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Abstract 

Where a fish stock straddles or migrates between country A’s exclusive economic zone 

(EEZ) and country B’s EEZ, or the high seas, vesting ownership rights in the stock with A 

does not ensure efficient harvesting of the stock. This problem arises in the case of migratory 

tuna stocks in the Western and Central Pacific Ocean (WCPO). Four species of tuna reside 

for only part of the year in the EEZs of coastal states, many of which are Pacific Island 

Countries (PICs). Most of the harvesting of the stocks is carried out by distant water fishing 

nations such as the USA, Japan, Taiwan, China and Korea. 

 

Problems arise for achieving efficiency and equity in the harvesting of the stocks by disparate 

countries. The problems are made more difficult by changes in the harvesting levels of one 

fleet affecting the rents of another fleet through changes in the age distribution of stock. 

These types of problem are under review by the Western and Central Pacific Fisheries 

Commission, formed in 2005. Results from an age-structured steady-state bioeconomic 

model are used to show: the changes in fleet rents and catches of tuna if all fleets form a 

cooperative grand coalition to deploy fishing effort to maximize rents over the WCPO; the 

likely non-stability of the grand coalition; and the inferior Nash Equilibrium outcomes if all 

fleets fish non-cooperatively to maximize their own rents. 

 

Keywords: Bioeconomic modelling, Game theory, Optimisation, Migratory tuna     
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INTRODUCTION 
 

The tuna fishery in the western and central Pacific is conducted by fleets from many different 

nations. Traditionally fishing in this area was mainly done by the Japanese, who fished with 

longline or pole and line. Over time new nations, especially Taiwan and Korea, emerged in 

the longline fishery. Furthermore, from the 1970s on, fishing by purse seine increased 

rapidly. Purse seining is carried out by a variety of nations: the United States, Indonesia, the 

Philippines, and the Pacific island nations, in addition to those involved in longlining. 

 

When fishing fleets from different nations compete for a common fish stock, the result is 

likely to be overexploitation, both in the biological and the economic sense. The life span of 

tuna is several years, in which case biological overexploitation means that most fish are 

caught too young, before they have reached the age of maximum age group biomass. In 

addition, recruitment of young fish may be adversely affected by reducing the spawning stock 

too far, but little is known about the relationship between the spawning stock biomass and 

recruitment to the stock. In economic terms overexploitation means that there are too many 

fishermen and boats, raising the fishing costs to an unnecessarily high level. 

 

An additional aspect of the possible economic overexploitation of the tuna stocks in the 

western and central Pacific is the effect of purse seining on the longline fishery. Purse seine 

fishing is carried out primarily for skipjack tuna, but also for yellowfin, and some bigeye tuna 

also get entangled in the seines. The catching of yellowfin and bigeye tuna has a detrimental 

effect on the longline fishery, because the purse seiners primarily take young tuna which 

would otherwise have grown older and become available for the longline fishery. The 

question therefore arises whether reducing the purse seine fishery for bigeye and yellowfin 

would be advisable. Do these fish represent a higher value if left for the longline fishery, or 

had they better be taken by the purse seine fishery? 

 

In this paper we shall look at the interaction between the purse seine fishery and the longline 

fishery. Would it make sense, from an overall point of view, to reduce the former for the 

benefit of the latter? This is a part of the larger issue of what rate and pattern of exploitation 

would maximize the economic rent in the fishery. Which fleet should participate in the 

fishery and on what scale? Given that such a solution would most likely entail some fleets 

fishing less than presently or not at all, could such a solution be implemented by some kind of 

rent sharing? And if not, or if a rent-maximizing solution is unlikely to be implemented for 

other reasons, what kind of outcome can we expect when all national fleets compete against 

each other? These are the types of question being raised by the recently established Western 

and Central Pacific Fisheries Commission (see Kennedy, 2006), and that we shall try to 

answer in this paper. 

 

We shall consider three stocks that are likely to be, to a greater or lesser degree, mixed in the 

fishing areas and hence fished to some extent indiscriminately by the fishing fleets. These are 

bigeye, yellowfin and skipjack. Both are found mainly in the tropical areas between 10 

degrees north and south of the equator. Albacore tuna, also fished in the western and central 

Pacific, is mainly found further south and therefore to a lesser extent fished indiscriminately 

together with the other three. 
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Figure 1: Catches of tuna in the Western and central Pacific (source: WCPFC Tuna Fisheries  

Yearbook. Secretariat of the Pacific Community). 
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The question of maximizing rents in the western and central Pacific tuna fishery has been 

analysed before. Bertignac and others (2001) used a detailed age structured model with a 

number of different fleets to look into the effects of changing the size of different fleets. They 

calculated the rent gains versus losses from changing fishing effort for the different fleets and 

the interaction between different fleets for the different stocks involved. The emphasis here is 

somewhat different. We look not just at the rent-maximizing solution, but also at whether 

under ideal circumstances a grand, rent-maximizing coalition is likely to be stable, and what 

would be the outcome of competition among the fleets of the various nations participating in 

the fishery. For this reason a simpler model of the tuna stocks than the one used by Bertignac 

et al. (2001), which is highly disaggregated spatially and allows for average rates of 

advection and diffusion of stock between the 5 degree squares making up the western and 

central Pacific region. When possible data from the disaggregated model are used in the 

much simpler highly aggregated model, but some of the model changes lead to requirements 

for different parameter estimates. The way in which some parameters were tuned to obtain 

good model fits between modelled and actual catches is described below. 

 

 

THE MODEL 
 

The model employed is a yield per recruit model. Each age interval is one quarter. Growth, 

natural mortality and gear selectivity parameters were taken from the WCPOBTM-model 

(Reid et al., 2006). 

 

Two fisheries are considered, the purse seine fishery and the longline fishery. These are the 

dominating types of gear nowadays, while earlier pole and line in particular was important. 

The pole and line fishery is included with the purse seine fishery, as the selectivity patterns 

for both gear types are identical for bigeye and yellowfin tuna. In addition, there are other 

fisheries, of which domestic Indonesian and Philippine fisheries are important components. 

We will not consider these fisheries any further, except including them as a residual fishery 

with a constant fishing mortality. 

  

Figure 1 shows the tuna catches in the western and central Pacific since 1950. Except for 

albacore, the total catches have increased in an almost linear fashion. Since the 1990s most of 

the skipjack has been taken by purse seines. This is true to a lesser extent for yellowfin, of 

which substantial catches are taken by longlines. Most of the bigeye is taken by longlines, but 

there is a non-negligible catch by purse seines, which is on the rise. The use of pole and line 

is in decline.  

 

For modelling purposes, a steady state age-structured stock system is simulated as follows. 

Stock in each age category is reduced over each quarterly fishing season by natural mortality 

and fishing mortality set by harvesting effort. Stock in the first age category is replenished in 

each quarter at a constant rate of recruitment. This is a simplification to the extent that 

recruitment is here not a function of the adult biomass of the stock. As numbers decline in 

older age categories, the effect on biomass is to some degree offset by the increasing average 

unit weight of the stock. 
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For each stock species s, the population 
,i sx  in each quarterly age category i from 1 to I is: 
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with 
. ,i s i i s sf q s E= , and where 

,r sx is recruitment numbers into the first age category, 
,i sf and 

,i sm are the quarterly instantaneous rates of fishing (aggregated across fleets) and natural 

mortality respectively, 
, and s i sq s are availability and selectivity coefficients respectively, and 

se is quarterly fishing effort. 

 

Catch for species s accumulates from each age category over the season, dependent on 

natural and fishing mortality, and unit weight, as follows: 
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where 
,i sw is the average unit catch weight of fish in the i-th age category. 

 

The model is not dynamic in that the decision variables ,i sf remain the same for all quarterly 

time periods. However, this enables the impact of changes in 
,i sf  on steady state stocks, 

catches and rents to be readily determined by iterating to the steady state. 

 

Tuning with respect to a vector of parameters p to be estimated was conducted by solving the 

following problem: 

 
3

2

,2005

1

ˆmin ( )s s

s

c c
=

−∑
p

 (3) 

 

With given age-specific weight, natural mortality and selectivity, it is possible to tune the 

model by finding the fishing mortalities that reproduce the catches taken by the three types of 

gear in some reference year. This was done for the catches taken in 2005, but the resulting 

fishing mortalities produced much too low survival rates for all three stocks (less than one 

percent for all stocks at what the WCPOBTM model considers the terminal age). This implies 

a severe overexploitation of all three stocks, which in turn implies enormous and in all 

probability unrealistic gains from reducing fishing effort and fishing mortalities. 

 

Instead, the model was tuned by basing the availability coefficients (
sq ) on those used in the 

WCPOBTM model and finding the effort levels that most successfully reproduce the catch 

shares taken by the main fleets in 2005, whereafter the initial recruitment to each stock was 
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determined by setting the catch produced by the model equal to the total catch in 2005.
1
 

Table 1 shows the fleets identified for the purpose of this study and the catches taken of 

bigeye, yellowfin and skipjack in 2005, and Figure 2 the actual catches of the fleets in 2005 

and the catches implied by the said procedure. 

 

A further reality check of the parameters is provided by looking at the survival rate of fish in 

the three stocks resulting from the effort produced by this procedure. In the WCPOBTM 

model the life-span of fish in the three stocks is set at 32 quarters for bigeye (8 years), 22 for 

yellowfin (5.5 years), and 16 for skipjack (4 years). The implication is that few fish survive to 

this age. With the effort set as explained above, about six percent of each age group survives 

to the said ages. This is probably realistic; according to Hampton et al. (2006a, b), a 

significant number of bigeye survive to the age of eight years, and a significant number of 

yellowfin to the age of four, according to tagging experiments. With the parameters above, 11 

percent of yellowfin survive until the age of four. Whether or not six and 11 percent is 

significant can be debated, but a lower survival rate implies overexploitation and much 

greater gains from reducing fishing effort than this tuning of the model gives rise to. 

 

Table 1: Catches of tuna (thousand tonnes) in 2005 in the western and central Pacific by fleet 

and stock.  

 

 

 

 

 

 

 

 

 

 

Source: Secretariat of the Pacific Community: Tuna Yearbook 2005. 

 

The model used here, as well as the WCPOBTM model, imply non-selective fishing with 

respect to stocks; once the gear has been set the fixed availability coefficients and the 

abundance of the stocks determine how much will be caught from each stock. Technically 

this means that any given effort by the k-th fleet of purse seiners or longliners will produce 

fishing mortalities for the three stocks according to the relationship , , , , , .i s k s k i s k kf q s E=  Model 

availability  and selectivity coefficients are given in Tables A1 and A2 in the Appendix. 

 

The different national fleets have different qi’s, as their catch shares differ between stocks. 

The differences in the qi’s indicate that a total absence of selectivity between stocks is not 

quite true, although it may be due to different fleets fishing in different areas rather than 

targeting certain stocks, except indirectly by fishing in certain areas rather than others. 

                                                
1
 The WCPOBTM model identifies two different long line fleets, one for frozen and one for fresh tuna. We have 

used the q’s for fresh tuna, except for Korea, which is not represented with a fleet for fresh tuna in the model. 

For Korea we used the same q as for Japan. For fisheries other than purse seining and longlining the fishing 

mortality was determined for each stock separately by reproducing the catches in these fisheries. The selectivity 

pattern for the Indonesian domestic fisheries was used, but this fishery, as well as the Philippine domestic 

fishery (which has a somewhat different selectivity pattern) is an important part of these other fisheries. 

Purse seine (including pole and line)  Longline 

  Bigeye Yellowfin Skipjack    Bigeye Yellowfin Skipjack 

US  4.8 17.0 52.4  China  30.4 15.7 0.1 

Japan  8.1 29.3 327.1  Japan  15.3 20.2 3.5 

Korea  2.6 35.6 171.6  Korea  6.4 2.4 0.0 

Taiwan  2.2 27.6 165.3  Taiwan  15.6 13.3 0.0 

Others  17.2 52.4 354.3  Others  17.2 22.9 1.5 

Pacific Islands  16.0 72.9 311.0       

Total  50.9 234.9 1381.6  Total  84.9 74.5 5.1 
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Figure 2: Actual and simulated catches of tuna for 12 fleets.  
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ECONOMIC ANALYSIS 
 

For economic analysis, it is necessary to determine the cost per unit of effort for the different 

fleets. As a point of departure we use the cost parameters of the WCPOBTM model, but this 

is not unproblematic, as our model excludes one of the stocks included in the WCPOBTM 

model. Furthermore we have calculated the effort levels for the different fleets by 

reproducing the 2005 catches in the best possible way rather than using actual effort data for 

the different fleets. Since the cost figures of the WCPOBTM model presumably reflect the 

best estimates of the cost differences between the different fleets we deal with this by scaling 

all the cost figures by the same factor so that a reasonable rent is produced for the different 

fisheries. As to prices, these are fixed and equal to unity for the purse seine fishery, but 10 

and 6, respectively, for bigeye tuna and yellowfin tuna caught with longline. This price 

difference is set on the basis of Bertignac et al. (2001), which reported price differentials of 

approximately this magnitude between the purse seine and the longline fishery. 

 

 

A reference solution 
 

The rent resulting from using the 2005 catches as a reference solution is shown in Table 2. 

The US purse seine fleet breaks even, and long lining by Others returns a small loss. For the 

remaining fleets we get positive and quite possibly unrealistically high rents; China and 

Taiwan produce a rent of over 30 percent of production value, Japan about 26 in the longline 

fishery and 10 in the purse seine fishery, and Korea about 20 percent in the longline fishery 

and 16 in the purse seine fishery. The Pacific island countries get a rent of 7 percent in their 

purse seine fisheries. Since the distant water fishing fleets pay fees for access to the economic 

zones of the Pacific island nations, it is reasonable to expect some rents in these fisheries, for 

otherwise the boatowners would be making a capital loss and would not renew their boats 

when they are worn out. These access fees are only 3-4 percent of revenues (Petersen, 2002),  

however, while the rents in Table 2 are much higher than needed for that, except for the US 

fleet, which just breaks even. There is reason to expect, therefore, that the cost of the US fleet 

is lower than assumed here, a point we will return to below. 

 

Table 2: Implied rent in the tuna fisheries in 2005 as percent of production value. 

 

 

 

 

Maximizing rents 

 

Table 3 compares the solution maximizing aggregate rents and the reference solution. In the 

rent-maximizing exercise, the mortality in the other fisheries is held constant, and they are 

not a part of the rent maximization. The aggregate rent is the maximum, undiscounted, 

sustainable rent, as the model is a static yield per recruit model that compares different long 

term equilibrium solutions, but including the dynamics between age groups. There is a large 

reduction in fishing mortality in the purse seine fishery while the mortality in the longline 

fishery increases by 150-160 percent. As a result, purse seine catches of bigeye and yellowfin 

Purse seine; Pole & line  Longline 

US Japan Korea Taiwan Others  PICs Japan Taiwan China Korea Others 

0.0 10.5 16.4 32.1 27.2  7.0 26.6 34.5 34.3 21.9 -1.3 
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decrease by about 70 and 30 percent, respectively, while the decrease in the catch of skipjack 

is relatively limited, or about 10 percent. Longline catches of bigeye and yellowfin more than 

double. The rent increases in both fisheries; as a percent of revenue it nearly doubles in the 

purse seine fishery (total revenue declines), and in the longline fishery it increases from about 

20 to 30 percent of revenue. These increases in rent are in part due to the exclusion of high 

cost fleets; the only fleet active in the purse seine fishery is Taiwan while both Taiwan and 

China are active in the longline fishery. 

 

 

Table 3: Comparison of rent-maximizing and reference solution. 

  

 

 

It is noteworthy that both the purse seine fishery and the longline fishery appear in the rent-

maximizing solution. It would not have been unexpected if the purse seine fishery had 

disappeared altogether, the reason being that each fleet fishes all three species 

indiscriminately. The longline fishery obtains much higher prices for its product, and it 

makes sense to limit the purse seine fishery for the benefit of the longline fishery, unless the 

costs in the longline fishery are high enough to make up for the price difference. This is what 

happens in the rent-maximizing solution, as we have seen; the fishing mortality in the purse 

seine fishery goes down and increases in the longline fishery. But the reduction of effort in 

the purse seine fishery is bound to also hit the skipjack fishery, because of the indiscriminate 

fishing of all three stocks, even if there is no longline fishery for skipjack.
2
 Letting the 

Taiwanese fleet fish do the purse seining achieves a judicious compromise; it turns out that 

the selectivity of the Taiwanese purse seiners is such as to take relatively little of bigeye and 

yellowfin compared to skipjack. Figure 3 shows the selectivity pattern for bigeye and 

yellowfin of the six purse seine fleets in the model, relative to skipjack. 

 

As already indicated, the advantage of the longline fleet is due to the higher prices obtained 

for the fish it catches, which goes to the Japanese sashimi market. There is good reason to 

expect the price of fish sold into that market to decline the more fish that is supplied; this was 

one of things analysed by Bertignac et al. (2001). We shall not here consider the elasticity of 

                                                
2
 In reality there is some long line fishing for skipjack, as can be seen from Figure 1, but it is very small and has 

been ignored here for simplicity. 

Species  Purse seine  Longline 

  Reference Rent max Change (%)  Reference Rent max Change (%) 

  f  f 

Bigeye  0.046 0.012 -73.8  0.008 0.020 146.2 

Yellowfin  0.025 0.018 -28.0  0.003 0.007 160.9 

Skipjack  0.031 0.028 -9.9  0 0   

  Catch  Catch 

Bigeye  43.2 10.4 -75.8  87.4 199.1 127.9 

Yellowfin  244.8 174.8 -28.6  65.3 168.5 157.9 

Skipjack  1385.8 1267.5 -8.5  0 0   

  Rent  Rent 

All  283.2 478.2 68.8  265.1 921.9 247.8 

  Rent as % of revenue  Rent as % of revenue 

All  16.9 32.9   20.9 30.7  

  Fleets active  Fleets active 

  All Taiwan  All Taiwan, China 
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demand in the Japanese sashimi market, but instead investigate by how much the price of fish 

in the longline fishery would have to fall to make this fishery unprofitable, from the point of 

view of maximizing aggregate rents. If the price advantage of the longline fishery is reduced 

by 40 percent, the Taiwanese longline fleet disappears from the rent-maximizing solution, 

and only the Chinese fleet is left. If the price advantage for the longline fleet falls by 50 

percent, it disappears from the rent-maximizing solution altogether. 
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Figure 3: Selectivity of the six purse seine fleets. 

 

 

How would a revenue-maximizing solution differ from the rent-maximizing solution? This is 

interesting, because if there is no stock effect (i.e., the catch per unit of effort is constant and 

independent of the stock size), the cost per unit of fish caught a constant. This means that the 

revenue-maximizing solution would be identical to the rent-maximizing solution for cases 

where tuna prices are the same as unit tuna rents . This solution is not radically different from 

the rent-maximizing solution already discussed; the Taiwanese purse seiners would still be 

the only ones fishing and would do so on a greater scale, and the fishing mortality in the 

longline fishery would be much higher, with the fishing being done by the most cost-efficient 

fleet. One might have suspected that the fishing mortality would become infinitely large in 

this solution. This can easily happen in models like this with a fixed price, unless the 

selectivity pattern is such that fishing with high intensity would deplete the age groups well 

before they have reached the maximum biomass weight.  
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Stability of the grand coalition 
 

Solutions like the rent-maximizing solution above are none too likely to be attained. They 

imply that the most efficient fleets should do the fishing and the others disappear, with the 

latter being compensated by a share in the greater profit. Such grand coalitions are sometimes 

not viable even in principle, as there may be incentives for some members of the coalition to 

break out and form their own sub-coalition, either with themselves as a single member or 

with more, but not all, members. See Kennedy (2003) for consideration of solution concepts, 

with and without side-payments, and allocations to indicate the security of coalitions. 

 

The nature of the rent 
kπ accruing to the k-th fleet breaking out can be explained as follows. 

The k-th one-member coalition (i.e., fleet) acts as a leader and solves the problem:  

 

 max { | }
k

k k
π

0
f

f x  (4) 

 

where 
kπ is the rent generated,

kf are the fishing mortalities set and 
0x is the array of stock 

vectors of numbers in each age category at the beginning of the fishing season prior to 

fishing. 

 

Let *

kf denote the solution to (4). The remaining fleets indexed by j act together as a group 

follower, solving the problem: 

 

 

*

*

max { | , }

where  the set of   

and  is the solution to the -th fleet's problem, acting as leader.

J

J J k

J j

k

j k

k

π
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0
F

F f x

F f

f

 (5) 

 

This is one thing that could threaten the grand coalition implied by the rent-maximizing 

solution. Each country would have to be offered an outcome at least as good as the country 

could obtain if it decided to break out of the coalition and maximize its own rent. Table 4 

shows that the sum of what the individual countries could obtain from a one-country coalition 

is greater than the maximal rent.
3
 Looked at in another way, suppose it is agreed that a 

nation’s fair share of the rent is determined by its contribution to making the coalition 

complete. The column “fair” rent share in Table 4 shows what each nation would then get. 

With these payments, in this case, all fleets would gain more by going it alone than by 

accepting their “fair” share. To this extent the grand coalition is unstable. This will be the 

case whenever the total of leader rents exceeds max rent. 

 

 

                                                
3
 The US and “others” are not represented in the table because the profitability of their fisheries in the reference 

solution is marginal or sub-marginal, and they drop out of the coalition game. 
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Table 4: Rent obtained by a one-member coalition and a “fair” share for the individual 

countries. 

 
Each fleet considers acting first to maximise its 

rent, leaving the rest to maximise their joint rent 
 Leader fleet rent  “Fair” rent share 

of Max rent 

Japan  145.5  141.6 

Korea  153.1  149.0 

Taiwan  822.5  800.4 

PICs  24.6  23.9 

China  293.0  285.1 

Total  1438.7  1400.1 
All fleets act to maximise joint rent cooperatively     

Max rent  1400.1   

 

There are conditions, however, under which this coalition would nevertheless be stable. This 

occurs if all countries realize that if one of them breaks out, all the others would do likewise. 

What then is important to look at is the temporary gain one country might obtain from 

breaking out of the coalition less the present value of the discounted loss resulting from 

everyone else going for the Nash equilibrium solution. The outcome of this depends on the 

discount rate and would require an intertemporal model to analyse (Hannesson, 1997).  

 

 

The Nash equilibrium 
 

Given that a grand coalition is none too likely, it makes sense to look at a solution where 

everyone is competing against everyone else, i.e., a Nash equilibrium with seven participants, 

the participants being defined as the five countries US, Japan, Taiwan, Korea, and China, 

plus the Pacific island countries as one player, and all others as the seventh player.  

 

For the Nash Equilibrium, the following set of solutions to all one-member coalition 

problems holds: 

 

 

*

* *

max { | , }
   

where  the set of   .

k

k k J

J j

k
j k

π

∀

= ∀ ≠

0
f

f F x

F f
 (6) 

 

Table 5 compares the Nash equilibrium with the reference solution. The US, Japan and the 

Pacific island countries drop out of purse seining, and Korea and Others drop out of 

longlining. Japan reduces its longlining by 20 percent but loses almost all its rent from the 

fishery. Korea increases its purse seining by 30 percent, but loses more than 80 percent of its 

rents. Others expand their activities in purse seining and increase their rents by almost 60 

percent, but drop out of longlining, where they operated with a loss in the reference solution. 

Taiwan expands its activities in purse seining and longlining six- to sevenfold and increases 

its rents in the purse seine fishery by 300 percent and doubles its rents in the longline fishery. 

China expands its efforts in the longline fishery 16-fold and increases its rents by 400 

percent. The total rent is only a half of what it is in the rent-maximizing solution, but actually 

three times higher than in the reference solution. 
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Table 5: Effort in the Nash equilibrium, relative to the reference solution, and percentage 

change in rents from the reference solution. 

 

 

 

More realistic costs? 

 

This Nash equilibrium looks suspicious; one would expect this to be the bottom line below 

which we would not be likely to fall. Some fleets, such as US purse seiners, purse seiners 

from the Pacific island countries, and Korean and Others’ longliners, are conspicuously 

absent from the Nash equilibrium. One suspects that this could be due to the costs for these 

fleets being set too high. Let us therefore look at a solution where the cost per unit of effort 

has been reduced to allow these fleets (except for Others’ longliners) to appear in the Nash 

equilibrium solution. The result is summarized in Table 6. With the cost per unit of effort 

being reduced by 20 percent for purse seiners from the US and the Pacific island countries, 

and Korean longliners, these fleets are now represented in the solution. A cost reduction of 30 

percent for Others’ longliners was not enough, however, for this fleet to appear in the Nash 

equilibrium solution. 

 

Table 6: Nash equilibrium compared with the reference solution, with changed cost per unit 

of effort. Percentage change in cost per unit of effort (US, PICs, and Korean longliners: 20 

percent; Japanese longliners: 10 percent; other longliners: 30 percent). 

 

We now make comparisons with the reference solution and the rent-maximizing solution, 

given these new costs. The effort by the US fleet increases by 30 percent compared with the 

reference solution, but the rent almost disappears. Purse seining both by the Pacific island 

countries and Others is increased more than two and a half times, but rents fall by 30 and 18 

percent, respectively. Taiwan increases its longlining almost threefold and its purse seining 

more than eightfold, increasing rents in purse seining by 260 percent while they fall by 

almost 70 percent in longlining. Korea increases its longlining almost fivefold, but rents fall 

by 17 percent. China increases its longlining more than sixfold, but rents fall by 35 percent. 

In this case the Nash equilibrium results in about 40 percent lower rents than the reference 

solution, and about 60 percent lower rents than the rent-maximizing solution. 

 

The rent-maximizing solution differs from the previous one in that more longline fleets now 

are represented. In the previous one only Taiwan and China were represented, but now also 

Korea and Others are included. Japanese costs are still too high. Still it is only Taiwan that 

does the purse seining, on about the same scale as before.  

 

 Purse seine; and Pole & line  Longline 

 US Japan Korea Taiwan Others PICs  Japan Taiwan China Korea Others 

             

Effort 0 0 1.3 7.2 3.5 0  0.8 6.4 16.4 0 0 

Rent, % change 100           -100 -84.7 304.0 57.5 -100  -91.2 92.2 402.3 -100 100 

 Purse seine; and Pole & line  Longline 

 US Japan Korea Taiwan Others PICs  Japan Taiwan China Korea Others 

             

Effort 1.3 0 0 8.2 2.6 2.6  1.0 2.7 6.2 4.7 0 

Rent, % change -95.4 -100.0 -100.0 261.7 -18.3 -30.5  -91.0 -66.7 -35.4 -16.9 100.0 
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CONCLUSION 
 

This paper has shown that considerable, but not dramatic, increases in rent can be obtained 

from changing the tuna fishery from its present configuration. Two changes are involved. 

First, purse seining should be reduced drastically, for the benefit of the longline fishery, 

which delivers a more valuable product. The price advantage of the longline fishery would 

have to be reduced by a half to overturn this conclusion. 

 

Second, provided there is a mechanism to share the aggregate rent, the fishing should be 

carried out by the most cost-effective fleets. This means that some fleets would disappear 

altogether, with the nations involved getting a share of the total rent. There are obvious 

practical and political obstacles to such a solution; how long would a country without any 

fishing fleet of its own be considered entitled to a share in the rents of a fishery taking place 

hundreds of miles away from its economic zone? Apart from that, in this particular setting 

this kind of solution would probably not be stable; there is no way that all countries can be 

offered rent shares that exceed what they could get on their own if one breaks out of the 

coalition and the others stay in it. Only if they realize that a breakdown of the coalition would 

end in everybody competing against everyone else and that the gains from breaking away 

would be temporary could the grand coalition be viable. 

 

Furthermore, the result that only the Taiwanese fleet remains in the purse seine fishery in the 

rent-maximizing solution illustrates that the purse seine fishery should be cut back in a way 

that minimizes the impact on the skipjack fishery and maximizes the impact on the yellowfin 

and especially the bigeye stocks. To the extent it is possible for the purse seine fishery to 

selectively fish the different stocks they should go for the skipjack and leave the yellowfin 

and the bigeye alone. 
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Appendix 

 
Table A1: Availability coefficients ,s kq by species s and fleet k 

(All to 3 significant figures) 

 

  Purse seine and Pole & line 

 US Japan  Korea  Taiwan  PICs Others 

Bigeye 0.003300 0.001120 0.000361 0.000315 0.000645 0.001650 

Yellowfin 0.000508 0.000647 0.000595 0.000465 0.000401 0.000429 

Skipjack 0.000772 0.000940 0.000887 0.000798 0.000623 0.000319 

      

  Longline  

 China  Japan  Korea  Taiwan  Others  

Bigeye 0.000002190 0.000003010 0.000003010 0.000002250 0.000001210  

Yellowfin 0.000000557 0.000000616 0.000000216 0.000000953 0.000000780  

Skipjack 0 0 0 0 0  

 

 

 

 Table A2: Selectivity coefficients 
, ,i s ks by age i, species s and fleet k  

 

 

     Skipjack    

   Selectivity coefficients for first quarter of each year class 

   1 5 9 13    

Purse seiners, all fleets 0.002 0.631 0.386 0.630    

Pole and line, all fleets  0.000 0.315 0.529 0.722    

          

Longline, frozen and fresh, all fleets 0.001 0.007 0.222 0.995    

          

          

     Yellowfin    

   Selectivity coefficients for first quarter of each year class 

   1 5 9 13 17   

Purse seiners, all fleets 0.027 0.428 0.467 0.326 0.382   

Pole and line, all fleets  0.027 0.428 0.467 0.326 0.382   

          

Longline, frozen and fresh, all fleets 0.004 0.047 0.941 0.993 0.999   

          

          

     Bigeye    

   Selectivity coefficients for first quarter of each year class 

   1 5 9 13 17 21 25 

Purse seiners, all fleets 0.011 0.587 0.091 0.016 0.032 0.068 0.095 

Pole and line, all fleets  0.011 0.587 0.091 0.016 0.032 0.068 0.095 

          

Longline, frozen and fresh, all fleets 0.008 0.104 0.825 0.999 0.987 0.981 0.981 


