty through facial expressions. The ‘Pain Rating Scales’ developed by medical researchers could be a useful starting point.
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