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Annotation:  The paper discusses perspectives of elaborating microelectronic and optoelectronic devices on 
polycrystalline silicon films. The I-V features of structures with p-n-junction, formed by using methods of р-type 
conductivity layer grow, thermal diffusion and ion-implantation of boron atoms into n-type polycrystalline silicon 
layer are compared. The I-V feature with S-form curve of the investigated structures conditioned by changing of the 
conductivities of base and grain boundaries under thermal processing are revealed.  
 
 

Границы зерен (ГЗ) в поликристаллическом 
кремнии (ПК)  характеризуются высокой 
плотностью поверхностных состояний (ПС), 
специфическим спектром глубоких энергетических 
уровней в запрещенной зоне и степенью их 
заполнения зарядами. 

Высокотемпературные обработки, 
являющиеся неизбежными в процессе подготовки 
базовых пластин и изготовления на их основе 
приборов электронной техники, приводят к 
изменению всех трех вышеуказанных 
характеристик ГЗ. Такие изменения в свою очередь 
оказывают существенное влияние на процессы 
генерации-рекомбинации неравновесных носителей 
заряда и их разделение на контактно-барьерных 
полях, служащих основанием любого электронного 
прибора. Исследовательская практика показывает, 
что наиболее влияющими на процессы переноса 
носителей заряда в приборных структурах 
факторами являются режимы термической 
обработки (ТО) пластин, проводимой при 
формировании на них эффективного p–n перехода. 

В связи с этим представляет интерес 
исследование процесса переноса носителей заряда 
в пленочных ПК  структурах при формировании на 
них р–n- перехода методами, различающимися 
условиями высокотемпературных операций, что 
является основной целью данной работы. 

Рассмотрим результатов экспериментального 
анализа процессов переноса носителей заряда в 
структурах, полученных на основе p+- и n+-пленок 
ПК. Базовый n-слой с удельным сопротивлением ρ 
~ 0,1 Ом×см и толщиной 40 мкм был получен 
водородным восстановлением тетрохлорида 
кремния при температуре Т=1200 0С в 
вертикальном реакторе на n+-подложках из 
металлургического кремния (Абакумов и др., 1977) 
с удельным сопротивлением ρ ~ 0,01 Ом×см. 
Размеры зерен в поликристаллической подложке 

составляли >300 мкм, а выращенный n-слой 
повторял структуру подложки, и размеры зерен в 
нем колебались в пределах 300 ÷ 2000 мкм. 

Формирование р+–n-перехода в образцах 
осуществлялось тремя способами: - осаждением из 
газовой фазы р+-слоя толщиной ~2 мкм при 
температуре 1200 0С; - термодиффузией атомов 
бора на глубину 0,5 ÷ 1,5 мкм при температуре 
1100 0С; - ионной имплантацией атомов бора с 
энергией 75 кэВ с последующим отжигом при 800 
0С, что давало конечную глубину залегания р–n-
перехода на уровне 0,75 мкм. 

Уровень легирования р+-слоя во всех случаях 
обеспечивался примерно одинаковым и 
контролировался поверхностным сопротивлением 
R0 ~ 50 ± 5 Ом/квадрат. На полученных структурах 
с размерами 5×5, 2×2, 1×1 мм2 в идентичных 
условиях формировали омические контакты к n+- и 
р+-областям и проводили термостатированные 
измерения темновых вольт-амперных 
характеристик (ВАХ) и вольт-емкостных 
характеристик (ВЕХ) на частоте f = 100 кГц. 
Темновые ВАХ p+– n-n+-структур площадью 5×5 
мм2 с р–n-переходами, изготовленными эпитаксией 
и диффузией, приведены на Рисунке 1. Видно, что в 
области смещений 20 < qU/kT < 50 в пропускном 
направлении у обоих образцов имеется участок с 
отрицательным дифференциальным 
сопротивлением (ОДС). На ВАХ структур с ионно-
имплантированным р–n- переходом (Рисунок 2) 
участок с ОДС отсутствует.  

Отметим, что эти образцы до отжига 
радиационных  дефектов характеризуются 
наличием сублинейного участка ВАХ. 
Сублинейный участок ВАХ в пропускном 
направлении наблюдается обычно в  р+–n-n+ 

структурах с n-базой, где осуществлена 
компенсация глубокими примесями (Муминов и 
др., 1985).  
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РИСУНОК 1. ВАХ ПОЛИКРИСТАЛЛИЧЕСКИХ КРЕМНИЕВЫХ P
+–N–N

+-СТРУКТУР С  P–N-
ПЕРЕХОДАМИ, СФОРМИРОВАННЫМИ ЭПИТАКСИЕЙ (КРИВЫЕ 1 И 11

 ) И ДИФФУЗИЕЙ 

(КРИВЫЕ 2 И 21 ). КРИВЫЕ 1 И 2 - ПРЯМЫЕ ВЕТВИ ВАХ, КРИВЫЕ 1 И 11
 - ОБРАТНЫЕ    
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РИСУНОК 2.  ВАХ P
+–N–N

+-СТРУКТУР С ИОННО-ИМПЛАНТИРОВАННЫМ P–N-
ПЕРЕХОДОМ. КРИВЫЕ 1 И 2 – ПРЯМЫЕ ВЕТВИ ВАХ, КРИВЫЕ 11

 И 21
 – ОБРАТНЫЕ    
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В нашем случае сублинейная ВАХ 
преобразуется в S-образную характеристику с 
напряжениями срыва, лежащими для большой 
группы образцов (из 1200 штук) в пределах 
0,65÷1,2 В. Наблюдаемый эффект обусловлен, 
очевидно, следующим: в пленочных ПК структурах 
р–n-переход шунтируется дополнительным n+-
каналом, образующимся на ГЗ за счет сегрегации 
примеси фосфора, которой легирован n-слой, на 
высокотемпературной операции создания р–n-
перехода. Это происходит потому, что, во-первых, 
коэффициент сегрегации бора в кремнии в 2÷3 раз 
выше, чем у фосфора (Георгиев и др., 1990), и, во-
вторых, коэффициент диффузии фосфора по ГЗ в 
3,5÷3,8 раз превышает значение, характерное для 
объема, т.е. внутри зерна (Зи, 1973).  

При небольших величинах приложенного 
напряжения сопротивление этого канала намного 
меньше сопротивления р–n-перехода и ток 
протекает преимущественно по ГЗ. Немаловажную 
роль при этом играют ПС - электронные ловушки 
на ГЗ в n-слое. Высокотемпературная обработка 
приводит к увеличению степени заполнения ПС, 
что сопровождается увеличением объема области 
обеднения вплоть до размеров, сопоставимых с 
объемом зерна. В такой ситуации с ростом 
подаваемого напряжения уменьшается 
концентрация носителей заряда в объеме 
полупроводника за счет их эксклюзии (Викулин и 
Стафеев, 1980),  а дифференциальное 
сопротивление р-n перехода возрастает. 

С ростом общего тока через ПК р+–n-n+-
структуру сопротивление р–n-перехода 
уменьшается и происходит перераспределение 
токов, протекающих по каналу на ГЗ и через р–n-
переход. Это сопровождается резким увеличением 
инжекции носителей заряда в n-слой, и 
возникающая положительная обратная связь по 
току [6] создает условии роста проводимости n-
слоя с увеличением тока. 

В резулътате на ВАХ исследуемой структуры 
образуется участок с отрицательным 
дифференциальным сопротивлением (ОДС) в 
прямом направлении смещения. 

Известны различные модели возникновения 
S-образной ВАХ диодных структур (Викулин и др., 
2008), основная из которых объясняет этот эффект 
увеличением времени жизни инжектированных 
носителей заряда в компенсированном глубокими 
примесными центрами полупроводнике. 
Предполагалась, что и в исследуемых структурах 
имела место диффузия примесей, дающих глубокие 
уровни, из n+-подложки в n-слой. Поэтому нами 
проводились измерения ВЕХ структур в диапазоне 
температур 77÷300   К. 

Результаты указали на отсутствие или по 
крайней мере незначительную концентрацию 
глубоких примесных центров (NГ≤1012 см-3). 
Обнаруженный непрерывный спектр уровней в 

интервале энергии ЕС–Е=-0,2 эВ, связанный наряду 
с примесными уровнями и с ПС на ГЗ и 
комплексами дефектов на них, безусловна 
указывает на их возможный вклад в формирование 
механизма переноса носителей заряда в пленочных 
ПК структурах. Однако основной причиной 
возникновения S-образной ВАХ, по нашему 
мнению, является шунтирующие р–n-переход 
каналы вдоль ГЗ (Алиев, 1997). 

Подтверждением правомочности 
предложенного механизма являются результаты 
измерений пленочных ПК p+–n-n+-структур с 
ионно-имплантированным р–n-переходом, которые 
намеренно подвергали длительному отжигу при 
T=800 0С. Как видно из графика (Рисунок 3), на 
прямых ветвях ВАХ p–n-перехода, полученного 
ионным внедрением бора с энергией Е=75 КэВ и 
дозой D=103 мкКл/см2 в n-n+-структуру и 
последовательной термической обработки при 
температуре Тотж =800 0С с длительностью отжига 
≥60 мин (кривые 3 и 4) образуется n-канал, 
шунтирующий р–n-переход, и S–образная ВАХ 
наблюдается почти на всех ионно-
имплантированных образцах. В поддержку 
предложенного механизма можно привести и факт 
отсутствия S-образных ВАХ у образцов малого 
размера (≤1 мкм), в которых ГЗ по 
микроскопическим  наблюдением либо 
отсутствуют, либо имеют малую плотность. 

С применением методики анализа ВАХ в 
области объемного заряда, на исследуемых 
структурах оценивали эффективную скорость 
поверхностной рекомбинации SЭФ носителей 
заряда. Так, на структурах с p–n-переходом, 
сформированным методом выращивания пленок с 
разнотипной проводимостью, значение SЭФ 

составляло до 5×104 см/c, а на диффузионных 
структурах ∼103 см/c. Более высокое значение SЭФ у 
структур с p–n-переходом, сформированным 
осаждением из газовой фазы, связано с более 
высокой степенью заполнения ПС электронами, что 
вызвано соответственно более высокой 
температурой операции создания p–n-перехода. На 
структурах с ионно-имплантированным p–n-
переходом SЭФ составляет до отжига радиационных 
дефектов величину 2,7×104 см/c и после отжига 
5×102 см/c. Очевидно, что высокое значение SЭФ и 
появление сублинейного участка ВАХ до отжига у 
этих структур обусловлено именно введением в 
объем зерна радиационных дефектов на операции 
ионной имплантации. 

Полученные результаты позволяют считать, 
что для снижения влияния ГЗ на перенос носителей 
заряда в пленочных ПК структурах целесообразно 
формировать p–n-переходы в них ионным 
легированием с последующим кратковременным 
отжигом дефектов. 
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Полученные результаты указывают также на 
возможность создания на основе ПК структур 
полупроводниковых приборов с S-образной ВАХ, в 
технологии которых целесообразно применять 
сочетание термообработок с ионным легированием 
и другие приемы, приводящие к управляемому 
изменению проводимости ГЗ и зарядовых 
состояний, а также к компенсации ПС. Очевидно, 
что на пленочных кремниевых 
поликристаллических структурах возможно 
изготовление S-диодов, инжекционных 
фотоприемников, оптоэлектронных фильтров и т. 
п.   
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РИСУНОК 3. ПРЯМЫЕ ВЕТВИ ВАХ P-N ПЕРЕХОДА, ПОЛУЧЕННОГО ИОННЫМ 

ВНЕДРЕНИЕМ БОРА С ЭНЕРГИЕЙ Е=75 КЭВ И ДОЗОЙ D=103 МККЛ/СМ2 В N-N+ 

СТРУКТУРУ. ТОТЖ =800 0С; ДЛИТЕЛЬНОСТЬ ОТЖИГА: 1-БЕЗ ОТЖИГА, 2-5 МИН, 
3-60 МИН, 4-120 МИН. 


